|
1
|
Klocke C, Sethi S and Lein PJ: The
developmental neurotoxicity of legacy vs. contemporary
polychlorinated biphenyls (PCBs): Similarities and differences.
Environ Sci Pollut Res Int. 27:8885–8896. 2020. View Article : Google Scholar :
|
|
2
|
Garmash O, Hermanson MH, Isaksson E,
Schwikowski M, Divine D, Teixeira C and Muir DC: Deposition history
of polychlorinated biphenyls to the Lomonosovfonna Glacier,
Svalbard: A 209 congener analysis. Environ Sci Technol.
47:12064–12072. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Steinberg RM, Walker DM, Juenger TE,
Woller MJ and Gore AC: Effects of perinatal polychlorinated
biphenyls on adult female rat reproduction: Development,
reproductive physiology, and second generational effects. Biol
Reprod. 78:1091–1101. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Malisch R and Kotz A: Dioxins and PCBs in
feed and food-review from European perspective. Sci Total Environ.
491-492:2–10. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Adams EM, von Hippel FA, Hungate BA and
Buck CL: Polychlorinated biphenyl (PCB) contamination of
subsistence species on Unalaska Island in the Aleutian Archipelago.
Heliyon. 5:e029892019. View Article : Google Scholar :
|
|
6
|
Sharma JK, Gautam RK, Misra RR, Kashyap
SM, Singh SK and Juwarkar AA: Degradation of Di-Through
Hepta-Chlorobiphenyls in clophen oil using microorganisms isolated
from long term PCBs contaminated soil. Indian J Microbiol.
54:337–342. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kohler M, Tremp J, Zennegg M, Seiler C,
Minder-Kohler S, Beck M, Lienemann P, Wegmann L and Schmid P: Joint
sealants: An overlooked diffuse source of polychlorinated biphenyls
in buildings. Environ Sci Technol. 39:1967–1973. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Han W, Feng J, Gu Z, Wu M, Sheng G and Fu
J: Polychlorinated biphenyls in the atmosphere of Taizhou, a major
e-waste dismantling area in China. J Environ Sci (China).
22:589–597. 2010. View Article : Google Scholar
|
|
9
|
Arp HPH, Morin NAO, Andersson PL, Hale SE,
Wania F, Breivik K and Breedveld GD: The presence, emission and
partitioning behavior of polychlorinated biphenyls in waste,
leachate and aerosols from Norwegian waste-handling facilities. Sci
Total Environ. 715:1368242020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chang CJ, Terrell ML, Marcus M, Marder ME,
Panuwet P, Ryan PB, Pearson M, Barton H and Barr DB: Serum
concentrations of polybrominated biphenyls (PBBs), polychlorinated
biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the
Michigan PBB Registry 40 years after the PBB contamination
incident. Environ Int. 137:1055262020. View Article : Google Scholar :
|
|
11
|
Hales CN and Barker DJ: Type 2
(non-insulin-dependent) diabetes mellitus: The thrifty phenotype
hypothesis. Diabetologia. 35:595–601. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Magalhães ESDS, Méio MDBB and Moreira MEL:
Hormonal biomarkers for evaluating the impact of fetal growth
restriction on the development of chronic adult disease. Rev Bras
Ginecol Obstet. 41:256–263. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Preston JD, Reynolds LJ and Pearson KJ:
Developmental origins of health span and life span: A mini-review.
Gerontology. 64:237–245. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rice D and Barone S Jr: Critical periods
of vulnerability for the developing nervous system: Evidence from
humans and animal models. Environ Health Perspect. 108(Suppl 3):
S511–S533. 2000.
|
|
15
|
Chu CP, Wu SW, Huang YJ, Chiang MC, Hsieh
ST and Guo YL: Neuroimaging signatures of brain plasticity in
adults with prenatal exposure to polychlorinated biphenyls: Altered
functional connectivity on functional MRI. Environ Pollut.
250:960–968. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Perera F and Herbstman J: Prenatal
environmental exposures, epigenetics, and disease. Reprod Toxicol.
31:363–373. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhu Z, Cao F and Li X: Epigenetic
programming and fetal metabolic programming. Front Endocrinol
(Lausanne). 10:7642019. View Article : Google Scholar
|
|
18
|
Casati L, Sendra R, Colciago A, Negri-Cesi
P, Berdasco M, Esteller M and Celotti F: Polychlorinated biphenyls
affect histone modification pattern in early development of rats: A
role for androgen receptor-dependent modulation? Epigenomics.
4:101–112. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Vermeir G, Covaci A, Van Larebeke N,
Schoeters G, Nelen V, Koppen G and Viaene M: Neurobehavioural and
cognitive effects of prenatal exposure to organochlorine compounds
in three year old children. BMC Pediatr. 21:992021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang H, Yolton K, Webster GM, Sjödin A,
Calafat AM, Dietrich KN, Xu Y, Xie C, Braun JM, Lanphear BP and
Chen A: Prenatal PBDE and PCB exposures and reading, cognition, and
externalizing behavior in children. Environ Health Perspect.
125:746–752. 2017. View
Article : Google Scholar :
|
|
21
|
Berghuis SA, Van Braeckel KNJA, Sauer PJJ
and Bos AF: Prenatal exposure to persistent organic pollutants and
cognition and motor performance in adolescence. Environ Int. 121(Pt
1): 13–22. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Longnecker MP, Hoffman HJ, Klebanoff MA,
Brock JW, Zhou H, Needham L, Adera T, Guo X and Gray KA: In utero
exposure to polychlorinated biphenyls and sensorineural hearing
loss in 8-year-old children. Neurotoxicol Teratol. 26:629–637.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Granillo L, Sethi S, Keil KP, Lin Y,
Ozonoff S, Iosif AM, Puschner B and Schmidt RJ: Polychlorinated
biphenyls influence on autism spectrum disorder risk in the MARBLES
cohort. Environ Res. 171:177–184. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Macdonal RW, Barrie LA, Bidleman TF,
Diamond ML, Gregor DJ, Semkin RG, Strachan WM, Li YF, Wania F,
Alaee M, et al: Contaminants in the Canadian arctic: 5 years of
progress in understanding sources, occurrence and pathways. Sci
Total Environ. 254:93–234. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Desforges JP, Hall A, McConnell B,
Rosing-Asvid A, Barber JL, Brownlow A, De Guise S, Eulaers I,
Jepson PD, Letcher RJ, et al: Predicting global killer whale
population collapse from PCB pollution. Science. 361:1373–1376.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lohmann R, Gioia R, Jones KC, Nizzetto L,
Temme C, Xie Z, Schulz-Bull D, Hand I, Morgan E and Jantunen L:
Organochlorine pesticides and PAHs in the surface water and
atmosphere of the North Atlantic and Arctic Ocean. Environ Sci
Technol. 43:5633–5639. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Te B, Yiming L, Tianwei L, Huiting W,
Pengyuan Z, Wenming C and Jun J: Polychlorinated biphenyls in a
grassland food network: Concentrations, biomagnification, and
transmission of toxicity. Sci Total Environ. 709:1357812020.
View Article : Google Scholar
|
|
28
|
Pajewska-Szmyt M, Sinkiewicz-Darol E and
Gadzala-Kopciuch R: The impact of environmental pollution on the
quality of mother's milk. Environ Sci Pollut Res Int. 26:7405–7427.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Portoles T, Sales C, Abalos M, Saulo J and
Abad E: Evaluation of the capabilities of atmospheric pressure
chemical ionization source coupled to tandem mass spectrometry for
the determination of dioxin-like polychlorobiphenyls in
complex-matrix food samples. Anal Chim Acta. 937:96–105. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Son MH, Kim JT, Park H, Kim M, Paek OJ and
Chang YS: Assessment of the daily intake of 62 polychlorinated
biphenyls from dietary exposure in South Korea. Chemosphere.
89:957–963. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ebadi Fathabad A, Tajik H, Jafari K,
Hoseinzadeh E, Mirahmadi SS, Conti GO and Miri M: Evaluation of
dioxin-like polychlorinated biphenyls in fish of the Caspian Sea.
MethodsX. 7:1008032020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Borrell LN, Factor-Litvak P, Wolff MS,
Susser E and Matte TD: Effect of socioeconomic status on exposures
to polychlorinated biphenyls (PCBs) and
dichlorodiphenyldichloroethylene (DDE) among pregnant
African-American women. Arch Environ Health. 59:250–255. 2004.
View Article : Google Scholar
|
|
33
|
Takagi Y, Aburada S, Hashimoto K and
Kitaura T: Transfer and distribution of accumulated
(14C)polychlorinated biphenyls from maternal to fetal and suckling
rats. Arch Environ Contam Toxicol. 15:709–715. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Uemura H, Arisawa K, Hiyoshi M, Satoh H,
Sumiyoshi Y, Morinaga K, Kodama K and Suzuki T, Nagai M and Suzuki
T: PCDDs/PCDFs and dioxin-like PCBs: Recent body burden levels and
their determinants among general inhabitants in Japan. Chemosphere.
73:30–37. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ulaszewska MM, Zuccato E and Davoli E:
PCDD/Fs and dioxin-like PCBs in human milk and estimation of
infants' daily intake: A review. Chemosphere. 83:774–782. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Simic I, Jovanovic G, Herceg Romanic S,
Klincic D, Matek Saric M and Popovic A: Optimization of Gas
Chromatography-electron Ionization-tandem mass spectrometry for
determining Toxic Non-ortho polychlorinated biphenyls in breast
milk. Biomed Environ Sci. 33:58–61. 2020.
|
|
37
|
Cok I, Donmez MK, Uner M, Demirkaya E,
Henkelmann B, Shen H, Kotalik J and Schramm KW: Polychlorinated
dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls
levels in human breast milk from different regions of Turkey.
Chemosphere. 76:1563–1571. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Miniscalco C, Nygren G, Hagberg B, Kadesjo
B and Gillberg C: Neuropsychiatric and neurodevelopmental outcome
of children at age 6 and 7 years who screened positive for language
problems at 30 months. Dev Med Child Neurol. 48:361–366. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Clegg J, Hollis C, Mawhood L and Rutter M:
Developmental language disorders-a follow-up in later adult life.
Cognitive, language and psychosocial outcomes. J Child Psychol
Psychiatry. 46:128–149. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Caspersen IH, Haugen M, Schjølberg S,
Vejrup K, Knutsen HK, Brantsæter AL, Meltzer HM, Alexander J,
Magnus P and Kvalem HE: Maternal dietary exposure to dioxins and
polychlorinated biphenyls (PCBs) is associated with language delay
in 3year old Norwegian children. Environ Int. 91:180–187. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Grandjean P, Weihe P, Nielsen F, Heinzow
B, Debes F and Budtz-Jorgensen E: Neurobehavioral deficits at age 7
years associated with prenatal exposure to toxicants from maternal
seafood diet. Neurotoxicol Teratol. 34:466–472. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Berghuis SA, Soechitram SD, Sauer PJ and
Bos AF: Prenatal exposure to polychlorinated biphenyls and their
hydroxylated metabolites is associated with neurological
functioning in 3-month-old infants. Toxicol Sci. 142:455–462. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gladen BC and Rogan WJ: Effects of
perinatal polychlorinated biphenyls and dichlorodiphenyl
dichloroethene on later development. J Pediatr. 119(1 Pt 1): 58–63.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jacobson JL and Jacobson SW: Intellectual
impairment in children exposed to polychlorinated biphenyls in
utero. N Engl J Med. 335:783–789. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Newman J, Gallo MV, Schell LM, DeCaprio
AP, Denham M and Deane GD; Akwesasne Task Force on Environment:
Analysis of PCB congeners related to cognitive functioning in
adolescents. Neurotoxicology. 30:686–696. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Grandjean P, Weihe P, Burse VW, Needham
LL, Storr-Hansen E, Heinzow B, Debes F, Murata K, Simonsen H,
Ellefsen P, et al: Neurobehavioral deficits associated with PCB in
7-year-old children prenatally exposed to seafood neurotoxicants.
Neurotoxicol Teratol. 23:305–317. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jusko TA, Sisto R, Iosif AM, Moleti A,
Wimmerová S, Lancz K, Tihányi J, Sovčiková E, Drobná B, Palkovičová
L, et al: Prenatal and postnatal serum PCB concentrations and
cochlear function in children at 45 months of age. Environ Health
Perspect. 122:1246–1252. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Perry KJ and Price JM: Concurrent child
history and contextual predictors of children's internalizing and
externalizing behavior problems in foster care. Child Youth Serv
Rev. 84:125–136. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tatsuta N, Nakai K, Murata K, Suzuki K,
Iwai-Shimada M, Yaginuma-Sakurai K, Kurokawa N, Nakamura T,
Hosokawa T and Satoh H: Prenatal exposures to environmental
chemicals and birth order as risk factors for child behavior
problems. Environ Res. 114:47–52. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gonzalez ST, Remick D, Creton R and
Colwill RM: Effects of embryonic exposure to polychlorinated
biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish.
Neurotoxicology. 53:93–101. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lovato AK, Creton R and Colwill RM:
Effects of embryonic exposure to polychlorinated biphenyls (PCBs)
on larval zebrafish behavior. Neurotoxicol Teratol. 53:1–10. 2016.
View Article : Google Scholar
|
|
52
|
Glazer L, Hahn ME and Aluru N: Delayed
effects of developmental exposure to low levels of the aryl
hydrocarbon receptor agonist 3,3′,4,4′,5-pentachlorobiphenyl
(PCB126) on adult zebrafish behavior. Neurotoxicology. 52:134–143.
2016. View Article : Google Scholar
|
|
53
|
Lyall K, Croen LA, Sjödin A, Yoshida CK,
Zerbo O, Kharrazi M and Windham GC: Polychlorinated biphenyl and
organochlorine pesticide concentrations in maternal mid-pregnancy
serum samples: Association with autism spectrum disorder and
intellectual disability. Environ Health Perspect. 125:474–480.
2017. View
Article : Google Scholar :
|
|
54
|
Bernardo BA, Lanphear BP, Venners SA,
Arbuckle TE, Braun JM, Muckle G, Fraser WD and McCandless LC:
Assessing the relation between plasma PCB concentrations and
elevated autistic behaviours using bayesian predictive odds ratios.
Int J Environ Res Public Health. 16:4572019. View Article : Google Scholar :
|
|
55
|
Teodoro M, Briguglio G, Fenga C and Costa
C: Genetic polymorphisms as determinants of pesticide toxicity:
Recent advances. Toxicol Rep. 6:564–570. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Costa C, Briguglio G, Giambò F, Catanoso
R, Teodoro M, Caccamo D and Fenga C: Association between oxidative
stress biomarkers and PON and GST polymorphisms as a predictor for
susceptibility to the effects of pesticides. Int J Mol Med.
45:1951–1959. 2020.PubMed/NCBI
|
|
57
|
Costa C, Gangemi S, Giambo F, Rapisarda V,
Caccamo D and Fenga C: Oxidative stress biomarkers and paraoxonase
1 polymorphism frequency in farmers occupationally exposed to
pesticides. Mol Med Rep. 12:6353–6357. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Colter BT, Garber HF, Fleming SM, Fowler
JP, Harding GD, Hooven MK, Howes AA, Infante SK, Lang AL,
MacDougall MC, et al: Ahr and Cyp1a2 genotypes both affect
susceptibility to motor deficits following gestational and
lactational exposure to polychlorinated biphenyls. Neurotoxicology.
65:125–134. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Docea AO, Vassilopoulou L, Fragou D,
Arsene AL, Fenga C, Kovatsi L, Petrakis D, Rakitskii VN, Nosyrev
AE, Izotov BN, et al: CYP polymorphisms and pathological conditions
related to chronic exposure to organochlorine pesticides. Toxicol
Rep. 4:335–341. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Curran CP, Nebert DW, Genter MB, Patel KV,
Schaefer TL, Skelton MR, Williams MT and Vorhees CV: In utero and
lactational exposure to PCBs in mice: Adult offspring show altered
learning and memory depending on Cyp1a2 and Ahr genotypes. Environ
Health Perspect. 119:1286–1293. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hufgard JR, Sprowles JLN, Pitzer EM, Koch
SE, Jiang M, Wang Q, Zhang X, Biesiada J, Rubinstein J, Puga A, et
al: Prenatal exposure to PCBs in Cyp1a2 knock-out mice interferes
with F1 fertility, impairs long-term potentiation, reduces acoustic
startle and impairs conditioned freezing contextual memory with
minimal transgenerational effects. J Appl Toxicol. 39:603–621.
2019. View Article : Google Scholar
|
|
62
|
Klinefelter K, Hooven MK, Bates C, Colter
BT, Dailey A, Infante SK, Kania-Korwel I, Lehmler HJ, López-Juárez
A, Ludwig CP and Curran CP: Genetic differences in the aryl
hydrocarbon receptor and CYP1A2 affect sensitivity to developmental
polychlorinated biphenyl exposure in mice: Relevance to studies of
human neurological disorders. Mamm Genome. 29:112–127. 2018.
View Article : Google Scholar
|
|
63
|
Nebert DW and Dalton TP: The role of
cytochrome P450 enzymes in endogenous signalling pathways and
environmental carcinogenesis. Nat Rev Cancer. 6:947–960. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Rude KM, Pusceddu MM, Keogh CE, Sladek JA,
Rabasa G, Miller EN, Sethi S, Keil KP, Pessah IN, Lein PJ and
Gareau MG: Developmental exposure to polychlorinated biphenyls
(PCBs) in the maternal diet causes host-microbe defects in weanling
offspring mice. Environ Pollut. 253:708–721. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sanctuary MR, Kain JN, Angkustsiri K and
German JB: Dietary considerations in autism spectrum disorders: The
potential role of protein digestion and microbial putrefaction in
the gut-brain axis. Front Nutr. 5:402018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Dai R, Yu Y, Xi Q, Hu X, Zhu H, Liu R and
Wang R: Prenatal diagnosis of 4953 pregnant women with indications
for genetic amniocentesis in Northeast China. Mol Cytogenet.
12:452019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Long M, Ghisari M, Kjeldsen L, Wielsøe M,
Nørgaard-Pedersen B, Mortensen EL, Abdallah MW and
Bonefeld-Jørgensen EC: Autism spectrum disorders, endocrine
disrupting compounds, and heavy metals in amniotic fluid: A
case-control study. Mol Autism. 10:12019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Berghuis SA, Soechitram SD, Hitzert MM,
Sauer PJ and Bos AF: Prenatal exposure to polychlorinated biphenyls
and their hydroxylated metabolites is associated with motor
development of three-month-old infants. Neurotoxicology.
38:124–130. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tatsuta N, Kurokawa N, Nakai K, Suzuki K,
Iwai-Shimada M, Murata K and Satoh H: Effects of intrauterine
exposures to polychlorinated biphenyls, methylmercury, and lead on
birth weight in Japanese male and female newborns. Environ Health
Prev Med. 22:392017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sonneborn D, Park HY, Petrik J, Kocan A,
Palkovicova L, Trnovec T, Nguyen D and Hertz-Picciotto I: Prenatal
polychlorinated biphenyl exposures in eastern Slovakia modify
effects of social factors on birthweight. Paediatr Perinat
Epidemiol. 22:202–213. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Calo M, Licata P, Bitto A, Lo Cascio P,
Interdonato M and Altavilla D: Role of AHR, AHRR and ARNT in
response to dioxin-like PCBs in Spaurus aurata. Environ Sci Pollut
Res Int. 21:14226–14231. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Pessah IN, Cherednichenko G and Lein PJ:
Minding the calcium store: Ryanodine receptor activation as a
convergent mechanism of PCB toxicity. Pharmacol Ther. 125:260–285.
2010. View Article : Google Scholar :
|
|
73
|
Roegge CS, Morris JR, Villareal S, Wang
VC, Powers BE, Klintsova AY, Greenough WT, Pessah IN and Schantz
SL: Purkinje cell and cerebellar effects following developmental
exposure to PCBs and/or MeHg. Neurotoxicol Teratol. 28:74–85. 2006.
View Article : Google Scholar
|
|
74
|
Kalkunte S, Huang Z, Lippe E, Kumar S,
Robertson LW and Sharma S: Polychlorinated biphenyls target
Notch/Dll and VEGF R2 in the mouse placenta and human trophoblast
cell lines for their anti-angiogenic effects. Sci Rep. 7:398852017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ahmed RG, El-Gareib AW and Shaker HM:
Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure
disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction.
Life Sci. 192:213–220. 2018. View Article : Google Scholar
|
|
76
|
Aluru N, Karchner SI and Glazer L: Early
life exposure to low levels of AHR Agonist PCB126
(3,3′,4,4′,5-Pentachlorobiphenyl) reprograms gene expression in
adult brain. Toxicol Sci. 160:386–397. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kappil MA, Li Q, Li A, Dassanayake PS, Xia
Y, Nanes JA, Landrigan PJ, Stodgell CJ, Aagaard KM, Schadt EE, et
al: In utero exposures to environmental organic pollutants disrupt
epigenetic marks linked to fetoplacental development. Environ
Epigenet. 2:dvv0132016. View Article : Google Scholar :
|
|
78
|
Seegal RF, Brosch KO and Okoniewski RJ:
Coplanar PCB congeners increase uterine weight and frontal cortical
dopamine in the developing rat: Implications for developmental
neurotoxicity. Toxicol Sci. 86:125–131. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Pappas B, Yang Y, Wang Y, Kim K, Chung HJ,
Cheung M, Ngo K, Shinn A and Chan WK: p23 protects the human aryl
hydrocarbon receptor from degradation via a heat shock protein
90-independent mechanism. Biochem Pharmacol. 152:34–44. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jain S, Maltepe E, Lu MM, Simon C and
Bradfield CA: Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and
Ah receptor mRNAs in the developing mouse. Mech Dev. 73:117–123.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kimura E and Tohyama C: Embryonic and
postnatal expression of aryl hydrocarbon receptor mRNA in mouse
brain. Front Neuroanat. 11:42017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Shi H, Hardesty JE, Jin J, Head KZ,
Falkner KC, Cave MC and Prough RA: Concentration dependence of
human and mouse aryl hydrocarbon receptor responsiveness to
polychlorinated biphenyl exposures: Implications for aroclor
mixtures. Xenobiotica. 49:1414–1422. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Juricek L and Coumoul X: The aryl
hydrocarbon receptor and the nervous system. Int J Mol Sci.
19:25042018. View Article : Google Scholar :
|
|
84
|
Chatonnet F, Boudinot E, Chatonnet A,
Taysse L, Daulon S, Champagnat J and Foutz AS: Respiratory survival
mechanisms in acetylcholinesterase knockout mouse. Eur J Neurosci.
18:1419–1427. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Desaulniers D, Xiao GH, Leingartner K, Chu
I, Musicki B and Tsang BK: Comparisons of brain, uterus, and liver
mRNA expression for cytochrome p450s, DNA methyltransferase-1, and
catechol-o-methyltransferase in prepubertal female Sprague-Dawley
rats exposed to a mixture of aryl hydrocarbon receptor agonists.
Toxicol Sci. 86:175–184. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kimura E, Kubo KI, Endo T, Nakajima K,
Kakeyama M and Tohyama C: Excessive activation of AhR signaling
disrupts neuronal migration in the hippocampal CA1 region in the
developing mouse. J Toxicol Sci. 42:25–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Fritsch EB, Stegeman JJ, Goldstone JV,
Nacci DE, Champlin D, Jayaraman S, Connon RE and Pessah IN:
Expression and function of ryanodine receptor related pathways in
PCB tolerant Atlantic killifish (Fundulus heteroclitus) from New
Bedford Harbor, MA, USA. Aquat Toxicol. 159:156–166. 2015.
View Article : Google Scholar :
|
|
88
|
Sethi S, Morgan RK, Feng W, Lin Y, Li X,
Luna C, Koch M, Bansal R, Duffel MW, Puschner B, et al: Comparative
analyses of the 12 most abundant PCB congeners detected in human
maternal serum for activity at the thyroid hormone receptor and
ryanodine receptor. Environ Sci Technol. 53:3948–3958. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Libersat F and Duch C: Mechanisms of
dendritic maturation. Mol Neurobiol. 29:303–320. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Pittenger C and Kandel ER: In search of
general mechanisms for long-lasting plasticity: Aplysia and the
hippocampus. Philos Trans R Soc Lond B Biol Sci. 358:757–763. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wayman GA, Yang D, Bose DD, Lesiak A,
Ledoux V, Bruun D, Pessah IN and Lein PJ: PCB-95 promotes dendritic
growth via ryanodine receptor-dependent mechanisms. Environ Health
Perspect. 120:997–1002. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yang D, Kania-Korwel I, Ghogha A, Chen H,
Stamou M, Bose DD, Pessah IN, Lehmler HJ and Lein PJ: PCB 136
atropselectively alters morphometric and functional parameters of
neuronal connectivity in cultured rat hippocampal neurons via
ryanodine receptor-dependent mechanisms. Toxicol Sci. 138:379–392.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Feng W, Zheng J, Robin G, Dong Y, Ichikawa
M, Inoue Y, Mori T, Nakano T and Pessah IN: Enantioselectivity of
2,2′,3,5′,6-Pentachlorobiphenyl (PCB 95) atropisomers toward
ryanodine receptors (RyRs) and their influences on hippocampal
neuronal networks. Environ Sci Technol. 51:14406–14416. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wayman GA, Bose DD, Yang D, Lesiak A,
Bruun D, Impey S, Ledoux V, Pessah IN and Lein PJ: PCB-95 modulates
the calcium-dependent signaling pathway responsible for
activity-dependent dendritic growth. Environ Health Perspect.
120:1003–1009. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Howard AS, Fitzpatrick R, Pessah I,
Kostyniak P and Lein PJ: Polychlorinated biphenyls induce
caspase-dependent cell death in cultured embryonic rat hippocampal
but not cortical neurons via activation of the ryanodine receptor.
Toxicol Appl Pharmacol. 190:72–86. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sethi S, Keil KP, Chen H, Hayakawa K, Li
X, Lin Y, Lehmler HJ, Puschner B and Lein PJ: Detection of
3,3′-Dichlorobiphenyl in human maternal plasma and its effects on
axonal and dendritic growth in primary rat neurons. Toxicol Sci.
158:401–411. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Casati L, Sendra R, Poletti A, Negri-Cesi
P and Celotti F: Androgen receptor activation by polychlorinated
biphenyls: Epigenetic effects mediated by the histone demethylase
Jarid1b. Epigenetics. 8:1061–1068. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kanherkar RR, Bhatia-Dey N and Csoka AB:
Epigenetics across the human lifespan. Front Cell Dev Biol.
2:492014. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Su KY, Li MC, Lee NW, Ho BC, Cheng CL,
Chuang YC, Yu SL and Guo YL: Perinatal polychlorinated biphenyls
and polychlorinated dibenzofurans exposure are associated with DNA
methylation changes lasting to early adulthood: Findings from
Yucheng second generation. Environ Res. 170:481–486. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Leung YK, Ouyang B, Niu L, Xie C, Ying J,
Medvedovic M, Chen A, Weihe P, Valvi D, Grandjean P and Ho SM:
Identification of sex-specific DNA methylation changes driven by
specific chemicals in cord blood in a Faroese birth cohort.
Epigenetics. 13:290–300. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y,
Yong J, Hu Y, Wang X, Wei Y, et al: The transcriptome and DNA
methylome landscapes of human primordial germ cells. Cell.
161:1437–1452. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Pozharny Y, Lambertini L, Ma Y, Ferrara L,
Litton CG, Diplas A, Jacobs AR, Chen J, Stone JL, Wetmur J and Lee
MJ: Genomic loss of imprinting in first-trimester human placenta.
Am J Obstet Gynecol. 202:391.e1–e8. 2010. View Article : Google Scholar
|
|
103
|
Zhao Y, Song Q, Ge W, Jin Y, Chen S, Zhao
Y, Xiao X and Zhang Y: Associations between in utero exposure to
polybrominated diphenyl ethers, pathophysiological state of fetal
growth and placental DNA methylation changes. Environ Int. 133(Pt
B): 1052552019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Maghbooli Z, Hossein-Nezhad A, Adabi E,
Asadollah-Pour E, Sadeghi M, Mohammad-Nabi S, Zakeri Rad L, Malek
Hosseini AA, Radmehr M, Faghihi F, et al: Air pollution during
pregnancy and placental adaptation in the levels of global DNA
methylation. PLoS One. 13:e01997722018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Dunaway KW, Islam MS, Coulson RL, Lopez
SJ, Vogel Ciernia A, Chu RG, Yasui DH, Pessah IN, Lott P, Mordaunt
C, et al: Cumulative impact of polychlorinated biphenyl and large
chromosomal duplications on DNA methylation, chromatin, and
expression of autism candidate genes. Cell Rep. 17:3035–3048. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wefers B, Hitz C, Hölter SM, Trümbach D,
Hansen J, Weber P, Pütz B, Deussing JM, de Angelis MH, Roenneberg
T, et al: MAPK signaling determines anxiety in the juvenile mouse
brain but depression-like behavior in adults. PLoS One.
7:e350352012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Naveau E, Pinson A, Gérard A, Nguyen L,
Charlier C, Thomé JP, Zoeller RT, Bourguignon JP and Parent AS:
Alteration of rat fetal cerebral cortex development after prenatal
exposure to polychlorinated biphenyls. PLoS One. 9:e919032014.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Seegal RF: Epidemiological and laboratory
evidence of PCB-induced neurotoxicity. Crit Rev Toxicol.
26:709–737. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Caspersen IH, Aase H, Biele G, Brantsæter
AL, Haugen M, Kvalem HE, Skogan AH, Zeiner P, Alexander J, Meltzer
HM and Knutsen HK: The influence of maternal dietary exposure to
dioxins and PCBs during pregnancy on ADHD symptoms and cognitive
functions in Norwegian preschool children. Environ Int. 94:649–660.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Morreale de Escobar G, Obregon MJ and
Escobar del Rey F: Role of thyroid hormone during early brain
development. Eur J Endocrinol. 151(Suppl 3): U25–U37. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Gilbert ME, O'Shaughnessy KL and Axelstad
M: Regulation of thyroid-disrupting chemicals to protect the
developing brain. Endocrinology. 161:bqaa1062020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Levitt P, Eagleson KL and Powell EM:
Regulation of neocortical interneuron development and the
implications for neurodevelopmental disorders. Trends Neurosci.
27:400–406. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Chan SY, Vasilopoulou E and Kilby MD: The
role of the placenta in thyroid hormone delivery to the fetus. Nat
Clin Pract Endocrinol Metab. 5:45–54. 2009. View Article : Google Scholar
|
|
114
|
Li ZM, Hernandez-Moreno D, Main KM,
Skakkebæk NE, Kiviranta H, Toppari J, Feldt-Rasmussen U, Shen H,
Schramm KW and De Angelis M: Association of in utero persistent
organic pollutant exposure with placental thyroid hormones.
Endocrinology. 159:3473–3481. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Itoh S, Baba T, Yuasa M, Miyashita C,
Kobayashi S, Araki A, Sasaki S, Kajiwara J, Hori T, Todaka T, et
al: Association of maternal serum concentration of hydroxylated
polychlorinated biphenyls with maternal and neonatal thyroid
hormones: The Hokkaido birth cohort study. Environ Res.
167:583–590. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Su PH, Chen HY, Chen SJ, Chen JY, Liou SH
and Wang SL: Thyroid and growth hormone concentrations in
8-year-old children exposed in utero to dioxins and polychlorinated
biphenyls. J Toxicol Sci. 40:309–319. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Boas M, Feldt-Rasmussen U and Main KM:
Thyroid effects of endocrine disrupting chemicals. Mol Cell
Endocrinol. 355:240–248. 2012. View Article : Google Scholar
|
|
118
|
Lyng GD, Snyder-Keller A and Seegal RF:
Polychlorinated biphenyl-induced neurotoxicity in organotypic
cocultures of developing rat ventral mesencephalon and striatum.
Toxicol Sci. 97:128–139. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Kalkunte SS, Mselle TF, Norris WE, Wira
CR, Sentman CL and Sharma S: Vascular endothelial growth factor C
facilitates immune tolerance and endovascular activity of human
uterine NK cells at the maternal-fetal interface. J Immunol.
182:4085–4092. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Osol G, Ko NL and Mandala M: Plasticity of
the maternal vasculature during pregnancy. Annu Rev Physiol.
81:89–111. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Chen ZJ, Liu HY, Cheng Z, Man YB, Zhang
KS, Wei W, Du J, Wong MH and Wang HS: Polybrominated diphenyl
ethers (PBDEs) in human samples of mother-newborn pairs in South
China and their placental transfer characteristics. Environ Int.
73:77–84. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Brucker-Davis F, Ferrari P, Boda-Buccino
M, Wagner-Mahler K, Pacini P, Gal J, Azuar P and Fenichel P: Cord
blood thyroid tests in boys born with and without cryptorchidism:
Correlations with birth parameters and in utero xenobiotics
exposure. Thyroid. 21:1133–1141. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Hellstrom M, Phng LK and Gerhardt H: VEGF
and Notch signaling: The yin and yang of angiogenic sprouting. Cell
Adh Migr. 1:133–136. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hunkapiller NM, Gasperowicz M, Kapidzic M,
Plaks V, Maltepe E, Kitajewski J, Cross JC and Fisher SJ: A role
for Notch signaling in trophoblast endovascular invasion and in the
pathogenesis of pre-eclampsia. Development. 138:2987–2998. 2011.
View Article : Google Scholar : PubMed/NCBI
|