|
1
|
Sorimachi H, Imajoh-Ohmi S, Emori Y,
Kawasaki H, Ohno S, Minami Y and Suzuki K: Molecular cloning of a
novel mammalian calcium-dependent protease distinct from both m-
and mu-types. Specific expression of the mRNA in skeletal muscle. J
Biol Chem. 264:20106–20111. 1989. View Article : Google Scholar
|
|
2
|
Ono Y, Ojima K, Shinkai-Ouchi F, Hata S
and Sorimachi H: An eccentric calpain, CAPN3/p94/calpain-3.
Biochimie. 122:169–187. 2016. View Article : Google Scholar
|
|
3
|
Ohno S, Minoshima S, Kudoh J, Fukuyama R,
Shimizu Y, Ohmi-Imajoh S, Shimizu N and Suzuki K: Four genes for
the calpain family locate on four distinct human chromosomes.
Cytogenet Cell Genet. 53:225–229. 1990. View Article : Google Scholar
|
|
4
|
Fougerousse F, Durand M, Suel L, Pourquié
O, Delezoide AL, Romero NB, Abitbol M and Beckmann JS: Expression
of genes (CAPN3, SGCA, SGCB, and TTN) involved in progressive
muscular dystrophies during early human development. Genomics.
48:145–156. 1998. View Article : Google Scholar
|
|
5
|
Fougerousse F, Anderson LV, Delezoide AL,
Suel L, Durand M and Beckmann JS: Calpain3 expression during human
cardiogenesis. Neuromuscul Disord. 10:251–256. 2000. View Article : Google Scholar
|
|
6
|
König N, Raynaud F, Feane H, Durand M,
Mestre-Francès N, Rossel M, Ouali A and Benyamin Y: Calpain 3 is
expressed in astrocytes of rat and Microcebus brain. J Chem
Neuroanat. 25:129–136. 2003. View Article : Google Scholar
|
|
7
|
Marcilhac A, Raynaud F, Clerc I and
Benyamin Y: Detection and localization of calpain 3-like protease
in a neuronal cell line: Possible regulation of apoptotic cell
death through degradation of nuclear IkappaBalpha. Int J Biochem
Cell Biol. 38:2128–2140. 2006. View Article : Google Scholar
|
|
8
|
McCartney CE, Ye Q, Campbell RL and Davies
PL: Insertion sequence 1 from calpain-3 is functional in calpain-2
as an internal propeptide. J Biol Chem. 293:17716–17730. 2018.
View Article : Google Scholar
|
|
9
|
Ye Q, Campbell RL and Davies PL:
Structures of human calpain-3 protease core with and without bound
inhibitor reveal mechanisms of calpain activation. J Biol Chem.
293:4056–4070. 2018. View Article : Google Scholar
|
|
10
|
Imajoh S, Kawasaki H and Suzuki K: The
COOH-terminal E-F hand structure of calcium-activated neutral
protease (CANP) is important for the association of subunits and
resulting proteolytic activity. J Biochem. 101:447–452. 1987.
View Article : Google Scholar
|
|
11
|
Partha SK, Ravulapalli R, Allingham JS,
Campbell RL and Davies PL: Crystal structure of calpain-3
penta-EF-hand (PEF) domain-a homodimerized PEF family member with
calcium bound at the fifth EF-hand. FEBS J. 281:3138–3149. 2014.
View Article : Google Scholar
|
|
12
|
Hata S, Doi N, Shinkai-Ouchi F and Ono Y:
A muscle-specific calpain, CAPN3, forms a homotrimer. Biochim
Biophys Acta Proteins Proteom. 1868:1404112020. View Article : Google Scholar
|
|
13
|
Ma H, Fukiage C, Azuma M and Shearer TR:
Cloning and expression of mRNA for calpain Lp82 from rat lens:
Splice variant of p94. Invest Ophthalmol Vis Sci. 39:454–461.
1998.
|
|
14
|
Ma H, Shih M, Fukiage C, Azuma M, Duncan
MK, Reed NA, Richard I, Beckmann JS and Shearer TR: Influence of
specific regions in Lp82 calpain on protein stability, activity,
and localization within lens. Invest Ophthalmol Vis Sci.
41:4232–4239. 2000.
|
|
15
|
Ma H, Shih M, Hata I, Fukiage C, Azuma M
and Shearer TR: Lp85 calpain is an enzymatically active
rodent-specific isozyme of lens Lp82. Curr Eye Res. 20:183–189.
2000. View Article : Google Scholar
|
|
16
|
Herasse M, Ono Y, Fougerousse F, Kimura E,
Stockholm D, Beley C, Montarras D, Pinset C, Sorimachi H, Suzuki K,
et al: Expression and functional characteristics of calpain 3
isoforms generated through tissue-specific transcriptional and
posttranscriptional events. Mol Cell Biol. 19:4047–4055. 1999.
View Article : Google Scholar
|
|
17
|
Azuma M, Fukiage C, Higashine M, Nakajima
T, Ma H and Shearer TR: Identification and characterization of a
retina-specific calpain (Rt88) from rat. Curr Eye Res. 21:710–720.
2000. View Article : Google Scholar
|
|
18
|
Nakajima T, Fukiage C, Azuma M, Ma H and
Shearer TR: Different expression patterns for ubiquitous calpains
and Capn3 splice variants in monkey ocular tissues. Biochim Biophys
Acta. 1519:55–64. 2001. View Article : Google Scholar
|
|
19
|
Ono Y, Iemura S, Novak SM, Doi N, Kitamura
F, Natsume T, Gregorio CC and Sorimachi H: PLEIAD/SIMC1/C5orf25, a
novel autolysis regulator for a skeletal-muscle-specific calpain,
CAPN3, scaffolds a CAPN3 substrate, CTBP1. J Mol Biol.
425:2955–2972. 2013. View Article : Google Scholar
|
|
20
|
Ermolova N, Kramerova I and Spencer MJ:
Autolytic activation of calpain 3 proteinase is facilitated by
calmodulin protein. J Biol Chem. 290:996–1004. 2015. View Article : Google Scholar
|
|
21
|
Ono Y and Sorimachi H: Calpains: An
elaborate proteolytic system. Biochim Biophys Acta. 1824:224–236.
2012. View Article : Google Scholar
|
|
22
|
Sorimachi H and Kawabata Y: Calpain and
pathology in view of structure-function relationships. Nihon
Yakurigaku Zasshi. 122:21–29. 2003.In Japanese. View Article : Google Scholar
|
|
23
|
Sorimachi H, Toyama-Sorimachi N, Saido TC,
Kawasaki H, Sugita H, Miyasaka M, Arahata K, Ishiura S and Suzuki
K: Muscle-specific calpain, p94, is degraded by autolysis
immediately after translation, resulting in disappearance from
muscle. J Biol Chem. 268:10593–10605. 1993. View Article : Google Scholar
|
|
24
|
Rey MA and Davies PL: The protease core of
the muscle-specific calpain, p94, undergoes Ca2+-dependent
intramolecular autolysis. FEBS Lett. 532:401–406. 2002. View Article : Google Scholar
|
|
25
|
Diaz BG, Moldoveanu T, Kuiper MJ, Campbell
RL and Davies PL: Insertion sequence 1 of muscle-specific calpain,
p94, acts as an internal propeptide. J Biol Chem. 279:27656–27666.
2004. View Article : Google Scholar
|
|
26
|
Fukiage C, Nakajima E, Ma H, Azuma M and
Shearer TR: Characterization and regulation of lens-specific
calpain Lp82. J Biol Chem. 277:20678–20685. 2002. View Article : Google Scholar
|
|
27
|
Ono Y, Torii F, Ojima K, Doi N, Yoshioka
K, Kawabata Y, Labeit D, Labeit S, Suzuki K, Abe K, et al:
Suppressed disassembly of autolyzing p94/CAPN3 by N2A
connectin/titin in a genetic reporter system. J Biol Chem.
281:18519–18531. 2006. View Article : Google Scholar
|
|
28
|
Ono Y, Hayashi C, Doi N, Tagami M and
Sorimachi H: The importance of conserved amino acid residues in p94
protease sub-domain IIb and the IS2 region for constitutive
autolysis. FEBS Lett. 582:691–698. 2008. View Article : Google Scholar
|
|
29
|
Hata S, Doi N, Kitamura F and Sorimachi H:
Stomach-specific calpain, nCL-2/calpain 8, is active without
calpain regulatory subunit and oligomerizes through C2-like
domains. J Biol Chem. 282:27847–27856. 2007. View Article : Google Scholar
|
|
30
|
Parr T, Sensky PL, Scothern GP, Bardsley
RG, Buttery PJ, Wood JD and Warkup C: Relationship between skeletal
muscle-specific calpain and tenderness of conditioned porcine
longissimus muscle. J Anim Sci. 77:661–668. 1999. View Article : Google Scholar
|
|
31
|
Ono Y, Shindo M, Doi N, Kitamura F,
Gregorio CC and Sorimachi H: The N- and C-terminal autolytic
fragments of CAPN3/p94/calpain-3 restore proteolytic activity by
inter- molecular complementation. Proc Natl Acad Sci USA.
111:E5527–E5536. 2014. View Article : Google Scholar
|
|
32
|
Sáenz A, Ono Y, Sorimachi H, Goicoechea M,
Leturcq F, Blázquez L, García-Bragado F, Marina A, Poza JJ,
Azpitarte M, et al: Does the severity of the LGMD2A phenotype in
compound heterozygotes depend on the combination of mutations?
Muscle Nerve. 44:710–714. 2011. View Article : Google Scholar
|
|
33
|
Ojima K, Ono Y, Hata S, Koyama S, Doi N
and Sorimachi H: Possible functions of p94 in connectin-mediated
signaling pathways in skeletal muscle cells. J Muscle Res Cell
Motil. 26:409–417. 2005. View Article : Google Scholar
|
|
34
|
Kramerova I, Torres JA, Eskin A, Nelson SF
and Spencer MJ: Calpain 3 and CaMKIIβ signaling are required to
induce HSP70 necessary for adaptive muscle growth after atrophy.
Hum Mol Genet. 27:1642–1653. 2018. View Article : Google Scholar
|
|
35
|
Murphy RM, Vissing K, Latchman H, Lamboley
C, McKenna MJ, Overgaard K and Lamb GD: Activation of skeletal
muscle calpain-3 by eccentric exercise in humans does not result in
its translocation to the nucleus or cytosol. J Appl Physiol (1985).
111:1448–1458. 2011. View Article : Google Scholar
|
|
36
|
Baghdiguian S, Martin M, Richard I, Pons
F, Astier C, Bourg N, Hay RT, Chemaly R, Halaby G, Loiselet J, et
al: Calpain 3 deficiency is associated with myonuclear apoptosis
and profound perturbation of the IkappaB alpha/NF-kappaB pathway in
limb-girdle muscular dystrophy type 2A. Nat Med. 5:5031999.
View Article : Google Scholar
|
|
37
|
Sorimachi H, Kinbara K, Kimura S,
Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa
K, Maruyama K, et al: Muscle-specific calpain, p94, responsible for
limb girdle muscular dystrophy type 2A, associates with connectin
through IS2, a p94-specific sequence. J Biol Chem. 270:31158–31162.
1995. View Article : Google Scholar
|
|
38
|
Taveau M, Bourg N, Sillon G, Roudaut C,
Bartoli M and Richard I: Calpain 3 is activated through autolysis
within the active site and lyses sarcomeric and sarcolemmal
components. Mol Cell Biol. 23:9127–9135. 2003. View Article : Google Scholar
|
|
39
|
Kramerova I, Kudryashova E, Wu B,
Ottenheijm C, Granzier H and Spencer MJ: Novel role of calpain-3 in
the triad-associated protein complex regulating calcium release in
skeletal muscle. Hum Mol Genet. 17:3271–3280. 2008. View Article : Google Scholar
|
|
40
|
Kramerova I, Ermolova N, Eskin A, Hevener
A, Quehenberger O, Armando AM, Haller R, Romain N, Nelson SF and
Spencer MJ: Failure to up-regulate transcription of genes necessary
for muscle adaptation underlies limb girdle muscular dystrophy 2A
(calpainopathy). Hum Mol Genet. 25:2194–2207. 2016. View Article : Google Scholar
|
|
41
|
Michel LY, Hoenderop JG and Bindels RJ:
Calpain-3-mediated regulation of the Na+-Ca2+
exchanger isoform 3. Pflugers Arch. 468:243–255. 2016. View Article : Google Scholar
|
|
42
|
Beckmann JS and Spencer M: Calpain 3, the
'gatekeeper' of proper sarcomere assembly, turnover and
maintenance. Neuromuscul Disord. 18:913–921. 2008. View Article : Google Scholar
|
|
43
|
de Andrade Rosa I, Corrêa S, Costa ML and
Mermelstein C: The scaffolding protein calpain-3 has multiple
distributions in embryonic chick muscle cells and it is essential
for the formation of muscle fibers. Tissue Cell. 67:1014362020.
View Article : Google Scholar
|
|
44
|
Guyon JR, Kudryashova E, Potts A, Dalkilic
I, Brosius MA, Thompson TG, Beckmann JS, Kunkel LM and Spencer MJ:
Calpain 3 cleaves filamin C and regulates its ability to interact
with gamma- and delta-sarcoglycans. Muscle Nerve. 28:472–483. 2003.
View Article : Google Scholar
|
|
45
|
Kramerova I, Kudryashova E, Wu B and
Spencer MJ: Regulation of the M-cadherin-beta-catenin complex by
calpain 3 during terminal stages of myogenic differentiation. Mol
Cell Biol. 26:8437–8447. 2006. View Article : Google Scholar
|
|
46
|
Stuelsatz P, Pouzoulet F, Lamarre Y,
Dargelos E, Poussard S, Leibovitch S, Cottin P and Veschambre P:
Down-regulation of MyoD by calpain 3 promotes generation of reserve
cells in C2C12 myoblasts. J Biol Chem. 285:12670–12683. 2010.
View Article : Google Scholar
|
|
47
|
Stockholm D, Herasse M, Marchand S, Praud
C, Roudaut C, Richard I, Sebille A and Beckmann JS: Calpain 3 mRNA
expression in mice after denervation and during muscle
regeneration. Am J Physiol Cell Physiol. 280:C1561–C1569. 2001.
View Article : Google Scholar
|
|
48
|
Wu R, Yan Y, Yao J, Liu Y, Zhao J and Liu
M: Calpain 3 expression pattern during gastrocnemius muscle atrophy
and regeneration following sciatic nerve injury in rats. Int J Mol
Sci. 16:26927–26935. 2015. View Article : Google Scholar
|
|
49
|
Cohen N, Kudryashova E, Kramerova I,
Anderson LV, Beckmann JS, Bushby K and Spencer MJ: Identification
of putative in vivo substrates of calpain 3 by comparative
proteomics of overexpressing transgenic and nontransgenic mice.
Proteomics. 6:6075–6084. 2006. View Article : Google Scholar
|
|
50
|
de Morrée A, Lutje Hulsik D, Impagliazzo
A, van Haagen HH, de Galan P, van Remoortere A, 't Hoen PA, van
Ommen GB, Frants RR and van der Maarel SM: Calpain 3 is a
rapid-action, unidirectional proteolytic switch central to muscle
remodeling. PLoS One. 5:e119402010. View Article : Google Scholar
|
|
51
|
Kramerova I, Kudryashova E, Venkatraman G
and Spencer MJ: Calpain 3 participates in sarcomere remodeling by
acting upstream of the ubiquitin-proteasome pathway. Hum Mol Genet.
14:2125–2134. 2005. View Article : Google Scholar
|
|
52
|
Hauerslev S, Sveen ML, Duno M, Angelini C,
Vissing J and Krag TO: Calpain 3 is important for muscle
regeneration: Evidence from patients with limb girdle muscular
dystrophies. BMC Musculoskelet Disord. 13:432012. View Article : Google Scholar
|
|
53
|
Richard I, Roudaut C, Marchand S,
Baghdiguian S, Herasse M, Stockholm D, Ono Y, Suel L, Bourg N,
Sorimachi H, et al: Loss of calpain 3 proteolytic activity leads to
muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear
factor kappaB pathway perturbation in mice. J Cell Biol.
151:1583–1590. 2000. View Article : Google Scholar
|
|
54
|
DeArmond S, Fajardo M, Naughton S and Eng
L: Degradation of glial fibrillary acidic protein by a calcium
dependent proteinase: An electroblot study. Brain Res. 262:275–282.
1983. View Article : Google Scholar
|
|
55
|
Lepekhin EA, Eliasson C, Berthold CH,
Berezin V, Bock E and Pekny M: Intermediate filaments regulate
astrocyte motility. J Neurochem. 79:617–625. 2001. View Article : Google Scholar
|
|
56
|
Alvarez-Buylla A, Seri B and Doetsch F:
Identification of neural stem cells in the adult vertebrate brain.
Brain Res Bull. 57:751–758. 2002. View Article : Google Scholar
|
|
57
|
Schmidt WM, Uddin MH, Dysek S, Moser-Their
K, Pirker C, Höger H, Ambros IM, Ambros PF, Berger W and Bittner
RE: DNA damage, somatic aneuploidy, and malignant sarcoma
susceptibility in muscular dystrophies. PLoS Genet. 7:e10020422011.
View Article : Google Scholar
|
|
58
|
Oliveira Santos M, Ninitas P and Conceição
I: Severe limb-girdle muscular dystrophy 2A in two young siblings
from Guinea-Bissau associated with a novel null homozygous mutation
in CAPN3 gene. Neuromuscul Disord. 28:1003–1005. 2018. View Article : Google Scholar
|
|
59
|
Ono Y, Sorimachi H and Suzuki K: New
aspect of the research on limb-girdle muscular dystrophy 2A: A
molecular biologic and biochemical approach to pathology. Trends
Cardiovasc Med. 9:114–118. 1999. View Article : Google Scholar
|
|
60
|
Richard I, Roudaut C, Saenz A, Pogue R,
Grimbergen JE, Anderson LV, Beley C, Cobo AM, de Diego C, Eymard B,
et al: Calpainopathy-a survey of mutations and polymorphisms. Am J
Hum Genet. 64:1524–1540. 1999. View
Article : Google Scholar
|
|
61
|
Chae J, Minami N, Jin Y, Nakagawa M,
Murayama K, Igarashi F and Nonaka I: Calpain 3 gene mutations:
Genetic and clinico-pathologic findings in limb-girdle muscular
dystrophy. Neuromuscul Disord. 11:547–555. 2001. View Article : Google Scholar
|
|
62
|
Fanin M, Nascimbeni AC, Fulizio L,
Trevisan CP, Meznaric-Petrusa M and Angelini C: Loss of calpain-3
auto- catalytic activity in LGMD2A patients with normal protein
expression. Am J Pathol. 163:1929–1936. 2003. View Article : Google Scholar
|
|
63
|
Peddareddygari LR, Surgan V and Grewal RP:
Limb-girdle muscular dystrophy type 2A resulting from homozygous
G2338C transversion mutation in the calpain-3 gene. J Clin
Neuromuscul Dis. 12:62–65. 2010. View Article : Google Scholar
|
|
64
|
Perez F, Vital A, Martin-Negrier ML,
Ferrer X and Sole G: Diagnostic procedure of limb girdle muscular
dystrophies 2A or calpainopathies: French cohort from a
neuromuscular center (Bordeaux). Rev Neurol (Paris). 166:502–508.
2010.In French. View Article : Google Scholar
|
|
65
|
Fanin M, Fulizio L, Nascimbeni AC,
Spinazzi M, Piluso G, Ventriglia VM, Ruzza G, Siciliano G, Trevisan
CP, Politano L, et al: Molecular diagnosis in LGMD2A: Mutation
analysis or protein testing? Hum Mutat. 24:52–62. 2004. View Article : Google Scholar
|
|
66
|
Fanin M, Nascimbeni AC and Angelini C:
Screening of calpain-3 autolytic activity in LGMD muscle: A
functional map of CAPN3 gene mutations. J Med Genet. 44:38–43.
2007. View Article : Google Scholar
|
|
67
|
Pathak P, Sharma MC, Sarkar C, Jha P, Suri
V, Mohd H, Singh S, Bhatia R and Gulati S: Limb girdle muscular
dystrophy type 2A in India: A study based on semi-quantitative
protein analysis, with clinical and histopathological correlation.
Neurol India. 58:549–554. 2010. View Article : Google Scholar
|
|
68
|
Chrobáková T, Hermanová M, Kroupová I,
Vondrácek P, Maríková T, Mazanec R, Zámecník J, Stanek J, Havlová M
and Fajkusová L: Mutations in Czech LGMD2A patients revealed by
analysis of calpain3 mRNA and their phenotypic outcome. Neuromuscul
Disord. 14:659–665. 2004. View Article : Google Scholar
|
|
69
|
Ermolova N, Kudryashova E, DiFranco M,
Vergara J, Kramerova I and Spencer MJ: Pathogenity of some limb
girdle muscular dystrophy mutations can result from reduced
anchorage to myofibrils and altered stability of calpain 3. Hum Mol
Genet. 20:3331–3345. 2011. View Article : Google Scholar
|
|
70
|
Duguez S, Bartoli M and Richard I: Calpain
3: A key regulator of the sarcomere? FEBS J. 273:3427–3436. 2006.
View Article : Google Scholar
|
|
71
|
Groen EJ, Charlton R, Barresi R, Anderson
LV, Eagle M, Hudson J, Koref MS, Straub V and Bushby KM: Analysis
of the UK diagnostic strategy for limb girdle muscular dystrophy
2A. Brain. 130:3237–3249. 2007. View Article : Google Scholar
|
|
72
|
Chiannilkulchai N, Pasturaud P, Richard I,
Auffray C and Beckmann JS: A primary expression map of the
chromosome 15q15 region containing the recessive form of
limb-girdle muscular dystrophy (LGMD2A) gene. Hum Mol Genet.
4:717–725. 1995. View Article : Google Scholar
|
|
73
|
Ojima K, Kawabata Y, Nakao H, Nakao K, Doi
N, Kitamura F, Ono Y, Hata S, Suzuki H, Kawahara H, et al: Dynamic
distribution of muscle-specific calpain in mice has a key role in
physical-stress adaptation and is impaired in muscular dystrophy. J
Clin Invest. 120:2672–2683. 2010. View Article : Google Scholar
|
|
74
|
Baghdiguian S, Richard I, Martin M,
Coopman P, Beckmann JS, Mangeat P and Lefranc G: Pathophysiology of
limb girdle muscular dystrophy type 2A: Hypothesis and new insights
into the IkappaBalpha/NF-kappaB survival pathway in skeletal
muscle. J Mol Med (Berl). 79:254–261. 2001. View Article : Google Scholar
|
|
75
|
Benayoun B, Baghdiguian S, Lajmanovich A,
Bartoli M, Daniele N, Gicquel E, Bourg N, Raynaud F, Pasquier MA,
Suel L, et al: NF-kappaB-dependent expression of the anti-
apoptotic factor c-FLIP is regulated by calpain 3, the protein
involved in limb-girdle muscular dystrophy type 2A. FASEB J.
22:1521–1529. 2008. View Article : Google Scholar
|
|
76
|
Nilsson MI, Macneil LG, Kitaoka Y, Alqarni
F, Suri R, Akhtar M, Haikalis ME, Dhaliwal P, Saeed M and
Tarnopolsky MA: Redox state and mitochondrial respiratory chain
function in skeletal muscle of LGMD2A patients. PLoS One.
9:e1025492014. View Article : Google Scholar
|
|
77
|
Yalvac ME, Amornvit J, Braganza C, Chen L,
Hussain SA, Shontz KM, Montgomery CL, Flanigan KM, Lewis S and
Sahenk Z: Impaired regeneration in calpain-3 null muscle is
associated with perturbations in mTORC1 signaling and defective
mitochondrial biogenesis. Skelet Muscle. 7:272017. View Article : Google Scholar
|
|
78
|
Gallardo E, Saenz A and Illa I:
Limb-girdle muscular dystrophy 2A. Handb Clin Neurol. 101:97–110.
2011. View Article : Google Scholar
|
|
79
|
Toral-Ojeda I, Aldanondo G, Lasa-Elga r
resta J, Lasa-Fernández H, Fernández-Torrón R, López de Munain A
and Vallejo-Illarramendi A: Calpain 3 deficiency affects SERCA
expression and function in the skeletal muscle. Expert Rev Mol Med.
18:e72016. View Article : Google Scholar
|
|
80
|
Lasa-Elgarresta J, Mosqueira-Martín L,
Naldaiz-Gastesi N, Sáenz A, López de Munain A and
Vallejo-Illarramendi A: Calcium mechanisms in limb-girdle muscular
dystrophy with CAPN3 mutations. Int J Mol Sci. 20:45482019.
View Article : Google Scholar
|
|
81
|
DiFranco M, Kramerova I, Vergara JL and
Spencer MJ: Attenuated Ca(2+) release in a mouse model of limb
girdle muscular dystrophy 2A. Skelet Muscle. 6:112016. View Article : Google Scholar
|
|
82
|
Kramerova I, Kudryashova E, Ermolova N,
Saenz A, Jaka O, López de Munain A and Spencer MJ: Impaired calcium
calmodulin kinase signaling and muscle adaptation response in the
absence of calpain 3. Hum Mol Genet. 21:3193–3204. 2012. View Article : Google Scholar
|
|
83
|
Liu J, Campagna J, John V, Damoiseaux R,
Mokhonova E, Becerra D, Meng H, McNally EM, Pyle AD, Kramerova I
and Spencer MJ: A small-molecule approach to restore A
slow-oxidative phenotype and defective CaMKIIβ signaling in limb
girdle muscular dystrophy. Cell Rep Med. 1:1001222020. View Article : Google Scholar
|
|
84
|
Laure L, Danièle N, Suel L, Marchand S,
Aubert S, Bourg N, Roudaut C, Duguez S, Bartoli M and Richard I: A
new pathway encompassing calpain 3 and its newly identified
substrate cardiac ankyrin repeat protein is involved in the
regulation of the nuclear factor-κB pathway in skeletal muscle.
FEBS J. 277:4322–4337. 2010. View Article : Google Scholar
|
|
85
|
Fanin M, Pegoraro E, Matsuda-Asada C,
Brown RH Jr and Angelini C: Calpain-3 and dysferlin protein
screening in patients with limb-girdle dystrophy and myopathy.
Neurology. 56:660–665. 2001. View Article : Google Scholar
|
|
86
|
Huang Y, de Morrée A, van Remoortere A,
Bushby K, Frants RR, den Dunnen JT and van der Maarel SM: Calpain 3
is a modulator of the dysferlin protein complex in skeletal muscle.
Hum Mol Genet. 17:1855–1866. 2008. View Article : Google Scholar
|
|
87
|
Anderson LV, Harrison RM, Pogue R,
Vafiadaki E, Pollitt C, Davison K, Moss JA, Keers S, Pyle A, Shaw
PJ, et al: Secondary reduction in calpain 3 expression in patients
with limb girdle muscular dystrophy type 2B and Miyoshi myopathy
(primary dysferlinopathies). Neuromuscul Disord. 10:553–559. 2000.
View Article : Google Scholar
|
|
88
|
Haravuori H, Vihola A, Straub V, Auranen
M, Richard I, Marchand S, Voit T, Labeit S, Somer H, Peltonen L, et
al: Secondary calpain3 deficiency in 2q-linked muscular dystrophy:
Titin is the candidate gene. Neurology. 56:869–877. 2001.
View Article : Google Scholar
|
|
89
|
Charton K, Sarparanta J, Vihola A, Milic
A, Jonson PH, Suel L, Luque H, Boumela I, Richard I and Udd B:
CAPN3-mediated processing of C-terminal titin replaced by
pathological cleavage in titinopathy. Hum Mol Genet. 24:3718–3731.
2015. View Article : Google Scholar
|
|
90
|
Charton K, Danièle N, Vihola A, Roudaut C,
Gicquel E, Monjaret F, Tarrade A, Sarparanta J, Udd B and Richard
I: Removal of the calpain 3 protease reverses the myopathology in a
mouse model for titinopathies. Hum Mol Genet. 19:4608–4624. 2010.
View Article : Google Scholar
|
|
91
|
Persiconi I, Cosmi F, Guadagno NA, Lupo G
and De Stefano ME: Dystrophin is required for the proper timing in
retinal histogenesis: A thorough investigation on the mdx mouse
model of duchenne muscular dystrophy. Front Neurosci. 14:7602020.
View Article : Google Scholar
|
|
92
|
Pastorello E, Cao M and Trevisan CP:
Atypical onset in a series of 122 cases with facioscapulohumeral
muscular dystrophy. Clin Neurol Neurosurg. 114:230–234. 2012.
View Article : Google Scholar
|
|
93
|
Sacconi S, Camaño P, de Greef JC, Lemmers
RJ, Salviati L, Boileau P, Lopez de Munain Arregui A, van der
Maarel SM and Desnuelle C: Patients with a phenotype consistent
with facioscapulohumeral muscular dystrophy display genetic and
epigenetic heterogeneity. J Med Genet. 49:41–46. 2012. View Article : Google Scholar
|
|
94
|
Pistoni M, Shiue L, Cline MS, Bortolanza
S, Neguembor MV, Xynos A, Ares M Jr and Gabellini D: Rbfox1
downregulation and altered calpain 3 splicing by FRG1 in a mouse
model of Facioscapulohumeral muscular dystrophy (FSHD). PLoS Genet.
9:e10031862013. View Article : Google Scholar
|
|
95
|
Paco S, Ferrer I, Jou C, Cusí V, Corbera
J, Torner F, Gualandi F, Sabatelli P, Orozco A, Gómez-Foix AM, et
al: Muscle fiber atrophy and regeneration coexist in collagen
VI-deficient human muscle: Role of calpain-3 and nuclear factor-κB
signaling. J Neuropathol Exp Neurol. 71:894–906. 2012. View Article : Google Scholar
|
|
96
|
Krahn M, Lopez de Munain A,
Streichenberger N, Bernard R, Pécheux C, Testard H, Pena-Segura JL,
Yoldi E, Cabello A, Romero NB, et al: CAPN3 mutations in patients
with idiopathic eosinophilic myositis. Ann Neurol. 59:905–911.
2006. View Article : Google Scholar
|
|
97
|
Parker KC, Kong SW, Walsh RJ, Bch
Salajegheh M, Moghadaszadeh B, Amato AA, Nazareno R, Lin YY,
Krastins B, et al Fast-twitch sarcomeric and glycolytic enzyme
protein loss in inclusion body myositis. Muscle Nerve. 39:739–753.
2009. View Article : Google Scholar
|
|
98
|
Amici DR, Pinal-Fernandez I, Mázala DA,
Lloyd TE, Corse AM, Christopher-Stine L, Mammen AL and Chin ER:
Calcium dysregulation, functional calpainopathy, and endoplasmic
reticulum stress in sporadic inclusion body myositis. Acta
Neuropathol Commun. 5:242017. View Article : Google Scholar
|
|
99
|
Musumeci O, Aguennouz M, Cagliani R, Comi
GP, Ciranni A, Rodolico C, Messina C, Vita G and Toscano A: Calpain
3 deficiency in Quail Eater's disease. Ann Neurol. 55:146–147.
2004. View Article : Google Scholar
|
|
100
|
Kruijt N, van den Bersselaar LR, Kamsteeg
EJ, Verbeeck W, Snoeck MMJ, Everaerd DS, Abdo WF, Jansen DRM,
Erasmus CE, Jungbluth H and Voermans NC: The etiology of
rhabdomyolysis: An interaction between genetic susceptibility and
external triggers. Eur J Neurol. 28:647–659. 2021. View Article : Google Scholar
|
|
101
|
Weeraratna AT, Becker D, Carr KM, Duray
PH, Rosenblatt KP, Yang S, Chen Y, Bittner M, Strausberg RL,
Riggins GJ, et al: Generation and analysis of melanoma SAGE
libraries: SAGE advice on the melanoma transcriptome. Oncogene.
23:2264–2274. 2004. View Article : Google Scholar
|
|
102
|
Huynh KM, Kim G, Kim DJ, Yang SJ, Park SM,
Yeom YI, Fisher PB and Kang D: Gene expression analysis of terminal
differentiation of human melanoma cells highlights global
reductions in cell cycle-associated genes. Gene. 433:32–39. 2009.
View Article : Google Scholar
|
|
103
|
Moretti D, Del Bello B, Cosci E, Biagioli
M, Miracco C and Maellaro E: Novel variants of muscle calpain 3
identified in human melanoma cells: Cisplatin-induced changes in
vitro and differential expression in melanocytic lesions.
Carcinogenesis. 30:960–967. 2009. View Article : Google Scholar
|
|
104
|
Moretti D, Del Bello B, Allavena G, Corti
A, Signorini C and Maellaro E: Calpain-3 impairs cell proliferation
and stimulates oxidative stress-mediated cell death in melanoma
cells. PLoS One. 10:e01172582015. View Article : Google Scholar
|
|
105
|
Rambow F, Job B, Petit V, Gesbert F,
Delmas V, Seberg H, Meurice G, Van Otterloo E, Dessen P, Robert C,
et al: New functional signatures for understanding melanoma biology
from tumor cell lineage-specific analysis. Cell Rep. 13:840–853.
2015. View Article : Google Scholar
|
|
106
|
Ruffini F, Tentori L, Dorio AS, Arcelli D,
D'Amati G, D'Atri S, Graziani G and Lacal PM: Platelet-derived
growth factor C and calpain-3 are modulators of human melanoma cell
invasiveness. Oncol Rep. 30:2887–2896. 2013. View Article : Google Scholar
|
|
107
|
Pizzanelli C, Mancuso M, Galli R, Choub A,
Fanin M, Nascimbeni AC, Siciliano G and Murri L: Epilepsy and limb
girdle muscular dystrophy type 2A: Double trouble, serendipitous
finding or new phenotype? Neurol Sci. 27:134–136. 2006. View Article : Google Scholar
|
|
108
|
Viloria-Alebesque A, Bellosta-Diago E,
Santos-Lasaosa S and Mauri-Llerda JÁ: Familial association of
genetic generalised epilepsy with limb-girdle muscular dystrophy
through a mutation in CAPN3. Epilepsy Behav Case Rep. 11:122–124.
2019. View Article : Google Scholar
|
|
109
|
Sanchez-Mut JV, Aso E, Panayotis N, Lott
I, Dierssen M, Rabano A, Urdinguio RG, Fernandez AF, Astudillo A,
Martin-Subero JI, et al: DNA methylation map of mouse and human
brain identifies target genes in Alzheimer's disease. Brain.
136:3018–3027. 2013. View Article : Google Scholar
|
|
110
|
De Jager P, Srivastava G, Lunnon K,
Burgess J, Schalkwyk LC, Yu L, Eaton ML, Keenan BT, Ernst J, McCabe
C, et al: Alzheimer's disease: Early alterations in brain DNA
methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci.
17:1156–1163. 2014. View Article : Google Scholar
|
|
111
|
Ma D, Fetahu IS, Wang M, Fang R, Li J, Liu
H, Gramyk T, Iwanicki I, Gu S, Xu W, et al: The fusiform gyrus
exhibits an epigenetic signature for Alzheimer's disease. Clin
Epigenetics. 12:1292020. View Article : Google Scholar
|
|
112
|
Walder K, McMillan J, Lapsys N, Kriketos
A, Trevaskis J, Civitarese A, Southon A, Zimmet P and Collier G:
Calpain 3 gene expression in skeletal muscle is associated with
body fat content and measures of insulin resistance. Int J Obes
Relat Metab Disord. 26:442–449. 2002. View Article : Google Scholar
|
|
113
|
Norton L, Parr T, Bardsley RG, Ye H and
Tsintzas K: Characterization of GLUT4 and calpain expression in
healthy human skeletal muscle during fasting and refeeding. Acta
Physiol (Oxf). 189:233–240. 2007. View Article : Google Scholar
|
|
114
|
Varga TV, Kurbasic A, Aine M, Eriksson P,
Ali A, Hindy G, Gustafsson S, Luan J, Shungin D, Chen Y, et al:
Novel genetic loci associated with long-term deterioration in blood
lipid concentrations and coronary artery disease in European
adults. Int J Epidemiol. 46:1211–1222. 2017.
|
|
115
|
Guo T, Yin RX, Pan L, Yang S, Miao L and
Huang F: Integrative variants, haplotypes and diplotypes of the
CAPN3 and FRMD5 genes and several environmental exposures associate
with serum lipid variables. Sci Rep. 7:451192017. View Article : Google Scholar
|
|
116
|
Salinas-Santander M, Trevino V, De la
Rosa-Moreno E, Verduzco-Garza B, Sánchez-Domínguez CN,
Cantú-Salinas C, Ocampo-Garza J, Lagos-Rodríguez A, Ocampo-Candiani
J and Ortiz-López R: CAPN3, DCT, MLANA and TYRP1 are overexpressed
in skin of vitiligo vulgaris Mexican patients. Exp Ther Med.
15:2804–2811. 2018.
|
|
117
|
Tang Y, Liu X, Zoltoski RK, Novak LA,
Herrera RA, Richard I, Kuszak JR and Kumar NM: Age-related
cataracts in alpha3Cx46-knockout mice are dependent on a calpain 3
isoform. Invest Ophthalmol Vis Sci. 48:2685–2694. 2007. View Article : Google Scholar
|
|
118
|
Bartoli M, Roudaut C, Martin S,
Fougerousse F, Suel L, Poupiot J, Gicquel E, Noulet F, Danos O and
Richard I: Safety and efficacy of AAV-mediated calpain 3 gene
transfer in a mouse model of limb-girdle muscular dystrophy type
2A. Mol Ther. 13:250–259. 2006. View Article : Google Scholar
|
|
119
|
Selvaraj S, Dhoke NR, Kiley J,
Mateos-Aierdi AJ, Tungtur S, Mondragon-Gonzalez R, Killeen G,
Oliveira VKP, López de Munain A and Perlingeiro RCR: Gene
correction of LGMD2A patient-specific iPSCs for the development of
targeted autologous cell therapy. Mol Ther. 27:2147–2157. 2019.
View Article : Google Scholar
|