Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2021 Volume 48 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 48 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of nitric oxide in orthodontic tooth movement (Review)

  • Authors:
    • Tong Yan
    • Yongjian Xie
    • Hongwen He
    • Wenguo Fan
    • Fang Huang
  • View Affiliations / Copyright

    Affiliations: Department of Pediatric Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China, Department of Orthodontic Dentistry, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
    Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 168
    |
    Published online on: July 8, 2021
       https://doi.org/10.3892/ijmm.2021.5001
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Nitric oxide (NO) is an ubiquitous signaling molecule that mediates numerous cellular processes associated with cardiovascular, nervous and immune systems. NO also plays an essential role in bone homeostasis regulation. The present review article summarized the effects of NO on bone metabolism during orthodontic tooth movement in order to provide insight into the regulatory role of NO in orthodontic tooth movement. Orthodontic tooth movement is a process in which the periodontal tissue and alveolar bone are reconstructed due to the effect of orthodontic forces. Accumulating evidence has indicated that NO and its downstream signaling molecule, cyclic guanosine monophosphate (cGMP), mediate the mechanical signals during orthodontic‑related bone remodeling, and exert complex effects on osteogenesis and osteoclastogenesis. NO has a regulatory effect on the cellular activities and functional states of osteoclasts, osteocytes and periodontal ligament fibroblasts involved in orthodontic tooth movement. Variations of NO synthase (NOS) expression levels and NO production in periodontal tissues or gingival crevicular fluid (GCF) have been found on the tension and compression sides during tooth movement in both orthodontic animal models and patients. Furthermore, NO precursor and NOS inhibitor administration increased and reduced the tooth movement in animal models, respectively. Further research is required in order to further elucidate the underlying mechanisms and the clinical application prospect of NO in orthodontic tooth movement.
View Figures

Figure 1

Figure 2

View References

1 

Loscalzo J: Nitric oxide and vascular disease. N Engl J Med. 333:251–253. 1995. View Article : Google Scholar : PubMed/NCBI

2 

Förstermann U and Sessa WC: Nitric oxide synthases: Regulation and function. Eur Heart J. 33:829–837. 837a–837d. 2012. View Article : Google Scholar :

3 

Snyder SH: Nitric oxide. No endothelial NO. Nature. 377:196–197. 1995. View Article : Google Scholar : PubMed/NCBI

4 

Moncada S and Higgs A: The L-arginine-nitric oxide pathway. N Engl J Med. 329:2002–2012. 1993. View Article : Google Scholar : PubMed/NCBI

5 

Sawa T, Ihara H, Ida T, Fujii S, Nishida M and Akaike T: Formation, signaling functions, and metabolisms of nitrated cyclic nucleotide. Nitric Oxide. 34:10–18. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Francis SH, Busch JL, Corbin JD and Sibley D: cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev. 62:525–563. 2010. View Article : Google Scholar : PubMed/NCBI

7 

van't Hof RJ and Ralston SH: Nitric oxide and bone. Immunology. 103:255–261. 2001. View Article : Google Scholar : PubMed/NCBI

8 

Wimalawansa SJ: Nitric oxide and bone. Ann NY Acad Sci. 1192:391–403. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Evans DM and Ralston SH: Nitric oxide and bone. J Bone Miner Res. 11:300–305. 1996. View Article : Google Scholar : PubMed/NCBI

10 

Li Y, Jacox LA, Little SH and Ko CC: Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci. 34:207–214. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Krishnan V and Davidovitch Z: On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 88:597–608. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Kalyanaraman H, Schall N and Pilz RB: Nitric oxide and cyclic GMP functions in bone. Nitric Oxide. 76:62–70. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Klein-Nulend J, van Oers RF, Bakker AD and Bacabac RG: Nitric oxide signaling in mechanical adaptation of bone. Osteoporos Int. 25:1427–1437. 2014.

14 

Nanci A and Bosshardt DD: Structure of periodontal tissues in health and disease. Periodontol. 40:11–28. 2006. View Article : Google Scholar

15 

Hassell TM: Tissues and cells of the periodontium. Periodontol. 3:9–38. 1993. View Article : Google Scholar

16 

Bartold PM and McCulloch CA: Information generation and processing systems that regulate periodontal structure and function. Periodontol. 63:7–13. 2013. View Article : Google Scholar

17 

Antoun JS, Mei L, Gibbs K and Farella M: Effect of orthodontic treatment on the periodontal tissues. Periodontol. 74:140–157. 2017. View Article : Google Scholar

18 

Burstone C: The biomechanics of tooth movement. Kraus BS and Riedel BA: Vistas in orthodontics. Lea, Febiger; Philadelphia: pp. 197–213. 1962

19 

Dhenain T, Côté F and Coman T: Serotonin and orthodontic tooth movement. Biochimie. 161:73–79. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Asiry MA: Biological aspects of orthodontic tooth movement: A review of literature. Saudi J Biol Sci. 25:1027–1032. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Martin Schwarz A: Tissue changes incident to orthodontic tooth movement. Int J Orthodontia Oral Surg Radiography. 18:331–352. 1932. View Article : Google Scholar

22 

Norevall LI, Forsgren S and Matsson L: Expression of neuropeptides (CGRP, substance P) during and after orthodontic tooth movement in the rat. Eur J Orthod. 17:311–325. 1995. View Article : Google Scholar : PubMed/NCBI

23 

Middleton J, Patterson AM, Gardner L, Schmutz C and Ashton BA: Leukocyte extravasation: Chemokine transport and presentation by the endothelium. Blood. 100:3853–3860. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Lee SK, Pi SH, Kim SH, Min KS, Lee HJ, Chang HS, Kang KH, Kim HR, Shin HI, Lee SK and Kim EC: Substance P regulates macrophage inflammatory protein 3alpha/chemokine C-C ligand 20 (CCL20) with heme oxygenase-1 in human periodontal ligament cells. Clin Exp Immunol. 150:567–575. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Yamaguchi M, Kojima T, Kanekawa M, Aihara N, Nogimura A and Kasai K: Neuropeptides stimulate production of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha in human dental pulp cells. Inflamm Res. 53:199–204. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Kvinnsland I and Kvinnsland S: Changes in CGRP-immunoreactive nerve fibres during experimental tooth movement in rats. Eur J Orthod. 12:320–329. 1990. View Article : Google Scholar : PubMed/NCBI

27 

Ren Y, Hazemeijer H, de Haan B, Qu N and de Vos P: Cytokine profiles in crevicular fluid during orthodontic tooth movement of short and long durations. J Periodontol. 78:453–458. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Kapoor P, Kharbanda OP, Monga N, Miglani R and Kapila S: Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: A systematic review. Prog Orthod. 15:652014. View Article : Google Scholar : PubMed/NCBI

29 

Teitelbaum SL and Ross FP: Genetic regulation of osteoclast development and function. Nat Rev Genet. 4:638–649. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Xie R, Kuijpers-Jagtman AM and Maltha JC: Osteoclast differentiation during experimental tooth movement by a short-term force application: An immunohistochemical study in rats. Acta Odontol Scand. 66:314–320. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Wada T, Nakashima T, Hiroshi N and Penninger JM: RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 12:17–25. 2006. View Article : Google Scholar

32 

Azuma Y, Kaji K, Katogi R, Takeshita S and Kudo A: Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem. 275:4858–4864. 2000. View Article : Google Scholar : PubMed/NCBI

33 

Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E, et al: Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: Receptor activator of NF-kappa B ligand. Bone. 25:517–523. 1999. View Article : Google Scholar : PubMed/NCBI

34 

Katagiri T and Takahashi N: Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 8:147–159. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Thirunavukkarasu K, Halladay DL, Miles RR, Yang X, Galvin RJ, Chandrasekhar S, Martin TJ and Onyia JE: The osteoblast-specific transcription factor Cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem. 275:25163–25172. 2000. View Article : Google Scholar : PubMed/NCBI

36 

Suda T, Takahashi N and Martin TJ: Modulation of osteoclast differentiation. Endocr Rev. 13:66–80. 1992.PubMed/NCBI

37 

Takahashi N, Udagawa N, Akatsu T, Tanaka H, Shionome M and Suda T: Role of colony-stimulating factors in osteoclast development. J Bone Miner Res. 6:977–985. 1991. View Article : Google Scholar : PubMed/NCBI

38 

Liggett W Jr, Shevde N, Anklesaria P, Sohoni S, Greenberger J and Glowacki J: Effects of macrophage colony stimulating factor and granulocyte-macrophage colony stimulating factor on osteoclastic differentiation of hematopoietic progenitor cells. Stem Cells. 11:398–411. 1993. View Article : Google Scholar : PubMed/NCBI

39 

Boyle WJ, Simonet WS and Lacey DL: Osteoclast differentiation and activation. Nature. 423:337–342. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Tanaka S, Nakamura K, Takahasi N and Suda T: Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immunol Rev. 208:30–49. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Aubin JE and Bonnelye E: Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. Medscape Womens Health. 11:905–913. 2000.

42 

Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K and Suda T: Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology. 141:3478–3484. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Garlet TP, Coelho U, Silva JS and Garlet GP: Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 115:355–362. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Liu XH, Kirschenbaum A, Yao S and Levine AC: Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa B} (RANK) ligand/RANK system. Endocrinology. 146:1991–1998. 2005. View Article : Google Scholar

45 

Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A and Abu-Amer Y: Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem. 276:563–568. 2001. View Article : Google Scholar

46 

Tani-Ishii N, Tsunoda A, Teranaka T and Umemoto T: Autocrine regulation of osteoclast formation and bone resorption by IL-1 alpha and TNF alpha. J Dent Res. 78:1617–1623. 1999. View Article : Google Scholar : PubMed/NCBI

47 

Miyaura C, Inada M, Matsumoto C, Ohshiba T, Uozumi N, Shimizu T and Ito A: An essential role of cytosolic phospholipase A2alpha in prostaglandin E2-mediated bone resorption associated with inflammation. J Exp Med. 197:1303–1310. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Kitaura H, Yoshimatsu M, Fujimura Y, Eguchi T, Kohara H, Yamaguchi A and Yoshida N: An anti-c-Fms antibody inhibits orthodontic tooth movement. J Dent Res. 87:396–400. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Abu-Amer Y, Erdmann J, Alexopoulou L, Kollias G, Ross FP and Teitelbaum SL: Tumor necrosis factor receptors types 1 and 2 differentially regulate osteoclastogenesis. J Biol Chem. 275:27307–27310. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Yamasaki K: The role of cyclic AMP, calcium, and prostaglandins in the induction of osteoclastic bone resorption associated with experimental tooth movement. J Dent Res. 62:877–881. 1983. View Article : Google Scholar : PubMed/NCBI

51 

Domon S, Shimokawa H, Matsumoto Y, Yamaguchi S and Soma K: In situ hybridization for matrix metalloproteinase-1 and cathepsin K in rat root-resorbing tissue induced by tooth movement. Arch Oral Biol. 44:907–915. 1999. View Article : Google Scholar : PubMed/NCBI

52 

Apajalahti S, Sorsa T, Railavo S and Ingman T: The in vivo levels of matrix metalloproteinase-1 and -8 in gingival crevicular fluid during initial orthodontic tooth movement. J Dent Res. 82:1018–1022. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Bonafe-Oliveira L, Faltin RM and Arana-Chavez VE: Ultrastructural and histochemical examination of alveolar bone at the pressure areas of rat molars submitted to continuous orthodontic force. Eur J Oral Sci. 111:410–416. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Krishnan V and Davidovitch Z: Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Dentofacial Orthop. 129:469.e1–432. 2006. View Article : Google Scholar

55 

Ducy P, Schinke T and Karsenty G: The osteoblast: A sophisticated fibroblast under central surveillance. Science. 289:1501–1504. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Franz-Odendaal TA, Hall BK and Witten PE: Buried alive: How osteoblasts become osteocytes. Dev Dyn. 235:176–190. 2006. View Article : Google Scholar

57 

Capulli M, Paone R and Rucci N: Osteoblast and osteocyte: Games without frontiers. Arch Biochem Biophys. 561:3–12. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Kundu M, Javed A, Jeon JP, Horner A, Shum L, Eckhaus M, Muenke M, Lian JB, Yang Y, Nuckolls GH, et al: Cbfbeta interacts with Runx2 and has a critical role in bone development. Nat Genet. 32:639–644. 2002. View Article : Google Scholar : PubMed/NCBI

59 

Canalis E, Economides AN and Gazzerro E: Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 24:218–235. 2003. View Article : Google Scholar : PubMed/NCBI

60 

Chen G, Deng C and Li YP: TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 8:272–288. 2012. View Article : Google Scholar :

61 

Wu M, Chen G and Li YP: TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar

62 

Lee KS, Hong SH and Bae SC: Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 21:7156–7163. 2002. View Article : Google Scholar : PubMed/NCBI

63 

Leivonen SK, Lazaridis K, Decock J, Chantry A, Edwards DR and Kähäri VM: TGF-β-elicited induction of tissue inhibitor of metalloproteinases (TIMP)-3 expression in fibroblasts involves complex interplay between Smad3, p38α, and ERK1/2. PLoS One. 8:e574742013. View Article : Google Scholar

64 

Park-Min KH, Ji JD, Antoniv T, Reid AC, Silver RB, Humphrey MB, Nakamura M and Ivashkiv LB: IL-10 suppresses calcium-mediated costimulation of receptor activator NF-kappa B signaling during human osteoclast differentiation by inhibiting TREM-2 expression. J Immuno. 183:2444–2455. 2009. View Article : Google Scholar

65 

Zhang L, Ding Y, Rao GZ and Miao D: Effects of IL-10 and glucose on expression of OPG and RANKL in human periodontal ligament fibroblasts. Braz J Med Biol Res. 49:e43242016. View Article : Google Scholar : PubMed/NCBI

66 

Kusumbe AP, Ramasamy SK and Adams RH: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507:323–328. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Sivaraj KK and Adams RH: Blood vessel formation and function in bone. Development. 143:2706–2715. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Park HJ, Baek KH, Lee HL, Kwon A, Hwang HR, Qadir AS, Woo KM, Ryoo HM and Baek JH: Hypoxia inducible factor-1α directly induces the expression of receptor activator of nuclear factor-κB ligand in periodontal ligament fibroblasts. Mol Cells. 31:573–578. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Dandajena TC, Ihnat MA, Disch B, Thorpe J and Currier GF: Hypoxia triggers a HIF-mediated differentiation of peripheral blood mononuclear cells into osteoclasts. Orthod Craniofac Res. 15:1–9. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Knowles HJ and Athanasou NA: Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J Pathol. 215:56–66. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Lee SY, Yoo HI and Kim SH: CCR5-CCL Axis in PDL during orthodontic biophysical force application. J Dent Res. 94:1715–1723. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Yang SY, Kim JW, Lee SY, Kang JH, Ulziisaikhan U, Yoo HI, Moon YH, Moon JS, Ko HM, Kim MS and Kim SH: Upregulation of relaxin receptors in the PDL by biophysical force. Clin Oral Investig. 19:657–665. 2015. View Article : Google Scholar

73 

Lee SY, Moon JS, Yang DW, Yoo HI, Jung JY, Kim OS, Kim MS, Koh JT, Chung HJ and Kim SH: SLPI in periodontal Ligament is not sleepy during biophysical force-induced tooth movement. J Clin Periodontol. 48:528–540. 2021. View Article : Google Scholar

74 

Dallas SL, Prideaux M and Bonewald LF: The osteocyte: An endocrine cell and more. Endocr Rev. 34:658–690. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Tresguerres FGF, Torres J, López-Quiles J, Hernández G, Vega JA and Tresguerres IF: The osteocyte: A multifunctional cell within the bone. Ann Anat. 227:1514222020. View Article : Google Scholar

76 

Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S and Ikeda K: Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 5:464–475. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Goulet GC, Cooper DM, Coombe D and Zernicke RF: Influence of cortical canal architecture on lacunocanalicular pore pressure and fluid flow. Comput Methods Biomech Biomed Engin. 11:379–387. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Wang Y, McNamara LM, Schaffler MB and Weinbaum S: A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci USA. 104:15941–15946. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Phillips JA, Almeida EA, Hill EL, Aguirre JI, Rivera MF, Nachbandi I, Wronski TJ, van der Meulen MC and Globus RK: Role for beta1 integrins in cortical osteocytes during acute musculoskeletal disuse. Matrix Biol. 27:609–618. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Liedert A, Kaspar D, Blakytny R, Claes L and Ignatius A: Signal transduction pathways involved in mechanotransduction in bone cells. Biochem Biophys Res Commun. 349:1–5. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Heino TJ, Hentunen TA and Väänänen HK: Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts. Exp Cell Res. 294:458–468. 2004. View Article : Google Scholar : PubMed/NCBI

82 

Li L, Yang Z, Zhang H, Chen W, Chen M and Zhu Z: Low-intensity pulsed ultrasound regulates proliferation and differentiation of osteoblasts through osteocytes. Biochem Biophys Res Commun. 418:296–300. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Yellowley CE, Li Z, Zhou Z, Jacobs CR and Donahue HJ: Functional gap junctions between osteocytic and osteoblastic cells. J Bone Miner Res. 15:209–217. 2000. View Article : Google Scholar : PubMed/NCBI

84 

Taylor AF, Saunders MM, Shingle DL, Cimbala JM, Zhou Z and Donahue HJ: Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am J Physiol Cell Physiol. 292:C545–C552. 2007. View Article : Google Scholar

85 

Cherian PP, Cheng B, Gu S, Sprague E, Bonewald LF and Jiang JX: Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem. 278:43146–43156. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Cheng B, Kato Y, Zhao S, Luo J, Sprague E, Bonewald LF and Jiang JX: PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology. 142:3464–3473. 2001. View Article : Google Scholar : PubMed/NCBI

87 

Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W and Nishihara T: Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. J Cell Biochem. 101:1266–1277. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Franceschi RT and Xiao G: Regulation of the osteoblast-specific transcription factor, Runx2: Responsiveness to multiple signal transduction pathways. J Cell Biochem. 88:446–454. 2003. View Article : Google Scholar : PubMed/NCBI

89 

Sapir-Koren R and Livshits G: Osteocyte control of bone remodeling: Is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles? Osteoporos Int. 25:2685–2700. 2014. View Article : Google Scholar : PubMed/NCBI

90 

ten Dijke P, Krause C, de Gorter DJ, Löwik CW and van Bezooijen RL: Osteocyte-derived sclerostin inhibits bone formation: Its role in bone morphogenetic protein and Wnt signaling. J Bone Joint Surg Am. 90(Suppl 1): S31–S35. 2008. View Article : Google Scholar

91 

Galli C, Passeri G and Macaluso GM: Osteocytes and WNT: The mechanical control of bone formation. J Dent Res. 89:331–343. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen WR, Qi J, Nara Y, Pramusita A, Kinjo R and Mizoguchi I: Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci. 21:51692020. View Article : Google Scholar :

93 

Plotkin LI, Gortazar AR, Davis HM, Condon KW, Gabilondo H, Maycas M, Allen MR and Bellido T: Inhibition of osteocyte apoptosis prevents the increase in osteocytic receptor activator of nuclear factor κB ligand (RANKL) but does not stop bone resorption or the loss of bone induced by unloading. J Biol Chem. 290:18934–18942. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, Li Y, Feng G, Gao X and He L: Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 24:1651–1661. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Cheung WY, Simmons CA and You L: Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone. 50:104–110. 2012. View Article : Google Scholar

96 

Al-Dujaili SA, Lau E, Al-Dujaili H, Tsang K, Guenther A and You L: Apoptotic osteocytes regulate osteoclast precursor recruitment and differentiation in vitro. J Cell Biochem. 112:2412–2423. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Jilka RL, Noble B and Weinstein RS: Osteocyte apoptosis. Bone. 54:264–271. 2013. View Article : Google Scholar :

98 

Wang JH, Thampatty BP, Lin JS and Im HJ: Mechanoregulation of gene expression in fibroblasts. Gene. 391:1–15. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Wang HB, Dembo M, Hanks SK and Wang Y: Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc Natl Acad Sci USA. 98:11295–11300. 2001. View Article : Google Scholar : PubMed/NCBI

100 

Warita H, Watarai H and Soma K: Nitric oxide synthase expression is increased by occlusal force in rat periodontal ligament. Orthod Craniofac Res. 7:122–126. 2004. View Article : Google Scholar : PubMed/NCBI

101 

Brandi ML, Hukkanen M, Umeda T, Moradi-Bidhendi N, Bianchi S, Gross SS, Polak JM and MacIntyre I: Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Proc Natl Acad Sci USA. 92:2954–2958. 1995. View Article : Google Scholar : PubMed/NCBI

102 

Helfrich MH, Evans DE, Grabowski PS, Pollock JS, Ohshima H and Ralston SH: Expression of nitric oxide synthase isoforms in bone and bone cell cultures. J Bone Miner Res. 12:1108–1115. 1997. View Article : Google Scholar : PubMed/NCBI

103 

Yang S, Guo L, Su Y, Wen J, Du J, Li X, Liu Y, Feng J, Xie Y, Bai Y, et al: Nitric oxide balances osteoblast and adipocyte lineage differentiation via the JNK/MAPK signaling pathway in periodontal ligament stem cells. Stem Cell Res Ther. 9:1182018. View Article : Google Scholar : PubMed/NCBI

104 

Watarai H, Warita H and Soma K: Effect of nitric oxide on the recovery of the hypofunctional periodontal ligament. J Dent Res. 83:338–342. 2004. View Article : Google Scholar : PubMed/NCBI

105 

Kaneko K, Miyamoto Y, Tsukuura R, Sasa K, Akaike T, Fujii S, Yoshimura K, Nagayama K, Hoshino M, Inoue S, et al: 8-Nitro-cGMP is a promoter of osteoclast differentiation induced by RANKL. Nitric Oxide. 72:46–51. 2018. View Article : Google Scholar

106 

Korkmaz Y, Baumann MA, Schröder H, Behrends S, Addicks K, Raab WH and Bloch W: Localization of the NO-cGMP signaling pathway molecules, NOS III-phosphorylation sites, ERK1/2, and Akt/PKB in osteoclasts. J Periodontol. 75:1119–1125. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Dong SS, Williams JP, Jordan SE, Cornwell T and Blair HC: Nitric oxide regulation of cGMP production in osteoclasts. J Cell Biochem. 73:478–487. 1999. View Article : Google Scholar

108 

Nagayama K, Miyamoto Y, Kaneko K, Yoshimura K, Sasa K, Akaike T, Fujii S, Izumida E, Uyama R, Chikazu D, et al: Production of 8-nitro-cGMP in osteocytic cells and its upregulation by parathyroid hormone and prostaglandin E2. In Vitro Cell Dev Biol Anim. 55:45–51. 2019. View Article : Google Scholar

109 

Davidovitch Z, Montgomery PC and Shanfeld JL: Cellular localization and concentration of bone cyclic nucleotides in response to acute PTE administration. Calcif Tissue Res. 24:81–91. 1977. View Article : Google Scholar : PubMed/NCBI

110 

Davidovitch Z, Montgomery PC and Shanfeld JL: Guanosine 3′,5′-monophosphate in bone: Microscopic visualization by an immuno-histochemical technique. Calcif Tissue Res. 24:73–79. 1977. View Article : Google Scholar : PubMed/NCBI

111 

Davidovitch Z, Montgomery PC, Yost RW and Shanfeld JL: Immuno-histochemical localization of cyclic nucleotides in mineralized tissues: Mechanically-stressed osteoblasts in vivo. Anat Rec. 192:363–373. 1978. View Article : Google Scholar : PubMed/NCBI

112 

Graziani E, Zelent ME and Pelliccioni GA: Biochemical aspects of orthodontic movement: Recent findings and trends. Mondo Ortod. 16:77–84. 1991.In Italian. PubMed/NCBI

113 

Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC and Korostoff E: Electric currents, bone remodeling, and orthodontic tooth movement. II. Increase in rate of tooth movement and periodontal cyclic nucleotide levels by combined force and electric current. Am J Orthod. 77:33–47. 1980. View Article : Google Scholar : PubMed/NCBI

114 

Davidovitch Z, Finkelson MD, Steigman S, Shanfeld JL, Montgomery PC and Korostoff E: Electric currents, bone remodeling, and orthodontic tooth movement. I. The effect of electric currents on periodontal cyclic nucleotides. Am J Orthod. 77:14–32. 1980. View Article : Google Scholar : PubMed/NCBI

115 

Davidovitch Z, Steigman S, Finkelson MD, Yost RW, Montgomery PC, Shanfeld JL and Korostoff E: Immunohistochemical evidence that electric currents increase periosteal cell cyclic nucleotide levels in feline alveolar bone in vivo. Arch Oral Biol. 25:321–327. 1980. View Article : Google Scholar : PubMed/NCBI

116 

Karanth HS and Shetty KS: Orthodontic tooth movement and bioelectricity. Indian J Dent Res. 12:212–221. 2001.

117 

Nilforoushan D, Gramoun A, Glogauer M and Manolson MF: Nitric oxide enhances osteoclastogenesis possibly by mediating cell fusion. Nitric Oxide. 21:27–36. 2009. View Article : Google Scholar : PubMed/NCBI

118 

Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y, Garg HK, Li L, Mian A, Bertin TK, et al: Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med. 17:1619–1626. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Shirazi M, Nilforoushan D, Alghasi H and Dehpour AR: The role of nitric oxide in orthodontic tooth movement in rats. Angle Orthod. 72:211–215. 2002.PubMed/NCBI

120 

Akin E, Gurton AU and Olmez H: Effects of nitric oxide in orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop. 126:608–614. 2004. View Article : Google Scholar : PubMed/NCBI

121 

Armour KE, Van'T Hof RJ, Grabowski PS, Reid DM and Ralston SH: Evidence for a pathogenic role of nitric oxide in inflammation-induced osteoporosis. J Bone Miner Res. 14:2137–2142. 1999. View Article : Google Scholar

122 

Lin SK, Kok SH, Kuo MY, Lee MS, Wang CC, Lan WH, Hsiao M, Goldring SR and Hong CY: Nitric oxide promotes infectious bone resorption by enhancing cytokine-stimulated interstitial collagenase synthesis in osteoblasts. J Bone Miner Res. 18:39–46. 2003. View Article : Google Scholar : PubMed/NCBI

123 

Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di Paola R, Ruggeri Z, Vegeto E, Caputi AP, Van De Loo FA, Puzzolo D and Maggi A: Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology. 144:1098–1107. 2003. View Article : Google Scholar : PubMed/NCBI

124 

Gyurko R, Shoji H, Battaglino RA, Boustany G, Gibson FC III, Genco CA, Stashenko P and Van Dyke TE: Inducible nitric oxide synthase mediates bone development and P. gingivalis-induced alveolar bone loss. Bone. 36:472–479. 2005. View Article : Google Scholar : PubMed/NCBI

125 

Graves DT, Alsulaimani F, Ding Y and Marks SC Jr: Developmentally regulated monocyte recruitment and bone resorption are modulated by functional deletion of the monocytic chemoattractant protein-1 gene. Bone. 31:282–287. 2002. View Article : Google Scholar : PubMed/NCBI

126 

He D, Kou X, Luo Q, Yang R, Liu D, Wang X, Song Y, Cao H, Zeng M, Gan Y and Zhou Y: Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J Dent Res. 94:129–139. 2015. View Article : Google Scholar

127 

He D, Kou X, Yang R, Liu D, Wang X, Luo Q, Song Y, Liu F, Yan Y, Gan Y and Zhou Y: M1-like macrophage polarization promotes orthodontic tooth movement. J Dent Res. 94:1286–1294. 2015. View Article : Google Scholar : PubMed/NCBI

128 

Lee SK, Huang H, Lee SW, Kim KH, Kim KK, Kim HM, Lee ZH and Kim HH: Involvement of iNOS-dependent NO production in the stimulation of osteoclast survival by TNF-alpha. Exp Cell Res. 298:359–368. 2004. View Article : Google Scholar : PubMed/NCBI

129 

Kaur S, White S and Bartold M: Periodontal disease as a risk factor for rheumatoid arthritis: A systematic review. JBI Libr Syst Rev. 10(Suppl 42): S1–S12. 2012. View Article : Google Scholar

130 

Wang JW, Yeh CB, Chou SJ, Lu KC, Chu TH, Chen WY, Chien JL, Yen MH, Chen TH and Shyu JF: YC-1 alleviates bone loss in ovariectomized rats by inhibiting bone resorption and inducing extrinsic apoptosis in osteoclasts. J Bone Miner Metab. 36:508–518. 2018. View Article : Google Scholar

131 

van't Hof RJ and Ralston SH: Cytokine-induced nitric oxide inhibits bone resorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity. J Bone Miner Res. 12:1797–1804. 1997. View Article : Google Scholar

132 

Kitaura H, Fujimura Y, Yoshimatsu M, Kohara H, Morita Y, Aonuma T, Fukumoto E, Masuyama R, Yoshida N and Takano-Yamamoto T: IL-12- and IL-18-mediated, nitric oxide-induced apoptosis in TNF-α-mediated osteoclastogenesis of bone marrow cells. Calcif Tissue Int. 89:65–73. 2011. View Article : Google Scholar : PubMed/NCBI

133 

Kalyanaraman H, Ramdani G, Joshua J, Schall N, Boss GR, Cory E, Sah RL, Casteel DE and Pilz RB: A novel, direct no donor regulates osteoblast and osteoclast functions and increases bone mass in ovariectomized mice. J Bone Miner Res. 32:46–59. 2017. View Article : Google Scholar

134 

Iwaki F, Amano H and Ohura K: Nicorandil inhibits osteoclast differentiation in vitro. Eur J Pharmacol. 793:14–20. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Yaroslavskiy BB, Li Y, Ferguson DJ, Kalla SE, Oakley JI and Blair HC: Autocrine and paracrine nitric oxide regulate attachment of human osteoclasts. J Cell Biochem. 91:962–972. 2004. View Article : Google Scholar : PubMed/NCBI

136 

Yaroslavskiy BB, Zhang Y, Kalla SE, García Palacios V, Sharrow AC, Li Y, Zaidi M, Wu C and Blair HC: NO-dependent osteoclast motility: Reliance on cGMP-dependent protein kinase I and VASP. J Cell Sci. 118:5479–5487. 2005. View Article : Google Scholar : PubMed/NCBI

137 

Yaroslavskiy BB, Turkova I, Wang Y, Robinson LJ and Blair HC: Functional osteoclast attachment requires inositol-1,4,5-trisphosphate receptor-associated cGMP-dependent kinase substrate. Lab Invest. 90:1533–1542. 2010. View Article : Google Scholar : PubMed/NCBI

138 

Fukada SY, Silva TA, Saconato IF, Garlet GP, Avila-Campos MJ, Silva JS and Cunha FQ: iNOS-derived nitric oxide modulates infection-stimulated bone loss. J Dent Res. 87:1155–1159. 2008. View Article : Google Scholar : PubMed/NCBI

139 

Silva MJ, Sousa LM, Lara VP, Cardoso FP, Júnior GM, Totola AH, Caliari MV, Romero OB, Silva GA, Ribeiro-Sobrinho AP and Vieira LQ: The role of iNOS and PHOX in periapical bone resorption. J Dent Res. 90:495–500. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Zheng H, Yu X, Collin-Osdoby P and Osdoby P: RANKL stimulates inducible nitric-oxide synthase expression and nitric oxide production in developing osteoclasts. An autocrine negative feedback mechanism triggered by RANKL-induced interferon-beta via NF-kappaB that restrains osteoclastogenesis and bone resorption. J Biol Chem. 281:15809–15820. 2006. View Article : Google Scholar : PubMed/NCBI

141 

Otsuka E, Hirano K, Matsushita S, Inoue A, Hirose S, Yamaguchi A and Hagiwara H: Effects of nitric oxide from exogenous nitric oxide donors on osteoblastic metabolism. Eur J Pharmacol. 349:345–350. 1998. View Article : Google Scholar : PubMed/NCBI

142 

Hikiji H, Shin WS, Oida S, Takato T, Koizumi T and Toyo-oka T: Direct action of nitric oxide on osteoblastic differentiation. FEBS Lett. 410:238–242. 1997. View Article : Google Scholar : PubMed/NCBI

143 

Inoue A, Hiruma Y, Hirose S, Yamaguchi A and Hagiwara H: Reciprocal regulation by cyclic nucleotides of the differentiation of rat osteoblast-like cells and mineralization of nodules. Biochem Biophys Res Commun. 215:1104–1110. 1995. View Article : Google Scholar : PubMed/NCBI

144 

Pal S, Rashid M, Singh SK, Porwal K, Singh P, Mohamed R, Gayen JR, Wahajuddin M and Chattopadhyay N: Skeletal restoration by phosphodiesterase 5 inhibitors in osteopenic mice: Evidence of osteoanabolic and osteoangiogenic effects of the drugs. Bone. 135:1153052020. View Article : Google Scholar : PubMed/NCBI

145 

Mancini L, Moradi-Bidhendi N, Becherini L, Martineti V and MacIntyre I: The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Commun. 274:477–481. 2000. View Article : Google Scholar : PubMed/NCBI

146 

Zaragoza C, López-Rivera E, García-Rama C, Saura M, Martínez-Ruíz A, Lizarbe TR, Martín-de-Lara F and Lamas S: Cbfa-1 mediates nitric oxide regulation of MMP-13 in osteoblasts. J Cell Sci. 119:1896–1902. 2006. View Article : Google Scholar : PubMed/NCBI

147 

Armour KE, Armour KJ, Gallagher ME, Gödecke A, Helfrich MH, Reid DM and Ralston SH: Defective bone formation and anabolic response to exogenous estrogen in mice with targeted disruption of endothelial nitric oxide synthase. Endocrinology. 142:760–766. 2001. View Article : Google Scholar : PubMed/NCBI

148 

Ma P, Gu B, Xiong W, Tan B, Geng W, Li J and Liu H: Glimepiride promotes osteogenic differentiation in rat osteoblasts via the PI3K/Akt/eNOS pathway in a high glucose microenvironment. PLoS One. 9:e1122432014. View Article : Google Scholar : PubMed/NCBI

149 

Almeida M, Han L, Bellido T, Manolagas SC and Kousteni S: Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem. 280:41342–41351. 2005. View Article : Google Scholar : PubMed/NCBI

150 

Wimalawansa SJ: Rationale for using nitric oxide donor therapy for prevention of bone loss and treatment of osteoporosis in humans. Ann N Y Acad Sc. 1117:283–297. 2007. View Article : Google Scholar

151 

Willems HM, van den Heuvel EG, Carmeliet G, Schaafsma A, Klein-Nulend J and Bakker AD: VDR dependent and independent effects of 1,25-dihydroxyvitamin D3 on nitric oxide production by osteoblasts. Steroids. 77:126–131. 2012. View Article : Google Scholar

152 

Yan L, Yinghui T, Bo Y, Gang Z, Xian X and Lu Z: Effect of calcitonin gene-related peptide on nitric oxide production in osteoblasts: An experimental study. Cell Biol Int. 35:757–765. 2011. View Article : Google Scholar : PubMed/NCBI

153 

Li Y, Tan Y, Zhang G, Yang B and Zhang J: Effects of calcitonin gene-related peptide on the expression and activity of nitric oxide synthase during mandibular bone healing in rabbits: An experimental study. J Oral Maxillofac Surg. 67:273–279. 2009. View Article : Google Scholar : PubMed/NCBI

154 

O'Shaughnessy MC, Polak JM, Afzal F, Hukkanen MV, Huang P, MacIntyre I and Buttery LD: Nitric oxide mediates 17beta-estradiol-stimulated human and rodent osteoblast proliferation and differentiation. Biochem Biophys Res Commun. 277:604–610. 2000. View Article : Google Scholar : PubMed/NCBI

155 

Yang JY, Park MY, Park SY, Yoo HI, Kim MS, Kim JH, Kim WJ and Jung JY: Nitric oxide-induced autophagy in MC3T3-E1 cells is associated with cytoprotection via ampk activation. Korean J Physiol Pharmacol. 19:507–514. 2015. View Article : Google Scholar : PubMed/NCBI

156 

Joshua J, Schwaerzer GK, Kalyanaraman H, Cory E, Sah RL, Li M, Vaida F, Boss GR and Pilz RB: Soluble guanylate cyclase as a novel treatment target for osteoporosis. Endocrinology. 155:4720–4730. 2014. View Article : Google Scholar : PubMed/NCBI

157 

Marathe N, Rangaswami H, Zhuang S, Boss GR and Pilz RB: Pro-survival effects of 17β-estradiol on osteocytes are mediated by nitric oxide/cGMP via differential actions of cGMP-dependent protein kinases I and II. J Biol Chem. 287:978–988. 2012. View Article : Google Scholar

158 

Joshua J, Kalyanaraman H, Marathe N and Pilz RB: Nitric oxide as a mediator of estrogen effects in osteocytes. Vitam Horm. 96:247–263. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Lee SK, Choi HI, Yang YS, Jeong GS, Hwang JH, Lee SI, Kang KH, Cho JH, Chae JM, Lee SK, et al: Nitric oxide modulates osteoblastic differentiation with heme oxygenase-1 via the mitogen activated protein kinase and nuclear factor-kappaB pathways in human periodontal ligament cells. Biol Pharm Bull. 32:1328–1334. 2009. View Article : Google Scholar : PubMed/NCBI

160 

d'Alessandro L, Petrini M, Ferrante M, Di Marco S, Trubiani O and Spoto G: Cyclic nucleotide phosphodiesterase activity in stem cells of human periodontal ligament (PDL-MSCs) before and after osteogenic induction. Oral Surg Oral Med Oral Pathol Oral Radiol. 116:e317–e323. 2013. View Article : Google Scholar

161 

Tang J, Wu T, Xiong J, Su Y, Zhang C, Wang S, Tang Z and Liu Y: Porphyromonas gingivalis lipopolysaccharides regulate functions of bone marrow mesenchymal stem cells. Cell Prolif. 48:239–248. 2015. View Article : Google Scholar : PubMed/NCBI

162 

Seo T, Cha S, Woo KM, Park YS, Cho YM, Lee JS and Kim TI: Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist. J Periodontal Implant Sci. 41:17–22. 2011. View Article : Google Scholar : PubMed/NCBI

163 

Reher P, Harris M, Whiteman M, Hai HK and Meghji S: Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone. 31:236–241. 2002. View Article : Google Scholar : PubMed/NCBI

164 

Wittkowske C, Reilly GC, Lacroix D and Perrault CM: In vitro bone cell models: Impact of fluid shear stress on bone formation. Front Bioeng Biotechnol. 4:872016. View Article : Google Scholar :

165 

Shibata K, Yoshimura Y, Kikuiri T, Hasegawa T, Taniguchi Y, Deyama Y, Suzuki K and Iida J: Effect of the release from mechanical stress on osteoclastogenesis in RAW264.7 cells. Int J Mol Med. 28:73–79. 2011.PubMed/NCBI

166 

van der Meijden K, Bakker AD, van Essen HW, Heijboer AC, Schulten EA, Lips P and Bravenboer N: Mechanical loading and the synthesis of 1,25(OH)2D in primary human osteoblasts. J Steroid Biochem Mol Biol. 156:32–39. 2016. View Article : Google Scholar

167 

Diniz P, Soejima K and Ito G: Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide. 7:18–23. 2002. View Article : Google Scholar : PubMed/NCBI

168 

Pathak JL, Bravenboer N, Luyten FP, Verschueren P, Lems WF, Klein-Nulend J and Bakker A: Mechanical loading reduces inflammation-induced human osteocyte-to-osteoclast communication. Calcif Tissue Int. 97:169–178. 2015. View Article : Google Scholar : PubMed/NCBI

169 

Premaraj S, Souza I and Premaraj T: Focal adhesion kinase mediates β-catenin signaling in periodontal ligament cells. Biochem Biophys Res Commun. 439:487–492. 2013. View Article : Google Scholar : PubMed/NCBI

170 

Nakago-Matsuo C, Matsuo T and Nakago T: Basal nitric oxide production is enhanced by hydraulic pressure in cultured human periodontal ligament fibroblasts. Am J Orthod Dentofacial Orthop. 117:474–478. 2000. View Article : Google Scholar : PubMed/NCBI

171 

Kraft DC, Bindslev DA, Melsen B, Abdallah BM, Kassem M and Klein-Nulend J: Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity. Eur J Oral Sci. 118:29–38. 2010. View Article : Google Scholar : PubMed/NCBI

172 

Kraft DC, Bindslev DA, Melsen B and Klein-Nulend J: Human dental pulp cells exhibit bone cell-like responsiveness to fluid shear stress. Cytotherapy. 13:214–226. 2011. View Article : Google Scholar

173 

Santos A, Bakker AD, Zandieh-Doulabi B, de Blieck-Hogervorst JM and Klein-Nulend J: Early activation of the beta-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochem Biophys Res Commun. 391:364–369. 2010. View Article : Google Scholar

174 

Santos A, Bakker AD, Zandieh-Doulabi B, Semeins CM and Klein-Nulend J: Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. J Orthop Res. 27:1280–1287. 2009. View Article : Google Scholar : PubMed/NCBI

175 

Rangaswami H, Schwappacher R, Tran T, Chan GC, Zhuang S, Boss GR and Pilz RB: Protein kinase G and focal adhesion kinase converge on Src/Akt/β-catenin signaling module in osteoblast mechanotransduction. J Biol Chem. 287:21509–21519. 2012. View Article : Google Scholar : PubMed/NCBI

176 

Rangaswami H, Schwappacher R, Marathe N, Zhuang S, Casteel DE, Haas B, Chen Y, Pfeifer A, Kato H, Shattil S, et al: Cyclic GMP and protein kinase G control a Src-containing mechanosome in osteoblasts. Sci Signal. 3:ra912010. View Article : Google Scholar : PubMed/NCBI

177 

Rangaswami H, Marathe N, Zhuang S, Chen Y, Yeh JC, Frangos JA, Boss GR and Pilz RB: Type II cGMP-dependent protein kinase mediates osteoblast mechanotransduction. J Biol Chem. 284:14796–14808. 2009. View Article : Google Scholar : PubMed/NCBI

178 

Willems HM, van den Heuvel EG, Castelein S, Buisman JK, Bronckers AL, Bakker AD and Klein-Nulend J: Fluoride inhibits the response of bone cells to mechanical loading. Odontology. 99:112–118. 2011. View Article : Google Scholar : PubMed/NCBI

179 

Vezeridis PS, Semeins CM, Chen Q and Klein-Nulend J: Osteocytes subjected to pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Biophys Res Commun. 348:1082–1088. 2006. View Article : Google Scholar : PubMed/NCBI

180 

Tan SD, de Vries TJ, Kuijpers-Jagtman AM, Semeins CM, Everts V and Klein-Nulend J: Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone. 41:745–751. 2007. View Article : Google Scholar : PubMed/NCBI

181 

Bakker AD, Soejima K, Klein-Nulend J and Burger EH: The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech. 34:671–677. 2001. View Article : Google Scholar : PubMed/NCBI

182 

Tan SD, Bakker AD, Semeins CM, Kuijpers-Jagtman AM and Klein-Nulend J: Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochem Biophys Res Commun. 369:1150–1154. 2008. View Article : Google Scholar : PubMed/NCBI

183 

Juffer P, Jaspers RT, Lips P, Bakker AD and Klein-Nulend J: Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab. 302:E389–E395. 2012. View Article : Google Scholar

184 

Furumatsu T, Shen ZN, Kawai A, Nishida K, Manabe H, Oohashi T, Inoue H and Ninomiya Y: Vascular endothelial growth factor principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis. J Biochem. 133:633–639. 2003. View Article : Google Scholar : PubMed/NCBI

185 

Fisslthaler B, Loot AE, Mohamed A, Busse R and Fleming I: Inhibition of endothelial nitric oxide synthase activity by proline-rich tyrosine kinase 2 in response to fluid shear stress and insulin. Circ Res. 102:1520–1528. 2008. View Article : Google Scholar : PubMed/NCBI

186 

Ghimire K, Altmann HM, Straub AC and Isenberg JS: Nitric oxide: What's new to NO? Am J Physiol Cell Physiol. 312:C254–C262. 2017. View Article : Google Scholar

187 

Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM and Lanyon LE: Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res. 14:1123–1131. 1999. View Article : Google Scholar : PubMed/NCBI

188 

Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R and Zeiher AM: Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 399:601–605. 1999. View Article : Google Scholar : PubMed/NCBI

189 

Klein-Nulend J, Helfrich MH, Sterck JG, MacPherson H, Joldersma M, Ralston SH, Semeins CM and Burger EH: Nitric oxide response to shear stress by human bone cell cultures is endothelial nitric oxide synthase dependent. Biochem Biophys Res Commun. 250:108–114. 1998. View Article : Google Scholar : PubMed/NCBI

190 

Bakker AD, Huesa C, Hughes A, Aspden RM, van't Hof RJ, Klein-Nulend J and Helfrich MH: Endothelial nitric oxide synthase is not essential for nitric oxide production by osteoblasts subjected to fluid shear stress in vitro. Calcif Tissue Int. 92:228–239. 2013. View Article : Google Scholar

191 

Das-Gupta V, Williamson RA and Pitsillides AA: Expression of endothelial nitric oxide synthase protein is not necessary for mechanical strain-induced nitric oxide production by cultured osteoblasts. Osteoporos Int. 23:2635–2647. 2012. View Article : Google Scholar : PubMed/NCBI

192 

Hou CH, Lin J, Huang SC, Hou SM and Tang CH: Ultrasound stimulates NF-kappaB activation and iNOS expression via the Ras/Raf/MEK/ERK signaling pathway in cultured preosteoblasts. J Cell Physiol. 220:196–203. 2009. View Article : Google Scholar : PubMed/NCBI

193 

Padilla F, Puts R, Vico L and Raum K: Stimulation of bone repair with ultrasound: A review of the possible mechanic effects. Ultrasonics. 54:1125–1145. 2014. View Article : Google Scholar : PubMed/NCBI

194 

Kusuyama J, Bandow K, Ohnishi T, Hisadome M, Shima K, Semba I and Matsuguchi T: Osteopontin inhibits osteoblast responsiveness through the down-regulation of focal adhesion kinase mediated by the induction of low-molecular weight protein tyrosine phosphatase. Mol Biol Cell. 28:1326–1336. 2017. View Article : Google Scholar : PubMed/NCBI

195 

Aggarwal H, Pathak P, Singh P, Gayen JR, Jagavelu K and Dikshit M: Systemic insulin resistance and metabolic perturbations in chow fed inducible nitric oxide synthase knockout male mice: Partial reversal by nitrite supplementation. Antioxidants (Basel). 9:7362020. View Article : Google Scholar

196 

Foster MW, Hess DT and Stamler JS: Protein S-nitrosylation in health and disease: A current perspective. Trends Mol Med. 15:391–404. 2009. View Article : Google Scholar : PubMed/NCBI

197 

Huang B, Chen SC and Wang DL: Shear flow increases S-nitrosylation of proteins in endothelial cells. Cardiovasc Res. 83:536–546. 2009. View Article : Google Scholar : PubMed/NCBI

198 

Yoo SK, Warita H and Soma K: Duration of orthodontic force affecting initial response of nitric oxide synthase in rat periodontal ligaments. J Med Dent Sci. 51:83–88. 2004.PubMed/NCBI

199 

Nilforoushan D and Manolson MF: Expression of nitric oxide synthases in orthodontic tooth movement. Angle Orthod. 79:502–508. 2009. View Article : Google Scholar : PubMed/NCBI

200 

Tan SD, Xie R, Klein-Nulend J, van Rheden RE, Bronckers AL, Kuijpers-Jagtman AM, Von den Hoff JW and Maltha JC: Orthodontic force stimulates eNOS and iNOS in rat osteocytes. J Dent Res. 88:255–260. 2009. View Article : Google Scholar : PubMed/NCBI

201 

Baloul SS: Osteoclastogenesis and osteogenesis during tooth movement. Front Oral Bio. 18:75–79. 2016. View Article : Google Scholar

202 

D'Attillio M, Di Maio F, D'Arcangela C, Filippi MR, Felaco M, Lohinai Z, Festa F and Perinetti G: Gingival endothelial and inducible nitric oxide synthase levels during orthodontic treatment: A cross-sectional study. Angle Orthod. 74:851–858. 2004.

203 

Ford H, Suri S, Nilforoushan D, Manolson M and Gong SG: Nitric oxide in human gingival crevicular fluid after orthodontic force application. Arch Oral Biol. 59:1211–1216. 2014. View Article : Google Scholar : PubMed/NCBI

204 

Topal SC, Tuncer BB, Elgun S, Erguder I and Ozmeric N: Levels of cytokines in gingival crevicular fluid during rapid maxillary expansion and the subsequent retention period. J Clin Pediatr Dent. 43:137–143. 2019. View Article : Google Scholar : PubMed/NCBI

205 

Ozel N, Aksoy A, Kırzıoglu FY, Doguc DK and Aksoy TA: Evaluation of interleukin-1β level and oxidative status in gingival crevicular fluid during rapid maxillary expansion. Arch Oral Biol. 90:74–79. 2018. View Article : Google Scholar

206 

AtuğÖzcan SS, Ceylan I, Ozcan E, Kurt N, Dağsuyu IM and Canakçi CF: Evaluation of oxidative stress biomarkers in patients with fixed orthodontic appliances. Dis Markers. 2014:5978922014.

207 

Hayashi K, Igarashi K, Miyoshi K, Shinoda H and Mitani H: Involvement of nitric oxide in orthodontic tooth movement in rats. Am J Orthod Dentofacial Orthop. 122:306–309. 2002. View Article : Google Scholar : PubMed/NCBI

208 

Rausch-Fan X and Matejka M: From plaque formation to periodontal disease, is there a role for nitric oxide? Eur J Clin Invest. 31:833–835. 2001. View Article : Google Scholar : PubMed/NCBI

209 

de Farias JO, de Freitas Lima SM and Rezende TMB: Physiopathology of nitric oxide in the oral environment and its biotechnological potential for new oral treatments: A literature review. Clin Oral Investig. 24:4197–4212. 2020. View Article : Google Scholar : PubMed/NCBI

210 

Qu XM, Wu ZF, Pang BX, Jin LY, Qin LZ and Wang SL: From Nitrate to Nitric Oxide: The role of salivary glands and oral bacteria. J Dent Res. 95:1452–1456. 2016. View Article : Google Scholar : PubMed/NCBI

211 

Carossa S, Pera P, Doglio P, Lombardo S, Colagrande P, Brussino L, Rolla G and Bucca C: Oral nitric oxide during plaque deposition. Eur J Clin Invest. 31:876–879. 2001. View Article : Google Scholar : PubMed/NCBI

212 

Khodaii Z, Mehrabani M, Rafieian N, Najafi-Parizi GA, Mirzaei A and Akbarzadeh R: Altered levels of salivary biochemical markers in periodontitis. Am J Dent. 32:183–186. 2019.PubMed/NCBI

213 

Sundar NM, Krishnan V, Krishnaraj S, Hemalatha VT and Alam MN: Comparison of the salivary and the serum nitric oxide levels in chronic and aggressive periodontitis: A biochemical study. J Clin Diagn Res. 7:1223–1227. 2013.PubMed/NCBI

214 

Parwani SR, Chitnis PJ and Parwani RN: Salivary nitric oxide levels in inflammatory periodontal disease-a case-control and interventional study. Int J Dent Hyg. 10:67–73. 2012. View Article : Google Scholar

215 

Sokos D, Everts V and de Vries TJ: Role of periodontal ligament fibroblasts in osteoclastogenesis: A review. J Periodontal Res. 50:152–159. 2015. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yan T, Xie Y, He H, Fan W and Huang F: Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 48: 168, 2021.
APA
Yan, T., Xie, Y., He, H., Fan, W., & Huang, F. (2021). Role of nitric oxide in orthodontic tooth movement (Review). International Journal of Molecular Medicine, 48, 168. https://doi.org/10.3892/ijmm.2021.5001
MLA
Yan, T., Xie, Y., He, H., Fan, W., Huang, F."Role of nitric oxide in orthodontic tooth movement (Review)". International Journal of Molecular Medicine 48.3 (2021): 168.
Chicago
Yan, T., Xie, Y., He, H., Fan, W., Huang, F."Role of nitric oxide in orthodontic tooth movement (Review)". International Journal of Molecular Medicine 48, no. 3 (2021): 168. https://doi.org/10.3892/ijmm.2021.5001
Copy and paste a formatted citation
x
Spandidos Publications style
Yan T, Xie Y, He H, Fan W and Huang F: Role of nitric oxide in orthodontic tooth movement (Review). Int J Mol Med 48: 168, 2021.
APA
Yan, T., Xie, Y., He, H., Fan, W., & Huang, F. (2021). Role of nitric oxide in orthodontic tooth movement (Review). International Journal of Molecular Medicine, 48, 168. https://doi.org/10.3892/ijmm.2021.5001
MLA
Yan, T., Xie, Y., He, H., Fan, W., Huang, F."Role of nitric oxide in orthodontic tooth movement (Review)". International Journal of Molecular Medicine 48.3 (2021): 168.
Chicago
Yan, T., Xie, Y., He, H., Fan, W., Huang, F."Role of nitric oxide in orthodontic tooth movement (Review)". International Journal of Molecular Medicine 48, no. 3 (2021): 168. https://doi.org/10.3892/ijmm.2021.5001
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team