Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2021 Volume 48 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2021 Volume 48 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Recent advances on the mechanisms of kidney stone formation (Review)

  • Authors:
    • Zhu Wang
    • Ying Zhang
    • Jianwen Zhang
    • Qiong Deng
    • Hui Liang
  • View Affiliations / Copyright

    Affiliations: Department of Urology, People's Hospital of Longhua, Southern Medical University, Shenzhen, Guangdong 518109, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 149
    |
    Published online on: June 11, 2021
       https://doi.org/10.3892/ijmm.2021.4982
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Kidney stone disease is one of the oldest diseases known to medicine; however, the mechanisms of stone formation and development remain largely unclear. Over the past decades, a variety of theories and strategies have been developed and utilized in the surgical management of kidney stones, as a result of recent technological advances. Observations from the authors and other research groups suggest that there are five entirely different main mechanisms for kidney stone formation. Urinary supersaturation and crystallization are the driving force for intrarenal crystal precipitation. Randall's plaques are recognized as the origin of calcium oxalate stone formation. Sex hormones may be key players in the development of nephrolithiasis and may thus be potential targets for new drugs to suppress kidney stone formation. The microbiome, including urease‑producing bacteria, nanobacteria and intestinal microbiota, is likely to have a profound effect on urological health, both positive and negative, owing to its metabolic output and other contributions. Lastly, the immune response, and particularly macrophage differentiation, play crucial roles in renal calcium oxalate crystal formation. In the present study, the current knowledge for each of these five aspects of kidney stone formation is reviewed. This knowledge may be used to explore novel research opportunities and improve the understanding of the initiation and development of kidney stones for urologists, nephrologists and primary care.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Romero V, Akpinar H and Assimos DG: Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Rev Urol. 12:e86–e96. 2010.PubMed/NCBI

2 

Morgan MS and Pearle MS: Medical management of renal stones. BMJ. 352:i522016. View Article : Google Scholar : PubMed/NCBI

3 

Zeng G, Mai Z, Xia S, Wang Z, Zhang K, Wang L, Long Y, Ma J, Li Y, Wan SP, et al: Prevalence of kidney stones in China: An ultrasonography based cross-sectional study. BJU Int. 120:109–116. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Ziemba JB and Matlaga BR: Epidemiology and economics of nephrolithiasis. Investig Clin Urol. 58:299–306. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Eisner BH and Goldfarb DS: A nomogram for the prediction of kidney stone recurrence. J Am Soc Nephrol. 25:2685–2687. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Brikowski TH, Lotan Y and Pearle MS: Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci USA. 105:9841–9846. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Abeywickarama B, Ralapanawa U and Chandrajith R: Geoenvironmental factors related to high incidence of human urinary calculi (kidney stones) in Central Highlands of Sri Lanka. Environ Geochem Health. 38:1203–1214. 2016. View Article : Google Scholar

8 

Wang Z, Zhang JW, Zhang Y, Zhang SP, Hu QY and Liang H: Analyses of long non-coding RNA and mRNA profiling using RNA sequencing in calcium oxalate monohydrate-stimulated renal tubular epithelial cells. Urolithiasis. 47:225–234. 2019. View Article : Google Scholar

9 

Parmar MS: Kidney stones. BMJ. 328:1420–1424. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Ye Z, Zeng G, Yang H, Li J, Tang K, Wang G, Wang S, Yu Y, Wang Y, Zhang T, et al: The status and characteristics of urinary stone composition in China. BJU Int. 125:801–809. 2020. View Article : Google Scholar

11 

Aggarwal KP, Narula S, Kakkar M and Tandon C: Nephrolithiasis: Molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. 2013:2929532013. View Article : Google Scholar : PubMed/NCBI

12 

Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxer O and Tiselius HG: Kidney stones. Nat Rev Dis Primers. 2:160082016. View Article : Google Scholar : PubMed/NCBI

13 

Sun X, Shen L, Cong X, Zhu H, He L and Lu J: Infrared spectroscopic analysis of 5,248 urinary stones from Chinese patients presenting with the first stone episode. Urol Res. 39:339–343. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Hamamoto S, Taguchi K and Fujii Y: Molecular mechanism of renal stone formation. Clin Calcium. 21:1481–1487. 2011.In Japanese. PubMed/NCBI

15 

Pak CY, Sakhaee K, Moe O, Preminger GM, Poindexter JR, Peterson RD, Pietrow P and Ekeruo W: Biochemical profile of stone-forming patients with diabetes mellitus. Urology. 61:523–527. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Carbone A, Al Salhi Y, Tasca A, Palleschi G, Fuschi A, De Nunzio C, Bozzini G, Mazzaferro S and Pastore AL: Obesity and kidney stone disease: A systematic review. Minerva Urol Nefrol. 70:393–400. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Devarajan A: Cross-talk between renal lithogenesis and atherosclerosis: An unveiled link between kidney stone formation and cardiovascular diseases. Clin Sci (Lond). 132:615–626. 2018. View Article : Google Scholar

18 

Kittanamongkolchai W, Mara KC, Mehta RA, Vaughan LE, Denic A, Knoedler JJ, Enders FT, Lieske JC and Rule AD: Risk of hypertension among first-time symptomatic kidney stone formers. Clin J Am Soc Nephrol. 12:476–482. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Rule AD, Bergstralh EJ, Melton LJ III, Li X, Weaver AL and Lieske JC: Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol. 4:804–811. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Keddis MT and Rule AD: Nephrolithiasis and loss of kidney function. Curr Opin Nephrol Hypertens. 22:390–396. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Dhondup T, Kittanamongkolchai W, Vaughan LE, Mehta RA, Chhina JK, Enders FT, Hickson LJ, Lieske JC and Rule AD: Risk of ESRD and mortality in kidney and bladder stone formers. Am J Kidney Dis. 72:790–797. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Voss S, Hesse A, Zimmermann DJ, Sauerbruch T and von Unruh GE: Intestinal oxalate absorption is higher in idiopathic calcium oxalate stone formers than in healthy controls: Measurements with the [(13)C2]oxalate absorption test. J Urol. 175:1711–1715. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Ha YS, Tchey DU, Kang HW, Kim YJ, Yun SJ, Lee SC and Kim WJ: Phosphaturia as a promising predictor of recurrent stone formation in patients with urolithiasis. Korean J Urol. 51:54–59. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Dean C, Kanellos J, Pham H, Gomes M, Oates A, Grover P and Ryall R: Effects of inter-alpha-inhibitor and several of its derivatives on calcium oxalate crystallization in vitro. Clin Sci (Lond). 98:471–480. 2000. View Article : Google Scholar

25 

Daudon M, Frochot V, Bazin D and Jungers P: Drug-induced kidney stones and crystalline nephropathy: Pathophysiology, prevention and treatment. Drugs. 78:163–201. 2018. View Article : Google Scholar

26 

Rodgers AL: Physicochemical mechanisms of stone formation. Urolithiasis. 45:27–32. 2017. View Article : Google Scholar

27 

Thongboonkerd V: Proteomics of crystal-cell interactions: A model for kidney stone research. Cells. 8:10762019. View Article : Google Scholar

28 

Wang Z, Li MX, Xu CZ, Zhang Y, Deng Q, Sun R, Hu QY, Zhang SP, Zhang JW and Liang H: Comprehensive study of altered proteomic landscape in proximal renal tubular epithelial cells in response to calcium oxalate monohydrate crystals. BMC Urol. 20:1362020. View Article : Google Scholar : PubMed/NCBI

29 

Fong-Ngern K, Sueksakit K and Thongboonkerd V: Surface heat shock protein 90 serves as a potential receptor for calcium oxalate crystal on apical membrane of renal tubular epithelial cells. J Biol Inorg Chem. 21:463–474. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Kumar V, Farell G, Deganello S and Lieske JC: Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals. J Am Soc Nephrol. 14:289–297. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Anan G, Yoneyama T, Noro D, Tobisawa Y, Hatakeyama S, Sutoh Yoneyama M, Yamamoto H, Imai A, Iwamura H, Kohada Y, et al: The impact of glycosylation of osteopontin on urinary stone formation. Int J Mol Sci. 21:932019. View Article : Google Scholar

32 

Wiener SV, Ho SP and Stoller ML: Beginnings of nephrolithiasis: Insights into the past, present and future of Randall's plaque formation research. Curr Opin Nephrol Hypertens. 27:236–242. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Sheng X, Ward MD and Wesson JA: Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation. J Am Soc Nephrol. 16:1904–1908. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Ketha H, Singh RJ, Grebe SK, Bergstralh EJ, Rule AD, Lieske JC and Kumar R: Altered calcium and vitamin D homeostasis in first-time calcium kidney stone-formers. PLoS One. 10:e01373502015. View Article : Google Scholar : PubMed/NCBI

35 

Vezzoli G, Macrina L, Magni G and Arcidiacono T: Calcium-sensing receptor: Evidence and hypothesis for its role in nephrolithiasis. Urolithiasis. 47:23–33. 2019. View Article : Google Scholar

36 

Farell G, Huang E, Kim SY, Horstkorte R and Lieske JC: Modulation of proliferating renal epithelial cell affinity for calcium oxalate monohydrate crystals. J Am Soc Nephrol. 15:3052–3062. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Gao J, Xue JF, Xu M, Gui BS, Wang FX and Ouyang JM: Nanouric acid or nanocalcium phosphate as central nidus to induce calcium oxalate stone formation: A high-resolution transmission electron microscopy study on urinary nanocrystallites. Int J Nanomedicine. 9:4399–4409. 2014.PubMed/NCBI

38 

Ratkalkar VN and Kleinman JG: Mechanisms of stone formation. Clin Rev Bone Miner Metab. 9:187–197. 2011. View Article : Google Scholar

39 

Moe OW, Abate N and Sakhaee K: Pathophysiology of uric acid nephrolithiasis. Endocrinol Metab Clin North Am. 31:895–914. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Shekarriz B and Stoller ML: Uric acid nephrolithiasis: Current concepts and controversies. J Urol. 168:1307–1314. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Song L and Maalouf NM: Nephrolithiasis. Endotext. Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dungan K, Grossman A, Hershman JM, Hofland HJ, Kaltsas G, et al: MDText.com, Inc. South Dartmouth, MA: 2000

42 

Farmanesh S, Chung J, Sosa RD, Kwak JH, Karande P and Rimer JD: Natural promoters of calcium oxalate monohydrate crystallization. J Am Chem Soc. 136:12648–12657. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Worcester EM: Urinary calcium oxalate crystal growth inhibitors. J Am Soc Nephrol. 5(Suppl 1): S46–S53. 1994. View Article : Google Scholar : PubMed/NCBI

44 

Schepers MS, van der Boom BG, Romijn JC, Schroder FH and Verkoelen CF: Urinary crystallization inhibitors do not prevent crystal binding. J Urol. 167:1844–1847. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Khan SR and Kok DJ: Modulators of urinary stone formation. Front Biosci. 9:1450–1482. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Hess B, Jordi S, Zipperle L, Ettinger E and Giovanoli R: Citrate determines calcium oxalate crystallization kinetics and crystal morphology-studies in the presence of Tamm-Horsfall protein of a healthy subject and a severely recurrent calcium stone former. Nephrol Dial Transplant. 15:366–374. 2000. View Article : Google Scholar : PubMed/NCBI

47 

Cicerello E, Ciaccia M, Cova G and Mangano M: The impact of potassium citrate therapy in the natural course of Medullary Sponge Kidney with associated nephrolithiasis. Arch Ital Urol Androl. 91:102–106. 2019. View Article : Google Scholar

48 

Siener R: Dietary treatment of metabolic acidosis in chronic kidney disease. Nutrients. 10:5122018. View Article : Google Scholar :

49 

Kim D, Rimer JD and Asplin JR: Hydroxycitrate: A potential new therapy for calcium urolithiasis. Urolithiasis. 47:311–320. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Chung J, Granja I, Taylor MG, Mpourmpakis G, Asplin JR and Rimer JD: Molecular modifiers reveal a mechanism of pathological crystal growth inhibition. Nature. 536:446–450. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Ryall RL, Harnett RM and Marshall VR: The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro. Clin Chim Acta. 112:349–356. 1981. View Article : Google Scholar : PubMed/NCBI

52 

Riley JM, Kim H, Averch TD and Kim HJ: Effect of magnesium on calcium and oxalate ion binding. J Endourol. 27:1487–1492. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Grases F, Rodriguez A and Costa-Bauza A: Efficacy of mixtures of magnesium, citrate and phytate as calcium oxalate crystallization inhibitors in urine. J Urol. 194:812–819. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Robertson WG: Do 'inhibitors of crystallisation' play any role in the prevention of kidney stones? A critique. Urolithiasis. 45:43–56. 2017. View Article : Google Scholar

55 

Randall A: The origin and growth of renal calculi. Ann Surg. 105:1009–1027. 1937. View Article : Google Scholar : PubMed/NCBI

56 

Wiener SV, Chen L, Shimotake AR, Kang M, Stoller ML and Ho SP: Novel insights into renal mineralization and stone formation through advanced imaging modalities. Connect Tissue Res. 59:S102–S110. 2018. View Article : Google Scholar

57 

Daudon M, Bazin D and Letavernier E: Randall's plaque as the origin of calcium oxalate kidney stones. Urolithiasis. 43(Suppl 1): S5–S11. 2015. View Article : Google Scholar

58 

Khan SR, Canales BK and Dominguez-Gutierrez PR: Randall's plaque and calcium oxalate stone formation: Role for immunity and inflammation. Nat Rev Nephrol. 17:417–433. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Chung HJ: The role of Randall plaques on kidney stone formation. Transl Androl Urol. 3:251–254. 2014.PubMed/NCBI

60 

Bouderlique E, Tang E, Perez J, Coudert A, Bazin D, Verpont MC, Duranton C, Rubera I, Haymann JP, Leftheriotis G, et al: Vitamin D and calcium supplementation accelerates Randall's plaque formation in a murine model. Am J Pathol. 189:2171–2180. 2019. View Article : Google Scholar : PubMed/NCBI

61 

Winfree S, Weiler C, Bledsoe SB, Gardner T, Sommer AJ, Evan AP, Lingeman JE, Krambeck AE, Worcester EM, El-Achkar TM and Williams JC Jr: Multimodal imaging reveals a unique autofluorescence signature of Randall's plaque. Urolithiasis. 49:123–135. 2021. View Article : Google Scholar

62 

Zhu Z, Huang F, Xia W, Zeng H, Gao M, Li Y, Zeng F, He C, Chen J, Chen Z, et al: Osteogenic differentiation of renal interstitial fibroblasts promoted by lncRNA MALAT1 may partially contribute to Randall's plaque formation. Front Cell Dev Biol. 8:5963632020. View Article : Google Scholar

63 

Zhu Z, Cui Y, Huang F, Zeng H, Xia W, Zeng F, He C, Chen J, Chen Z, Chen H and Li Y: Long non-coding RNA H9 promotes osteogenic differentiation of renal interstitial fibroblasts through Wnt-beta-catenin pathway. Mol Cell Biochem. 470:145–155. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Liu H, Ye T, Yang X, Liu J, Jiang K, Lu H, Xia D, Peng E, Chen Z, Sun F, et al: H19 promote calcium oxalate nephrocalcinosis-induced renal tubular epithelial cell injury via a ceRNA pathway. EBioMedicine. 50:366–378. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Fan J, Chandhoke PS and Grampsas SA: Role of sex hormones in experimental calcium oxalate nephrolithiasis. J Am Soc Nephrol. 10(Suppl 14): S376–S380. 1999.PubMed/NCBI

66 

Li JY, Zhou T, Gao X, Xu C, Sun Y, Peng Y, Chang Z, Zhang Y, Jiang J, Wang L and Hou J: Testosterone and androgen receptor in human nephrolithiasis. J Urol. 184:2360–2363. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Gupta K, Gill GS and Mahajan R: Possible role of elevated serum testosterone in pathogenesis of renal stone formation. Int J Appl Basic Med Res. 6:241–244. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Fuster DG, Morard GA, Schneider L, Mattmann C, Lüthi D, Vogt B and Dhayat NA: Association of urinary sex steroid hormones with urinary calcium, oxalate and citrate excretion in kidney stone formers. Nephrol Dial Transplant. Dec 9–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

69 

Yoshihara H, Yamaguchi S and Yachiku S: Effect of sex hormones on oxalate-synthesizing enzymes in male and female rat livers. J Urol. 161:668–673. 1999. View Article : Google Scholar : PubMed/NCBI

70 

Liang L, Li L, Tian J, Lee SO, Dang Q, Huang CK, Yeh S, Erturk E, Bushinsky D, Chang LS, et al: Androgen receptor enhances kidney stone-CaOx crystal formation via modulation of oxalate biosynthesis & oxidative stress. Mol Endocrinol. 28:1291–1303. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Peng Y, Fang Z, Liu M, Wang Z, Li L, Ming S, Lu C, Dong H, Zhang W, Wang Q, et al: Testosterone induces renal tubular epithelial cell death through the HIF-1alpha/BNIP3 pathway. J Transl Med. 17:622019. View Article : Google Scholar

72 

Changtong C, Peerapen P, Khamchun S, Fong-Ngern K, Chutipongtanate S and Thongboonkerd V: In vitro evidence of the promoting effect of testosterone in kidney stone disease: A proteomics approach and functional validation. J Proteomics. 144:11–22. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Zhu W, Zhao Z, Chou F, Zuo L, Liu T, Yeh S, Bushinsky D, Zeng G and Chang C: Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis. 10:2752019. View Article : Google Scholar : PubMed/NCBI

74 

Sueksakit K and Thongboonkerd V: Protective effects of finasteride against testosterone-induced calcium oxalate crystallization and crystal-cell adhesion. J Biol Inorg Chem. 24:973–983. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Peerapen P and Thongboonkerd V: Protective cellular mechanism of estrogen against kidney stone formation: A proteomics approach and functional validation. Proteomics. 19:e19000952019. View Article : Google Scholar : PubMed/NCBI

76 

Zhu W, Zhao Z, Chou FJ, Zuo L, Liu T, Bushinsky D, Chang C, Zeng G and Yeh S: The protective roles of estrogen receptor β in renal calcium oxalate crystal formation via reducing the liver oxalate biosynthesis and renal oxidative stress-mediated cell injury. Oxid Med Cell Longev. 2019:53050142019. View Article : Google Scholar

77 

Loughlin KR: The clinical applications of five-alpha reductase inhibitors. Can J Urol. 28:10584–10588. 2021.PubMed/NCBI

78 

Tian H, Chou FJ, Tian J, Zhang Y, You B, Huang CP, Yeh S, Niu Y and Chang C: ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling. J Exp Clin Cancer Res. 40:32021. View Article : Google Scholar

79 

Hu H, Zhou H and Xu D: A review of the effects and molecular mechanisms of dimethylcurcumin (ASC-J9) on androgen receptor-related diseases. Chem Biol Drug Des. 97:821–835. 2021. View Article : Google Scholar

80 

Andy G, John M, Mirna S, Rachita D, Michael K, Maja K, Aseem S and Zeljana B: Controversies in the treatment of androgenetic alopecia: The history of finasteride. Dermatol Ther. 32:e126472019. View Article : Google Scholar

81 

Whiteside SA, Razvi H, Dave S, Reid G and Burton JP: The microbiome of the urinary tract-a role beyond infection. Nat Rev Urol. 12:81–90. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Bichler KH, Eipper E, Naber K, Braun V, Zimmermann R and Lahme S: Urinary infection stones. Int J Antimicrob Agents. 19:488–498. 2002. View Article : Google Scholar : PubMed/NCBI

83 

Espinosa-Ortiz EJ, Eisner BH, Lange D and Gerlach R: Current insights into the mechanisms and management of infection stones. Nat Rev Urol. 16:35–53. 2019. View Article : Google Scholar

84 

Marien T and Miller NL: Treatment of the Infected Stone. Urol Clin North Am. 42:459–472. 2015. View Article : Google Scholar : PubMed/NCBI

85 

de Cógáin MR, Lieske JC, Vrtiska TJ, Tosh PK and Krambeck AE: Secondarily infected nonstruvite urolithiasis: A prospective evaluation. Urology. 84:1295–1300. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Flannigan R, Choy WH, Chew B and Lange D: Renal struvite stones-pathogenesis, microbiology, and management strategies. Nat Rev Urol. 11:333–341. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Mehta M, Goldfarb DS and Nazzal L: The role of the microbiome in kidney stone formation. Int J Surg. 36:607–612. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Martel J, Peng HH, Young D, Wu CY and Young JD: Of nanobacteria, nanoparticles, biofilms and their role in health and disease: Facts, fancy and future. Nanomedicine (Lond). 9:483–499. 2014. View Article : Google Scholar

89 

Wu J, Tao Z, Deng Y, Liu Q, Liu Y, Guan X and Wang X: Calcifying nanoparticles induce cytotoxicity mediated by ROS-JNK signaling pathways. Urolithiasis. 47:125–135. 2019. View Article : Google Scholar

90 

Ansari H, Akhavan Sepahi A and Akhavan Sepahi M: Different approaches to detect 'Nanobacteria' in patients with kidney stones: An infectious cause or a subset of life? Urol J. 14:5001–5007. 2017.PubMed/NCBI

91 

Kajander EO, Ciftcioglu N, Aho K and Garcia-Cuerpo E: Characteristics of nanobacteria and their possible role in stone formation. Urol Res. 31:47–54. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Ciftçioglu N, Björklund M, Kuorikoski K, Bergström K and Kajander EO: Nanobacteria: An infectious cause for kidney stone formation. Kidney Int. 56:1893–1898. 1999. View Article : Google Scholar : PubMed/NCBI

93 

Khullar M, Sharma SK, Singh SK, Bajwa P, Shiekh FA, Relan V and Sharma M: Morphological and immunological characteristics of nanobacteria from human renal stones of a north Indian population. Urol Res. 32:190–195. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Shiekh FA, Khullar M and Singh SK: Lithogenesis: Induction of renal calcifications by nanobacteria. Urol Res. 34:53–57. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Kajander EO and Ciftçioglu N: Nanobacteria: An alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA. 95:8274–8279. 1998. View Article : Google Scholar : PubMed/NCBI

96 

Abrol N, Panda A, Kekre NS and Devasia A: Nanobacteria in the pathogenesis of urolithiasis: Myth or reality? Indian J Urol. 31:3–7. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Hong X, Wang X, Wang T, Yu C and Li H: Role of nanobacteria in the pathogenesis of kidney stone formation. Am J Transl Res. 8:3227–3234. 2016.PubMed/NCBI

98 

Sadaf H, Raza SI and Hassan SW: Role of gut microbiota against calcium oxalate. Microb Pathog. 109:287–291. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Ticinesi A, Nouvenne A, Chiussi G, Castaldo G, Guerra A and Meschi T: Calcium oxalate nephrolithiasis and gut microbiota: Not just a gut-kidney axis. A nutritional perspective. Nutrients. 12:5482020. View Article : Google Scholar :

100 

Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, Nouvenne A, Mancabelli L, Lugli GA, Turroni F, Duranti S, et al: Understanding the gut-kidney axis in nephrolithiasis: An analysis of the gut microbiota composition and functionality of stone formers. Gut. 67:2097–2106. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Stern JM, Moazami S, Qiu Y, Kurland I, Chen Z, Agalliu I, Burk R and Davies KP: Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis. 44:399–407. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Falony G: Beyond Oxalobacter: The gut microbiota and kidney stone formation. Gut. 67:2078–2079. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Miller AW and Dearing D: The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens. 2:636–652. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Worcester EM, Fellner SK, Nakagawa Y and Coe FL: Effect of renal transplantation on serum oxalate and urinary oxalate excretion. Nephron. 67:414–418. 1994. View Article : Google Scholar : PubMed/NCBI

105 

Hatch M, Freel RW and Vaziri ND: Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflugers Arch. 426:101–109. 1994. View Article : Google Scholar : PubMed/NCBI

106 

Peck AB, Canales BK and Nguyen CQ: Oxalate-degrading microorganisms or oxalate-degrading enzymes: Which is the future therapy for enzymatic dissolution of calcium-oxalate uroliths in recurrent stone disease? Urolithiasis. 44:45–50. 2016. View Article : Google Scholar

107 

Knight J, Deora R, Assimos DG and Holmes RP: The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis. 41:187–196. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Batagello CA, Monga M and Miller AW: Calcium oxalate urolithiasis: A case of missing microbes? J Endourol. 32:995–1005. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Cornelius JG and Peck AB: Colonization of the neonatal rat intestinal tract from environmental exposure to the anaerobic bacterium Oxalobacter formigenes. J Med Microbiol. 53:249–254. 2004. View Article : Google Scholar : PubMed/NCBI

110 

Nikolic-Paterson DJ, Wang S and Lan HY: Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl (2011). 4:34–38. 2014. View Article : Google Scholar

111 

Okada A, Yasui T, Fujii Y, Niimi K, Hamamoto S, Hirose M, Kojima Y, Itoh Y, Tozawa K, Hayashi Y and Kohri K: Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: Detection by association analysis of stone-related gene expression and microstructural observation. J Bone Miner Res. 25:2701–2711. 2010. View Article : Google Scholar : PubMed/NCBI

112 

Singhto N, Kanlaya R, Nilnumkhum A and Thongboonkerd V: Roles of macrophage exosomes in immune response to calcium oxalate monohydrate crystals. Front Immunol. 9:3162018. View Article : Google Scholar : PubMed/NCBI

113 

Singhto N and Thongboonkerd V: Exosomes derived from calcium oxalate-exposed macrophages enhance IL-8 production from renal cells, neutrophil migration and crystal invasion through extracellular matrix. J Proteomics. 185:64–76. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Tamura M, Aizawa R, Hori M and Ozaki H: Progressive renal dysfunction and macrophage infiltration in interstitial fibrosis in an adenine-induced tubulointerstitial nephritis mouse model. Histochem Cell Biol. 131:483–490. 2009. View Article : Google Scholar : PubMed/NCBI

115 

Kusmartsev S, Dominguez-Gutierrez PR, Canales BK, Bird VG, Vieweg J and Khan SR: Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J Urol. 195:1143–1151. 2016. View Article : Google Scholar :

116 

Sintiprungrat K, Singhto N and Thongboonkerd V: Characterization of calcium oxalate crystal-induced changes in the secretome of U937 human monocytes. Mol Biosyst. 12:879–889. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Histiocytosis syndromes in children. Writing Group of the Histiocyte Society. Lancet. 1:208–209. 1987.PubMed/NCBI

118 

Okada A, Yasui T, Hamamoto S, Hirose M, Kubota Y, Itoh Y, Tozawa K, Hayashi Y and Kohri K: Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: Detection of stone-preventive factors and involvement of macrophage activity. J Bone Miner Res. 24:908–924. 2009. View Article : Google Scholar

119 

Vervaet BA, Verhulst A, Dauwe SE, De Broe ME and D'Haese PC: An active renal crystal clearance mechanism in rat and man. Kidney Int. 75:41–51. 2009. View Article : Google Scholar

120 

Dominguez-Gutierrez PR, Kusmartsev S, Canales BK and Khan SR: Calcium oxalate differentiates human monocytes into inflammatory M1 macrophages. Front Immunol. 9:18632018. View Article : Google Scholar : PubMed/NCBI

121 

Taguchi K, Okada A, Hamamoto S, Unno R, Moritoki Y, Ando R, Mizuno K, Tozawa K, Kohri K and Yasui T: M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci Rep. 6:351672016. View Article : Google Scholar : PubMed/NCBI

122 

Dominguez-Gutierrez PR, Kwenda EP, Khan SR and Canales BK: Immunotherapy for stone disease. Curr Opin Urol. 30:183–189. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang Z, Zhang Y, Zhang J, Deng Q and Liang H: Recent advances on the mechanisms of kidney stone formation (Review). Int J Mol Med 48: 149, 2021.
APA
Wang, Z., Zhang, Y., Zhang, J., Deng, Q., & Liang, H. (2021). Recent advances on the mechanisms of kidney stone formation (Review). International Journal of Molecular Medicine, 48, 149. https://doi.org/10.3892/ijmm.2021.4982
MLA
Wang, Z., Zhang, Y., Zhang, J., Deng, Q., Liang, H."Recent advances on the mechanisms of kidney stone formation (Review)". International Journal of Molecular Medicine 48.2 (2021): 149.
Chicago
Wang, Z., Zhang, Y., Zhang, J., Deng, Q., Liang, H."Recent advances on the mechanisms of kidney stone formation (Review)". International Journal of Molecular Medicine 48, no. 2 (2021): 149. https://doi.org/10.3892/ijmm.2021.4982
Copy and paste a formatted citation
x
Spandidos Publications style
Wang Z, Zhang Y, Zhang J, Deng Q and Liang H: Recent advances on the mechanisms of kidney stone formation (Review). Int J Mol Med 48: 149, 2021.
APA
Wang, Z., Zhang, Y., Zhang, J., Deng, Q., & Liang, H. (2021). Recent advances on the mechanisms of kidney stone formation (Review). International Journal of Molecular Medicine, 48, 149. https://doi.org/10.3892/ijmm.2021.4982
MLA
Wang, Z., Zhang, Y., Zhang, J., Deng, Q., Liang, H."Recent advances on the mechanisms of kidney stone formation (Review)". International Journal of Molecular Medicine 48.2 (2021): 149.
Chicago
Wang, Z., Zhang, Y., Zhang, J., Deng, Q., Liang, H."Recent advances on the mechanisms of kidney stone formation (Review)". International Journal of Molecular Medicine 48, no. 2 (2021): 149. https://doi.org/10.3892/ijmm.2021.4982
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team