Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2022 Volume 49 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2022 Volume 49 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice

  • Authors:
    • Xiao Han
    • Chang Peng
    • Lixin Huang
    • Xiaomei Luo
    • Qian Mao
    • Shuqi Wu
    • Huanting Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
    Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 11
    |
    Published online on: November 26, 2021
       https://doi.org/10.3892/ijmm.2021.5066
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myocardial remodeling is a complex pathological process and its mechanism is unclear. The present study investigated whether epigallocatechin gallate (EGCG) prevents myocardial remodeling by regulating histone acetylation and explored the mechanisms underlying this effect in the heart of a mouse model of transverse aortic constriction (TAC). A TAC mouse model was created by partial thoracic aortic banding (TAB). Subsequently, TAC mice were injected with EGCG at a dose of 50 mg/kg/day for 12 weeks. The hearts of mice were collected for analysis 4, 8 and 12 weeks after TAC. Histopathological changes in the heart were observed by hematoxylin and eosin, Masson trichrome and wheat germ agglutinin staining. Protein expression levels were investigated using western blotting. Cardiac function of mice was detected by echocardiography. The level of histone acetylated lysine 27 on histone H3 (H3K27ac) first increased and then decreased in the hearts of mice at 4, 8 and 12 weeks after TAC. The expression levels of two genes associated with pathological myocardial remodeling, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), also increased initially but then decreased. The expression levels of histone deacetylase 5 (HDAC5) gradually increased in the hearts of mice at 4, 8 and 12 weeks after TAC. Furthermore, EGCG increased acetylation of H3K27ac by inhibiting HDAC5 in the heart of TAC mice treated with EGCG for 12 weeks. EGCG normalized the transcriptional activity of heart nuclear transcription factor myocyte enhancer factor 2A in TAC mice treated for 12 weeks. The low expression levels of myocardial remodeling‑associated genes (ANP and BNP) were reversed by EGCG treatment for 12 weeks in TAC mice. In addition, EGCG reversed cardiac enlargement and improved cardiac function and survival in TAC mice when treated with EGCG for 12 weeks. Modification of the HDAC5‑mediated imbalance in histone H3K27ac served a key role in pathological myocardial remodeling. The present results show that EGCG prevented and delayed myocardial remodeling in TAC mice by inhibiting HDAC5.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Khan N and Mukhtar H: Tea polyphenols in promotion of human health. Nutrients. 11:392018. View Article : Google Scholar

2 

Zhao L, Cheng G, Choksi K, Samanta A, Girgis M, Soder R, Vincent RJ, Wulser M, De Ruyter M, McEnulty P, et al: Transplantation of human umbilical cord blood-derived cellular fraction improves left ventricular function and remodeling after myocardial ischemia/reperfusion. Circ Res. 125:759–772. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Grobe JL, Der Sarkissian S, Stewart JM, Meszaros JG, Raizada MK and Katovich MJ: ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. Clin Sci (Lond). 113:357–364. 2007. View Article : Google Scholar

4 

Li Y, Du W, Zhao R, Hu J, Li H, Han R, Yue Q, Wu R, Li W and Zhao J: New insights into epigenetic modifications in heart failure. Front Biosci (Landmark Ed). 22:230–247. 2017. View Article : Google Scholar

5 

Kim JK, Samaranayake M and Pradhan S: Epigenetic mechanisms in mammals. Cell Mol Life Sci. 66:596–612. 2009. View Article : Google Scholar :

6 

Ghosh AK, Rai R, Flevaris P and Vaughan DE: Epigenetics in reactive and reparative cardiac fibrogenesis: The promise of epigenetic therapy. J Cell Physiol. 232:1941–1956. 2017. View Article : Google Scholar

7 

Segers VFM, Gevaert AB, Boen JRA, Van Craenenbroeck EM and De Keulenaer GW: Epigenetic regulation of intercellular communication in the heart. Am J Physiol Heart Circ Physiol. 316:H1417–H1425. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Li S, Peng B, Luo X, Sun H and Peng C: Anacardic acid attenuates pressure-overload cardiac hypertrophy through inhibiting histone acetylases. J Cell Mol Med. 23:2744–2752. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Peng C, Zhang W, Zhao W, Zhu J, Huang X and Tian J: Alcohol-induced histone H3K9 hyperacetylation and cardiac hypertrophy are reversed by a histone acetylases inhibitor anacardic acid in developing murine hearts. Biochimie. 113:1–9. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Peng C, Luo X, Li S and Sun H: Phenylephrine-induced cardiac hypertrophy is attenuated by a histone acetylase inhibitor anacardic acid in mice. Mol Biosyst. 13:714–724. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Ooi JY, Tuano NK, Rafehi H, Gao XM, Ziemann M, Du XJ and El-Osta A: HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics. 10:418–430. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, et al: Role of SIRT1 in modulating acetylation of the sarco-endoplasmic reticulum Ca2+-ATPase in heart failure. Circ Res. 124:pp. e63–e80. 2019, View Article : Google Scholar :

13 

Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J and Cai L: Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev. 2014.641979:2014.

14 

Yang M, Zhang Y and Ren J: Acetylation in cardiovascular diseases: Molecular mechanisms and clinical implications. Biochim Biophys Acta Mol Basis Dis. 1866(165836): 2020

15 

Steinmann J, Buer J, Pietschmann T and Steinmann E: Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol. 168:1059–1073. 2013. View Article : Google Scholar :

16 

Yang CS, Landau JM, Huang MT and Newmark HL: Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr. 21:381–406. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Khurana S, Venkataraman K, Hollingsworth A, Piche M and Tai TC: Polyphenols: Benefits to the cardiovascular system in health and in aging. Nutrients. 5:3779–3827. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Li K, Teng C and Min Q: Advanced nanovehicles-enabled delivery systems of epigallocatechin gallate for cancer therapy. Front Chem. 8(573297): 2020

19 

Hu Y, McIntosh GH, Le Leu RK, Somashekar R, Meng XQ, Gopalsamy G, Bambaca L, McKinnon RA and Young GP: Supplementation with Brazil nuts and green tea extract regulates targeted biomarkers related to colorectal cancer risk in humans. Br J Nutr. 116:1901–1911. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Evans LW, Athukorala M, Martinez-Guryn K and Ferguson BS: The role of histone acetylation and the microbiome in phytochemical efficacy for cardiovascular diseases. Int J Mol Sci. 21(4006): 2020

21 

Gregoretti IV, Lee YM and Goodson HV: Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol. 338:17–31. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Zhang L, Deng M, Lu A, Chen Y, Chen Y, Wu C, Tan Z, Boini KM, Yang T, Zhu Q and Wang L: Sodium butyrate attenuates angiotensin II-induced cardiac hypertrophy by inhibiting COX2/PGE2 pathway via a HDAC5/HDAC6-dependent mechanism. J Cell Mol Med. 23:8139–8150. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Chandrasekaran S, Peterson RE, Mani SK, Addy B, Buchholz AL, Xu L, Thiyagarajan T, Kasiganesan H, Kern CB and Menick DR: Histone deacetylases facilitate sodium/calcium exchanger up-regulation in adult cardiomyocytes. FASEB J. 23:3851–3864. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Melleby AO, Romaine A, Aronsen JM, Veras I, Zhang L, Sjaastad I, Lunde IG and Christensen G: A novel method for high precision aortic constriction that allows for generation of specific cardiac phenotypes in mice. Cardiovasc Res. 114:1680–1690. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Riehle C and Bauersachs J: Small animal models of heart failure. Cardiovasc Res. 115:1838–1849. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Mecklenburg J, Patil MJ, Koek W and Akopian AN: Effects of local and spinal administrations of mu-opioids on postoperative pain in aged versus adult mice. Pain Rep. 2:pp. e5842017, View Article : Google Scholar : PubMed/NCBI

27 

Zaw AM, Williams CM, Law HK and Chow BK: Minimally invasive transverse aortic constriction in mice. J Vis Exp:. 55293:2017.

28 

Zhao Y, Wang C, Hong X, Miao J, Liao Y, Hou FF, Zhou L and Liu Y: Wnt/β-catenin signaling mediates both heart and kidney injury in type 2 cardiorenal syndrome. Kidney Int. 95:815–829. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

30 

Liu L, Zhao W, Liu J, Gan Y, Liu L and Tian J: Epigallocatechin-3 gallate prevents pressure overload-induced heart failure by up-regulating SERCA2a via histone acetylation modification in mice. PLoS One. 13:pp. e02051232018, View Article : Google Scholar : PubMed/NCBI

31 

Pan B, Quan J, Liu L, Xu Z, Zhu J, Huang X and Tian J: Epigallocatechin gallate reverses cTnI-low expression-induced age-related heart diastolic dysfunction through histone acetylation modification. J Cell Mol Med. 21:2481–2490. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Uriel N, Sayer G, Annamalai S, Kapur NK and Burkhoff D: Mechanical unloading in heart failure. J Am Coll Cardiol. 72:569–580. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Bouwens E, Brankovic M, Mouthaan H, Baart S, Rizopoulos D, van Boven N, Caliskan K, Manintveld O, Germans T, van Ramshorst J, et al: Temporal patterns of 14 blood biomarker candidates of cardiac remodeling in relation to prognosis of patients with chronic heart failure-the Bio-SH i FT study. J Am Heart Assoc. 8:pp. e0095552019, View Article : Google Scholar

34 

Zhou X, Ferrara F, Contaldi C and Bossone E: Right ventricular size and function in chronic heart failure: Not to be forgotten. Heart Fail Clin. 15:205–217. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Sabia C, Picascia A, Grimaldi V, Amarelli C, Maiello C and Napoli C: The epigenetic promise to improve prognosis of heart failure and heart transplantation. Transplant Rev (Orlando). 31:249–256. 2017. View Article : Google Scholar

36 

Barnes CE, English DM and Cowley SM: Acetylation & Co: An expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem. 63:97–107. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Wu X, Pan B, Liu L, Zhao W, Zhu J, Huang X and Tian J: In utero exposure to PM2.5 during gestation caused adult cardiac hypertrophy through histone acetylation modification. J Cell Biochem. 120:4375–4384. 2019. View Article : Google Scholar

38 

Chen K, Jian D, Zhao L, Zang X, Song W, Ma J, Jia Z, Wang X and Gao C: Protective effect of histone methyltransferase NSD3 on ISO-induced cardiac hypertrophy. FEBS Lett. 593:2556–2565. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Xu WP, Yao TQ, Jiang YB, Zhang MZ, Wang YP, Yu Y, Li JX and Li YG: Effect of the angiotensin II receptor blocker valsartan on cardiac hypertrophy and myocardial histone deacetylase expression in rats with aortic constriction. Exp Ther Med. 9:2225–2228. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Parra M: Class IIa HDACs-new insights into their functions in physiology and pathology. FEBS J. 282:1736–1744. 2015. View Article : Google Scholar

41 

Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN and McKinsey TA: Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol. 24:8374–8385. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Luo Y, Xu Y, Liang C, Xing W and Zhang T: The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin. Cell Signal. 43:11–20. 2018. View Article : Google Scholar

43 

Gaggin HK and Januzzi JL Jr: Biomarkers and diagnostics in heart failure. Biochim Biophys Acta. 1832.2442–2450. 2013.

44 

Scholz B, Schulte JS, Hamer S, Himmler K, Pluteanu F, Seidl MD, Stein J, Wardelmann E, Hammer E, Völker U and Müller FU: HDAC (histone deacetylase) inhibitor valproic acid attenuates atrial remodeling and delays the onset of atrial fibrillation in mice. Circ Arrhythm Electrophysiol. 12:pp. e0070712019, View Article : Google Scholar : PubMed/NCBI

45 

Zou G, Zhong W, Wu F, Wang X and Liu L: Catalpol attenuates cardiomyocyte apoptosis in diabetic cardiomyopathy via Neat1/miR-140-5p/HDAC4 axis. Biochimie. 165:90–99. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Yoon S, Kim M, Min HK, Lee YU, Kwon DH, Lee M, Lee S, Kook T, Joung H, Nam KI, et al: Inhibition of heat shock protein 70 blocks the development of cardiac hypertrophy by modulating the phosphorylation of histone deacetylase 2. Cardiovasc Res. 115:1850–1860. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Lee E, Lee HA, Kim M, Do GY, Cho HM, Kim GJ, Jung H, Song JH, Cho JM and Kim I: Upregulation of C/EBPβ and TSC2 by an HDAC inhibitor CG200745 protects heart from DOCA-induced hypertrophy. Clin Exp Pharmacol Physiol. 46:226–236. 2019. View Article : Google Scholar

48 

Zhao W, Hu W, Wang X, Xia N, Hu Q and Zhou H: A traditional Chinese medicine, Lujiao prescription, as a potential therapy for hypertrophic cardiomyocytes by acting on histone acetylation. J Chin Med Assoc. 78:486–493. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Habibian J and Ferguson BS: The crosstalk between acetylation and phosphorylation: Emerging new roles for hDAC inhibitors in the heart. Int J Mol Sci. 20:1022018. View Article : Google Scholar

50 

Wallner M, Eaton DM, Berretta RM, Liesinger L, Schittmayer M, Gindlhuber J, Wu J, Jeong MY, Lin YH, Borghetti G, et al: HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci Transl Med. 12:pp. eaay72052020, View Article : Google Scholar : PubMed/NCBI

51 

Jung H, Lee E, Kim I, Song JH and Kim GJ: Histone deacetylase inhibition has cardiac and vascular protective effects in rats with pressure overload cardiac hypertrophy. Physiol Res. 68:727–737. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Yan H, Yi S, Zhuang H, Wu L, Wang DW and Jiang J: Sphingosine-1-phosphate ameliorates the cardiac hypertrophic response through inhibiting the activity of histone deacetylase-2. Int J Mol Med. 41:1704–1714. 2018.

53 

Bagchi RA and Weeks KL: Histone deacetylases in cardiovascular and metabolic diseases. J Mol Cell Cardiol. 130:151–159. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Kim DJ, Dunleavey JM, Xiao L, Ollila DW, Troester MA, Otey CA, Li W, Barker TH and Dudley AC: Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition. Br J Cancer. 118:1359–1368. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Hu T, Schreiter FC, Bagchi RA, Tatman PD, Hannink M and McKinsey TA: HDAC5 catalytic activity suppresses cardiomyocyte oxidative stress and NRF2 target gene expression. J Biol Chem. 294:8640–8652. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Eng QY, Thanikachalam PV and Ramamurthy S: Molecular understanding of epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol. 210:296–310. 2018. View Article : Google Scholar

57 

Papadaki M, Vikhorev PG, Marston SB and Messer AE: Uncoupling of myofilament Ca2+ sensitivity from troponin I phosphorylation by mutations can be reversed by epigallocatechin-3-gallate. Cardiovasc Res. 108:99–110. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Oliveira MR, Nabavi SF, Daglia M, Rastrelli L and Nabavi SM: Epigallocatechin gallate and mitochondria-a story of life and death. Pharmacol Res. 104:70–85. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Isbrucker RA, Edwards JA, Wolz E, Davidovich A and Bausch J: Safety studies on epigallocatechin gallate (EGCG) preparations. Part 3: Teratogenicity and reproductive toxicity studies in rats. Food Chem Toxicol. 44:651–661. 2006. View Article : Google Scholar : PubMed/NCBI

60 

Afzal M, Safer AM and Menon M: Green tea polyphenols and their potential role in health and disease. Inflammopharmacology. 23:151–161. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Qin S, Chen MH, Fang W, Tan XF, Xie L, Yang YG, Qin T and Li N: Cerebral protection of epigallocatechin gallate (EGCG) via preservation of mitochondrial function and ERK inhibition in a rat resuscitation model. Drug Des Devel Ther. 13:2759–2768. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Hertog MG, Feskens EJ, Hollman PC, Katan MB and Kromhout D: Dietary antioxidant flavonoids and risk of coronary heart disease: The zutphen elderly study. Lancet. 342:1007–1011. 1993. View Article : Google Scholar : PubMed/NCBI

63 

Nakachi K, Matsuyama S, Miyake S, Suganuma M and Imai K: Preventive effects of drinking green tea on cancer and cardiovascular disease: Epidemiological evidence for multiple targeting prevention. Biofactors. 13:49–54. 2000. View Article : Google Scholar

64 

Potenza MA, Iacobazzi D, Sgarra L and Montagnani M: The intrinsic virtues of EGCG, an extremely good cell guardian, on prevention and treatment of diabesity complications. Molecules. 25(3061): 2020

65 

Yang L and Zhang W, Chopra S, Kaur D, Wang H, Li M, Chen P and Zhang W: The epigenetic modification of epigallocatechin gallate (EGCG) on cancer. Curr Drug Targets. 21:1099–1104. 2020PubMed/NCBI

66 

Sheng J, Shi W, Guo H, Long W, Wang Y, Qi J, Liu J and Xu Y: The inhibitory effect of (-)-epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Molecules. 24:28992019. View Article : Google Scholar

67 

Oyama JI, Shiraki A, Nishikido T, Maeda T, Komoda H, Shimizu T, Makino N and Node K: EGCG, a green tea catechin, attenuates the progression of heart failure induced by the heart/muscle-specific deletion of MnSOD in mice. J Cardiol. 69:417–427. 2017. View Article : Google Scholar

68 

Muhammed I, Sankar S and Govindaraj S: Ameliorative effect of epigallocatechin gallate on cardiac hypertrophy and fibrosis in aged rats. J Cardiovasc Pharmacol. 71:65–75. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Li C, Sun XN, Chen BY, Zeng MR, Du LJ, Liu T, Gu HH, Liu Y, Li YL, Zhou LJ, et al: Nuclear receptor corepressor 1 represses cardiac hypertrophy. EMBO Mol Med. 11:pp. e91272019, View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Han X, Peng C, Huang L, Luo X, Mao Q, Wu S and Zhang H: EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice. Int J Mol Med 49: 11, 2022.
APA
Han, X., Peng, C., Huang, L., Luo, X., Mao, Q., Wu, S., & Zhang, H. (2022). EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice. International Journal of Molecular Medicine, 49, 11. https://doi.org/10.3892/ijmm.2021.5066
MLA
Han, X., Peng, C., Huang, L., Luo, X., Mao, Q., Wu, S., Zhang, H."EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice". International Journal of Molecular Medicine 49.1 (2022): 11.
Chicago
Han, X., Peng, C., Huang, L., Luo, X., Mao, Q., Wu, S., Zhang, H."EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice". International Journal of Molecular Medicine 49, no. 1 (2022): 11. https://doi.org/10.3892/ijmm.2021.5066
Copy and paste a formatted citation
x
Spandidos Publications style
Han X, Peng C, Huang L, Luo X, Mao Q, Wu S and Zhang H: EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice. Int J Mol Med 49: 11, 2022.
APA
Han, X., Peng, C., Huang, L., Luo, X., Mao, Q., Wu, S., & Zhang, H. (2022). EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice. International Journal of Molecular Medicine, 49, 11. https://doi.org/10.3892/ijmm.2021.5066
MLA
Han, X., Peng, C., Huang, L., Luo, X., Mao, Q., Wu, S., Zhang, H."EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice". International Journal of Molecular Medicine 49.1 (2022): 11.
Chicago
Han, X., Peng, C., Huang, L., Luo, X., Mao, Q., Wu, S., Zhang, H."EGCG prevents pressure overload‑induced myocardial remodeling by downregulating overexpression of HDAC5 in mice". International Journal of Molecular Medicine 49, no. 1 (2022): 11. https://doi.org/10.3892/ijmm.2021.5066
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team