Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2022 Volume 49 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 49 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter

  • Authors:
    • Jing Zhang
    • Yunna Yang
    • Yipeng Dong
    • Cang Liu
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China, Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100053, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 16
    |
    Published online on: December 8, 2021
       https://doi.org/10.3892/ijmm.2021.5071
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioma is a common malignant tumor of the central nervous system with high incidence and mortality. The present study aimed to investigate the role of Microrchidia family CW‑type zinc finger 2 (MORC2) in the development of glioma. Firstly, MORC2 expression was detected in several glioma cell lines (U251, SHG44, LN229 and T98G). Following MORC2 silencing, cell proliferation was evaluated using the Cell Counting Kit‑8 assay and the expression of proliferation‑related proteins was assessed via immunofluorescence staining or western blotting. Cell invasion and migration were assessed using transwell and wound healing assays, respectively. Western blotting and immunofluorescence staining were employed to determine the expression of epithelial‑mesenchymal transition (EMT)‑associated proteins. The protein expression of N‑myc downstream regulated gene 1 (NDRG1) and PTEN/PI3K/AKT signaling was determined with western blot analysis. Then, the luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were employed to evaluate the binding between MORC2 and NDRG1 promoter. Subsequently, cellular functional experiments were performed to assess the effects of NDRG1 on the progression of glioma after NDRG1 and MORC2 overexpression. In addition, tumor‑bearing experiments were conducted using a U251 tumor‑bearing nude mice model to detect tumor growth. The expression of proliferation (proliferating cell nuclear antigen, cyclin‑dependent kinase 2 and cyclin E1), migration [matrix metalloproteinase (MMP)2 and MMP9], EMT (E‑cadherin, N‑cadherin and Vimentin) and PTEN/PI3K/AKT signaling proteins in tumor tissues was examined with immunohistochemistry assay or western blotting. Results revealed that MORC2 was notably unregulated in glioma cells compared with the normal human astrocyte. Loss‑function of MORC2 inhibited the proliferation, invasion, migration and EMT of glioma cells. Importantly, MORC2 silencing upregulated NDRG1 expression and inactivated PTEN/PI3K/AKT signaling. Additionally, the luciferase reporter‑ and ChIP assays confirmed that MORC2 could bind to the NDRG1 promoter. NDRG1 upregulation suppressed the progression of glioma and these effects were partially reversed by MORC2 overexpression. Results of tumor‑bearing experiments suggested that gain‑function of NDRG1 inhibited tumor growth and downregulated the expression of proliferation, migration and EMT‑related proteins in tumorous tissue in U251 tumor‑bearing mice, which was partially counteracted after MORC2 overexpression. In addition, MORC2 overexpression abrogated the inhibitory effect of NDRG1 on PTEN/PI3K/AKT signaling. In summary, MORC2 promoted the progression of glioma by inactivation of PTEN/PI3K/AKT signaling via binding to NDRG1 promoter, providing a novel and potent target for the treatment of glioma.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

View References

1 

Wen PY and Reardon DA: Neuro-oncology in 2015: Progress in glioma diagnosis, classification and treatment. Nat Rev Neurol. 12:69–70. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Ostrom QT, Cote DJ, Ascha M, Kruchko C and Barnholtz-Sloan JS: Adult glioma incidence and survival by race or ethnicity in the United States from 2000 to 2014. JAMA Oncol. 4:1254–1262. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Johnson DR and Galanis E: Incorporation of prognostic and predictive factors into glioma clinical trials. Curr Oncol Rep. 15:56–63. 2013. View Article : Google Scholar

4 

Molinaro AM, Taylor JW, Wiencke JK and Wrensch MR: Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol. 15:405–417. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Li DQ, Nair SS, Ohshiro K, Kumar A, Nair VS, Pakala SB, Reddy SD, Gajula RP, Eswaran J, Aravind L and Kumar R: MORC2 signaling integrates phosphorylation-dependent, ATPase-coupled chromatin remodeling during the DNA damage response. Cell Rep. 2:1657–1669. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Ding QS, Zhang L, Wang BC, Zeng Z, Zou XQ, Cao PB, Zhou GM, Tang M, Wu L, Wu LL, et al: Aberrant high expression level of MORC2 is a common character in multiple cancers. Hum Pathol. 76:58–67. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Liu J, Shao Y, He Y, Ning K, Cui X, Liu F, Wang Z and Li F: MORC2 promotes development of an aggressive colorectal cancer phenotype through inhibition of NDRG1. Cancer Sci. 110:135–146. 2019. View Article : Google Scholar :

8 

Sahni S, Krishan S and Richardson DR: NDRG1 as a molecular target to inhibit the epithelial-mesenchymal transition: The case for developing inhibitors of metastasis. Future Med Chem. 6:1241–1244. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Liao G, Liu X, Wu D, Duan F, Xie X, Wen S, Li Y and Li S: MORC2 promotes cell growth and metastasis in human cholangiocarcinoma and is negatively regulated by miR-186-5p. Aging (Albany NY). 11:3639–3649. 2019. View Article : Google Scholar

10 

Kovacevic Z, Chikhani S, Lui GY, Sivagurunathan S and Richardson DR: The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and ras signaling pathways. Antioxid Redox Signal. 18:874–887. 2013. View Article : Google Scholar

11 

Guo LP, Zhang ZJ, Li RT, Li HY and Cui YQ: Influences of LncRNA SNHG20 on proliferation and apoptosis of glioma cells through regulating the PTEN/PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci. 23:253–261. 2019.PubMed/NCBI

12 

Chai C, Song LJ, Han SY, Li XQ and Li M: MicroRNA-21 promotes glioma cell proliferation and inhibits senescence and apoptosis by targeting SPRY1 via the PTEN/PI3K/AKT signaling pathway. CNS Neurosci Ther. 24:369–380. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

14 

Bi L, Liu Y, Yang Q, Zhou X, Li H, Liu Y, Li J, Lu Y and Tang H: Paris saponin H inhibits the proliferation of glioma cells through the A1 and A3 adenosine receptormediated pathway. Int J Mol Med. 47:302021. View Article : Google Scholar

15 

Zhang Q, Xu B, Hu F, Chen X, Liu X, Zhang Q and Zuo Y: Tenascin C promotes glioma cell malignant behavior and inhibits chemosensitivity to paclitaxel via activation of the PI3K/AKT signaling pathway. J Mol Neurosc. 71:1636–1647. 2021. View Article : Google Scholar

16 

Wang X and Zhu Y: Circ_0000020 elevates the expression of PIK3CA and facilitates the malignant phenotypes of glioma cells via targeting miR-142-5p. Cancer Cell Int. 21:792021. View Article : Google Scholar : PubMed/NCBI

17 

Li B, Wang F, Liu N, Shen W and Huang T: Astragaloside IV inhibits progression of glioma via blocking MAPK/ERK signaling pathway. Biochem Biophys Res Commun. 491:98–103. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Wang J, Quan Y, Lv J, Dong Q and Gong S: LncRNA IDH1-AS1 suppresses cell proliferation and tumor growth in glioma. Biochem Cell Biol. 98:556–564. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelialmesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

20 

Gao Y, Zheng H, Li L, Zhou C, Chen X, Zhou X and Cao Y: KIF3C promotes proliferation, migration, and invasion of glioma cells by activating the PI3K/AKT pathway and inducing EMT. Biomed Res Int. 2020:63493122020. View Article : Google Scholar : PubMed/NCBI

21 

Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, Ran Y and Wan J: LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res. 37:2252018. View Article : Google Scholar

22 

Li DQ, Nair SS and Kumar R: The MORC family: New epigenetic regulators of transcription and DNA damage response. Epigenetics. 8:685–693. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Wang GL, Wang CY, Cai XZ, Chen W, Wang XH and Li F: Identification and expression analysis of a novel CW-type zinc finger protein MORC2 in cancer cells. Anat Rec (Hoboken). 293:1002–1009. 2010. View Article : Google Scholar

24 

Pan Z, Ding Q, Guo Q, Guo Y, Wu L, Wu L, Tang M, Yu H and Zhou F: MORC2, a novel oncogene, is upregulated in liver cancer and contributes to proliferation, metastasis and chemoresistance. Int J Oncol. 53:59–72. 2018.PubMed/NCBI

25 

Liu M, Sun X and Shi S: MORC2 enhances tumor growth by promoting angiogenesis and tumor-associated macrophage recruitment via wnt/β-catenin in lung cancer. Cell Physiol Biochem. 51:1679–1694. 2018. View Article : Google Scholar

26 

Liao XH, Zhang Y, Dong WJ, Shao ZM and Li DQ: Chromatin remodeling protein MORC2 promotes breast cancer invasion and metastasis through a PRD domain-mediated interaction with CTNND1. Oncotarget. 8:97941–97954. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Shao Y, Li Y, Zhang J, Liu D, Liu F, Zhao Y, Shen T and Li F: Involvement of histone deacetylation in MORC2-mediated down-regulation of carbonic anhydrase IX. Nucleic Acids Res. 38:2813–2824. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Kovacevic Z and Richardson DR: The metastasis suppressor, Ndrg-1: A new ally in the fight against cancer. Carcinogenesis. 27:2355–2366. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Nishio S, Ushijima K, Tsuda N, Takemoto S, Kawano K, Yamaguchi T, Nishida N, Kakuma T, Tsuda H, Kasamatsu T, et al: Cap43/NDRG1/Drg-1 is a molecular target for angiogenesis and a prognostic indicator in cervical adenocarcinoma. Cancer Lett. 264:36–43. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Li A, Zhu X, Wang C, Yang S, Qiao Y, Qiao R and Zhang J: Upregulation of NDRG1 predicts poor outcome and facilitates disease progression by influencing the EMT process in bladder cancer. Sci Rep. 9:51662019. View Article : Google Scholar : PubMed/NCBI

31 

Cheng J, Xie HY, Xu X, Wu J, Wei X, Su R, Zhang W, Lv Z, Zheng S and Zhou L: NDRG1 as a biomarker for metastasis, recurrence and of poor prognosis in hepatocellular carcinoma. Cancer Lett. 310:35–45. 2011. View Article : Google Scholar : PubMed/NCBI

32 

de Lima JM, Morand GB, Macedo CCS, Diesel L, Hier MP, Mlynarek A, Kowalski LP, Maschietto M, Alaoui-Jamali MA and da Silva SD: NDRG1 deficiency is associated with regional metastasis in oral cancer by inducing epithelial-mesenchymal transition. Carcinogenesis. 41:769–777. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Dong X, Hong Y, Sun H, Chen C, Zhao X and Sun B: NDRG1 suppresses vasculogenic mimicry and tumor aggressiveness in gastric carcinoma. Oncol Lett. 18:3003–3016. 2019.PubMed/NCBI

34 

Ma J, Gao Q, Zeng S and Shen H: Knockdown of NDRG1 promote epithelial-mesenchymal transition of colorectal cancer via NF-κB signaling. J Surg Oncol. 114:520–527. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Zhao SP, Wang F, Yang M, Wang XY, Jin CL, Ji QK, Li S and Zhao XL: CBX3 promotes glioma U87 cell proliferation and predicts an unfavorable prognosis. J Neurooncol. 145:35–48. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Terano T, Tanaka T, Tamura Y, Kitagawa M, Higashi H, Saito Y and Hirai A: Eicosapentaenoic acid and docosahexaenoic acid inhibit vascular smooth muscle cell proliferation by inhibiting phosphorylation of Cdk2-cyclinE complex. Biochem Biophys Res Commun. 254:502–506. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Kang Y and Massague J: Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell. 118:277–279. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Zhang X, Lv QL, Huang YT, Zhang LH and Zhou HH: Akt/FoxM1 signaling pathway-mediated upregulation of MYBL2 promotes progression of human glioma. J Exp Clin Cancer Res. 36:1052017. View Article : Google Scholar : PubMed/NCBI

39 

Tan Y, Hu X, Deng Y, Yuan P, Xie Y and Wang J: TRA2A promotes proliferation, migration, invasion and epithelial mesenchymal transition of glioma cells. Brain Res Bull. 143:138–144. 2018. View Article : Google Scholar : PubMed/NCBI

40 

Zhao C, Wang XB, Zhang YH, Zhou YM, Yin Q and Yao WC: MicroRNA-424 inhibits cell migration, invasion and epithelial-mesenchymal transition in human glioma by targeting KIF23 and functions as a novel prognostic predictor. Eur Rev Med Pharmacol Sci. 22:6369–6378. 2018.PubMed/NCBI

41 

Chen Z, Wei X, Shen L, Zhu H and Zheng X: 20(S)-ginsenoside-Rg3 reverses temozolomide resistance and restrains epithelial-mesenchymal transition progression in glioblastoma. Cancer Sci. 110:389–400. 2019. View Article : Google Scholar

42 

Sun B, Chu D, Li W, Chu X, Li Y, Wei D and Li H: Decreased expression of NDRG1 in glioma is related to tumor progression and survival of patients. J Neurooncol. 94:213–219. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Zi Y, Zhang Y, Wu Y, Zhang L, Yang R and Huang Y: Downregulation of microRNA-25-3p inhibits the proliferation and promotes the apoptosis of multiple myeloma cells via targeting the PTEN/PI3K/AKT signaling pathway. Int J Mol Med. 47:102021.

44 

Ni J, Chen Y, Fei B, Zhu Y, Du Y, Liu L, Guo L and Zhu W: MicroRNA-301a promotes cell proliferation and resistance to apoptosis through PTEN/PI3K/akt signaling pathway in human ovarian cancer. Gynecol Obstet Invest. 86:108–116. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Zhang XY and Mao L: Circular RNA Circ_0000442 acts as a sponge of MiR-148b-3p to suppress breast cancer via PTEN/PI3K/Akt signaling pathway. Gene. 766:1451132021. View Article : Google Scholar

46 

Liu CJ, Wu HB, Li YY, Shen L, Yu R, Yin H, Sun T, Sun C, Zhou Y and Du Z: SALL4 suppresses PTEN expression to promote glioma cell proliferation via PI3K/AKT signaling pathway. J Neurooncol. 135:263–272. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Moon SH, Kim DK, Cha Y, Jeon I, Song J and Park KS: PI3K/Akt and stat3 signaling regulated by PTEN control of the cancer stem cell population, proliferation and senescence in a glioblastoma cell line. Int J Oncol. 42:921–928. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Dasari VR, Kaur K, Velpula KK, Gujrati M, Fassett D, Klopfenstein JD, Dinh DH and Rao JS: Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway. PLoS One. 5:122010. View Article : Google Scholar

49 

Sun J, Zhang D, Bae DH, Sahni S, Jansson P, Zheng Y, Zhao Q, Yue F, Zheng M, Kovacevic Z and Richardson DR: Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis. 34:1943–1954. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang J, Yang Y, Dong Y and Liu C: Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter. Int J Mol Med 49: 16, 2022.
APA
Zhang, J., Yang, Y., Dong, Y., & Liu, C. (2022). Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter. International Journal of Molecular Medicine, 49, 16. https://doi.org/10.3892/ijmm.2021.5071
MLA
Zhang, J., Yang, Y., Dong, Y., Liu, C."Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter". International Journal of Molecular Medicine 49.2 (2022): 16.
Chicago
Zhang, J., Yang, Y., Dong, Y., Liu, C."Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter". International Journal of Molecular Medicine 49, no. 2 (2022): 16. https://doi.org/10.3892/ijmm.2021.5071
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang J, Yang Y, Dong Y and Liu C: Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter. Int J Mol Med 49: 16, 2022.
APA
Zhang, J., Yang, Y., Dong, Y., & Liu, C. (2022). Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter. International Journal of Molecular Medicine, 49, 16. https://doi.org/10.3892/ijmm.2021.5071
MLA
Zhang, J., Yang, Y., Dong, Y., Liu, C."Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter". International Journal of Molecular Medicine 49.2 (2022): 16.
Chicago
Zhang, J., Yang, Y., Dong, Y., Liu, C."Microrchidia family CW‑type zinc finger 2 promotes the proliferation, invasion, migration and epithelial‑mesenchymal transition of glioma by regulating PTEN/PI3K/AKT signaling via binding to N‑myc downstream regulated gene 1 promoter". International Journal of Molecular Medicine 49, no. 2 (2022): 16. https://doi.org/10.3892/ijmm.2021.5071
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team