Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2022 Volume 49 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 49 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review)

  • Authors:
    • Periklis Katopodis
    • Harpal S. Randeva
    • Demetrios A. Spandidos
    • Sayeh Saravi
    • Ioannis Kyrou
    • Emmanouil Karteris
  • View Affiliations / Copyright

    Affiliations: Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK, Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK, Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
    Copyright: © Katopodis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 20
    |
    Published online on: December 20, 2021
       https://doi.org/10.3892/ijmm.2021.5075
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The pathophysiology of coronavirus disease 2019 (COVID‑19) is mainly dependent on the underlying mechanisms that mediate the entry of severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) into the host cells of the various human tissues/organs. Recent studies have indicated a higher order of complexity of the mechanisms of infectivity, given that there is a wide‑repertoire of possible cell entry mediators that appear to co‑localise in a cell‑ and tissue‑specific manner. The present study provides an overview of the ‘canonical’ SARS‑CoV‑2 mediators, namely angiotensin converting enzyme 2, transmembrane protease serine 2 and 4, and neuropilin‑1, expanding on the involvement of novel candidates, including glucose‑regulated protein 78, basigin, kidney injury molecule‑1, metabotropic glutamate receptor subtype 2, ADAM metallopeptidase domain 17 (also termed tumour necrosis factor‑α convertase) and Toll‑like receptor 4. Furthermore, emerging data indicate that changes in microRNA (miRNA/miR) expression levels in patients with COVID‑19 are suggestive of further complexity in the regulation of these viral mediators. An in silico analysis revealed 160 candidate miRNAs with potential strong binding capacity in the aforementioned genes. Future studies should concentrate on elucidating the association between the cellular tropism of the SARS‑CoV‑2 cell entry mediators and the mechanisms through which they might affect the clinical outcome. Finally, the clinical utility as a biomarker or therapeutic target of miRNAs in the context of COVID‑19 warrants further investigation.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, Monneret G, Venet F, Bauer M, Brunkhorst FM, et al: The COVID-19 puzzle: Deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med. 9:622–642. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Singh S, Pandey R, Tomar S, Varshney R, Sharma D and Gangenahalli G: A brief molecular insight of COVID-19: Epidemiology, clinical manifestation, molecular mechanism, cellular tropism and immuno-pathogenesis. Mol Cell Biochem. 476:3987–4002. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Murgolo N, Therien AG, Howell B, Klein D, Koeplinger K, Lieberman LA, Adam GC, Flynn J, McKenna P, Swaminathan G, et al: SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathog. 17:e10092252021. View Article : Google Scholar : PubMed/NCBI

4 

Gao S and Zhang L: ACE2 partially dictates the host range and tropism of SARS-CoV-2. Comput Struct Biotechnol J. 18:4040–4047. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Cai L, Guo X, Cao Y, Ying P, Hong L, Zhang Y, Yi G and Fu M: Determining available strategies for prevention and therapy: Exploring COVID-19 from the perspective of ACE2 (Review). Int J Mol Med. 47:432021. View Article : Google Scholar :

7 

Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, Steffen I, Tsegaye TS, He Y, Gnirss K, et al: Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 85:4122–4134. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Piva F, Sabanovic B, Cecati M and Giulietti M: Expression and Co-expression analyses of TMPRSS2, a key element in COVID-19. Eur J Clin Microbiol Infect Dis. 40:451–455. 2021. View Article : Google Scholar

9 

Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, Sharifi N, Erzurum S, Eng C and Cheng F: New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 18:2162020. View Article : Google Scholar : PubMed/NCBI

10 

Zipeto D, Palmeira JDF, Argañaraz GA and Argañaraz ER: ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front Immunol. 11:5767452020. View Article : Google Scholar : PubMed/NCBI

11 

Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A and Li F: Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 117:11727–11734. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Magrone T, Magrone M and Jirillo E: Focus on receptors for coronaviruses with special reference to Angiotensin-converting Enzyme 2 as a potential drug Target-A perspective. Endocr Metab Immune Disord Drug Targets. 20:807–811. 2020. View Article : Google Scholar

13 

Jia H, Neptune E and Cui H: Targeting ACE2 for COVID-19 therapy: Opportunities and challenges. Am J Respir Cell Mol Biol. 64:416–425. 2021. View Article : Google Scholar :

14 

Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, et al: Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 436:112–116. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Schuler BA, Habermann AC, Plosa EJ, Taylor CJ, Jetter C, Negretti NM, Kapp ME, Benjamin JT, Gulleman P, Nichols DS, et al: Age-determined expression of priming protease TMPRSS2 and localization of SARS-CoV-2 in lung epithelium. J Clin Invest. 131:e1407662021. View Article : Google Scholar :

16 

Musso N, Falzone L, Stracquadanio S, Bongiorno D, Salerno M, Esposito M, Sessa F, Libra M, Stefani S and Pomara C: Post-mortem detection of SARS-CoV-2 RNA in Long-buried lung samples. Diagnostics (Basel). 11:11582021. View Article : Google Scholar

17 

Deinhardt-Emmer S, Wittschieber D, Sanft J, Kleemann S, Elschner S, Haupt KF, Vau V, Häring C, Rödel J, Henke A, et al: Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the correlation with tissue damage. Elife. 10:e603612021. View Article : Google Scholar : PubMed/NCBI

18 

Yao XH, Luo T, Shi Y, He ZC, Tang R, Zhang PP, Cai J, Zhou XD, Jiang DP, Fei XC, et al: A cohort autopsy study defines COVID-19 systemic pathogenesis. Cell Res. 31:836–846. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, et al: TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 5:eabc35822020. View Article : Google Scholar : PubMed/NCBI

20 

Kyrou I, Randeva HS, Spandidos DA and Karteris E: Not only ACE2-the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduct Target Ther. 6:212021. View Article : Google Scholar : PubMed/NCBI

21 

Katopodis P, Kerslake R, Davies J, Randeva HS, Chatha K, Hall M, Spandidos DA, Anikin V, Polychronis A, Robertus JL, et al: COVID-19 and SARS-CoV-2 host cell entry mediators: Expression profiling of TMRSS4 in health and disease. Int J Mol Med. 47:642021. View Article : Google Scholar :

22 

Cuervo NZ and Grandvaux N: ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. Elife. 9:e613902020. View Article : Google Scholar

23 

Davies J, Randeva HS, Chatha K, Hall M, Spandidos DA, Karteris E and Kyrou I: Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol Med Rep. 22:4221–4226. 2020.PubMed/NCBI

24 

Daly JL, Simonetti B, Antón-Plágaro C, Williamson MK, Shoemark DK, Simón-Gracia L, Klein K, Bauer M, Hollandi R, Greber UF, et al: Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 370:861–865. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, et al: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 370:856–860. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Kielian M: Enhancing host cell infection by SARS-CoV-2. Science. 370:765–766. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, Kallio K, Kaya T, Anastasina M, Smura T, et al: Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. bioRxiv. Jul 15–2020.Epub ahead of print. View Article : Google Scholar

28 

Elfiky AA: SARS-CoV-2 Spike-heat shock protein A5 (GRP78) recognition may be related to the immersed human coronaviruses. Front Pharmacol. 11:5774672020. View Article : Google Scholar : PubMed/NCBI

29 

Ibrahim IM, Abdelmalek DH, Elshahat ME and Elfiky AA: COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect. 80:554–562. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, Wei D, Zhang Y, Sun XX, Gong L, et al: CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 5:2832020. View Article : Google Scholar : PubMed/NCBI

31 

Shilts J, Crozier TWM, Greenwood EJD, Lehner PJ and Wright GJ: No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep. 11:4132021. View Article : Google Scholar : PubMed/NCBI

32 

Minami T, Iwata Y and Wada T: Renal complications in coronavirus disease 2019: A systematic review. Inflamm Regen. 40:312020. View Article : Google Scholar : PubMed/NCBI

33 

Yang C, Zhang Y, Zeng X, Chen H, Chen Y, Yang D, Shen Z, Wang X, Liu X, Xiong M, et al: Kidney injury molecule-1 is a potential receptor for SARS-CoV-2. J Mol Cell Biol. 13:185–196. 2021. View Article : Google Scholar : PubMed/NCBI

34 

Wan C and Zhang C: Kidney injury molecule-1: A novel entry factor for SARS-CoV-2. J Mol Cell Biol. 13:159–160. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Bu Z, Wang J, Yang G, Wang X, Wen Z, Shuai L, Luo J, Wang C, Sun Z, Liu R, et al: Metabotropic glutamate receptor subtype 2 is a receptor of SARS-CoV-2. Res Sq. April 21–2021.Epub ahead of print. View Article : Google Scholar

36 

Cui C, Huang C, Zhou W, Ji X, Zhang F, Wang L, Zhou Y and Cui Q: AGTR2, one possible novel key gene for the entry of SARS-CoV-2 into human cells. IEEE/ACM Trans Comput Biol Bioinforma. 18:1230–1233. 2021. View Article : Google Scholar

37 

Zhang Q, Chen CZ, Swaroop M, Xu M, Wang L, Lee J, Wang AQ, Pradhan M, Hagen N, Chen L, et al: Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discov. 6:802020. View Article : Google Scholar : PubMed/NCBI

38 

Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, Hooper NM and Turner AJ: Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem. 280:30113–30119. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Palau V, Riera M and Soler MJ: ADAM17 inhibition may exert a protective effect on COVID-19. Nephrol Dial Transplant. 35:1071–1072. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O and Pöhlmann S: TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 88:1293–1307. 2014. View Article : Google Scholar :

41 

Kumar J, Murugaiah V, Sotiriadis G, Kaur A, Jeyaneethi J, Sturniolo I, Alhamlan FS, Chatterjee J, Hall M, Kishore U and Karteris E: Surfactant Protein D as a potential biomarker and therapeutic target in ovarian cancer. Front Oncol. 9:5422019. View Article : Google Scholar : PubMed/NCBI

42 

Hsieh MH, Beirag N, Murugaiah V, Chou YC, Kuo WS, Kao HF, Madan T, Kishore U and Wang JY: Human surfactant Protein D binds spike protein and acts as an entry inhibitor of SARS-CoV-2 pseudotyped viral particles. Front Immunol. 12:6413602021. View Article : Google Scholar : PubMed/NCBI

43 

Madan T, Biswas B, Varghese PM, Subedi R, Pandit H, Idicula-Thomas S, Kundu I, Rooge S, Agarwal R, Tripathi DM, et al: A recombinant fragment of human surfactant Protein D binds spike protein and inhibits infectivity and replication of SARS-CoV-2 in clinical samples. Am J Respir Cell Mol Biol. 65:41–53. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Tong M, Xiong Y, Zhu C, Xu H, Zheng Q, Jiang Y, Zou L, Xiao X, Chen F, Yan X, et al: Serum surfactant protein D in COVID-19 is elevated and correlated with disease severity. BMC Infect Dis. 21:7372021. View Article : Google Scholar : PubMed/NCBI

45 

Aboudounya MM and Heads RJ: COVID-19 and toll-like receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyper-inflammation. Mediators Inflamm. 2021:88743392021. View Article : Google Scholar

46 

Gadanec LK, McSweeney KR, Qaradakhi T, Ali B, Zulli A and Apostolopoulos V: Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int J Mol Sci. 22:9922021. View Article : Google Scholar : PubMed/NCBI

47 

Zhao Y, Kuang M, Li J, Zhu L, Jia Z, Guo X, Hu Y, Kong J, Yin H, Wang X and You F: SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Res. 31:818–820. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Zamorano Cuervo N and Grandvaux N: ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. Elife. 9:e613902020. View Article : Google Scholar : PubMed/NCBI

49 

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 581:215–220. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Shrimp JH, Kales SC, Sanderson PE, Simeonov A, Shen M and Hall MD: An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. ACS Pharmacol Transl Sci. 3:997–1007. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Lee JJ, Kopetz S, Vilar E, Shen JP, Chen K and Maitra A: Relative abundance of SARS-CoV-2 entry genes in the enterocytes of the lower gastrointestinal tract. Genes (Basel). 11:6452020. View Article : Google Scholar :

52 

Choudhury A and Mukherjee S: In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J Med Virol. 92:2105–2113. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Dexheimer PJ and Cochella L: MicroRNAs: From mechanism to organism. Front Cell Dev Biol. 8:4092020. View Article : Google Scholar : PubMed/NCBI

54 

Peng Y and Croce CM: The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1:150042016. View Article : Google Scholar : PubMed/NCBI

55 

Chen K and Rajewsky N: The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 8:93–103. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C and Foti M: Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci. 20:62492019. View Article : Google Scholar

57 

Cai Y, Yu X, Hu S and Yu J: A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 7:147–154. 2009. View Article : Google Scholar

58 

Liu Z, Wang J, Ge Y, Xu Y, Guo M, Mi K, Xu R, Pei Y, Zhang Q, Luan X, et al: SARS-CoV-2 encoded microRNAs are involved in the process of virus infection and host immune response. J Biomed Res. 35:216–227. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Chauhan N, Jaggi M, Chauhan SC and Yallapu MM: COVID-19: Fighting the invisible enemy with microRNAs. Expert Rev Anti Infect Ther. 19:137–145. 2021. View Article : Google Scholar

60 

Fani M, Zandi M, Ebrahimi S, Soltani S and Abbasi S: The role of miRNAs in COVID-19 disease. Future Virol. 16:301–306. 2021. View Article : Google Scholar

61 

Bugnon LA, Raad J, Merino GA, Yones C, Ariel F, Milone DH and Stegmayer G: Deep Learning for the discovery of new pre-miRNAs: Helping the fight against COVID-19. Mach Learn with Appl. 6:1001502021. View Article : Google Scholar

62 

Abedi F, Rezaee R, Hayes AW, Nasiripour S and Karimi G: MicroRNAs and SARS-CoV-2 life cycle, pathogenesis, and mutations: Biomarkers or therapeutic agents? Cell Cycle. 20:143–153. 2021. View Article : Google Scholar : PubMed/NCBI

63 

Haddad H and Al-Zyoud W: miRNA target prediction might explain the reduced transmission of SARS-CoV-2 in Jordan, Middle East. Noncoding RNA Res. 5:135–143. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Sardar R, Satish D, Birla S and Gupta D: Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction, pathogenesis and clues for novel therapies. Heliyon. 6:e046582020. View Article : Google Scholar : PubMed/NCBI

65 

Matarese A, Gambardella J, Sardu C and Santulli G: miR-98 regulates TMPRSS2 expression in human endothelial cells: Key implications for COVID-19. Biomedicines. 8:4622020. View Article : Google Scholar :

66 

Nersisyan S, Shkurnikov M, Turchinovich A, Knyazev E and Tonevitsky A: Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PLoS One. 15:e02359872020. View Article : Google Scholar : PubMed/NCBI

67 

Lu D, Chatterjee S, Xiao K, Riedel I, Wang Y, Foo R, Bär C and Thum T: MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J Mol Cell Cardiol. 148:46–49. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Khan MA, Sany MRU, Islam MS and Islam ABMMK: Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 World-Wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front Genet. 11:7652020. View Article : Google Scholar : PubMed/NCBI

69 

Paul S, Bravo Vázquez LA, Reyes-Pérez PR, Estrada-Meza C, Aponte Alburquerque RA, Pathak S, Banerjee A, Bandyopadhyay A, Chakraborty S and Srivastava A: The role of microRNAs in solving COVID-19 puzzle from infection to therapeutics: A mini-review. Virus Res. 308:1986312021. View Article : Google Scholar : PubMed/NCBI

70 

Dash S, Dash C and Pandhare J: Therapeutic significance of microRNA-mediated regulation of PARP-1 in SARS-CoV-2 infection. Noncoding RNA. 7:602021.PubMed/NCBI

71 

Mukhopadhyay D and Mussa BM: Identification of novel hypothalamic MicroRNAs as promising therapeutics for SARS-CoV-2 by regulating ACE2 and TMPRSS2 expression: An in silico analysis. Brain Sci. 10:6662020. View Article : Google Scholar :

72 

Wang X: miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA. 14:1012–1017. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Wong N and Wang X: miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43:D146–D152. 2015. View Article : Google Scholar :

74 

Wicik Z, Eyileten C, Jakubik D, Simões SN, Martins DC Jr, Pavão R, Siller-Matula JM and Postula M: ACE2 interaction networks in COVID-19: A physiological framework for prediction of outcome in patients with cardiovascular risk factors. J Clin Med. 9:37432020. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Katopodis P, Randeva HS, Spandidos DA, Saravi S, Kyrou I and Karteris E: Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). Int J Mol Med 49: 20, 2022.
APA
Katopodis, P., Randeva, H.S., Spandidos, D.A., Saravi, S., Kyrou, I., & Karteris, E. (2022). Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). International Journal of Molecular Medicine, 49, 20. https://doi.org/10.3892/ijmm.2021.5075
MLA
Katopodis, P., Randeva, H. S., Spandidos, D. A., Saravi, S., Kyrou, I., Karteris, E."Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review)". International Journal of Molecular Medicine 49.2 (2022): 20.
Chicago
Katopodis, P., Randeva, H. S., Spandidos, D. A., Saravi, S., Kyrou, I., Karteris, E."Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review)". International Journal of Molecular Medicine 49, no. 2 (2022): 20. https://doi.org/10.3892/ijmm.2021.5075
Copy and paste a formatted citation
x
Spandidos Publications style
Katopodis P, Randeva HS, Spandidos DA, Saravi S, Kyrou I and Karteris E: Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). Int J Mol Med 49: 20, 2022.
APA
Katopodis, P., Randeva, H.S., Spandidos, D.A., Saravi, S., Kyrou, I., & Karteris, E. (2022). Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). International Journal of Molecular Medicine, 49, 20. https://doi.org/10.3892/ijmm.2021.5075
MLA
Katopodis, P., Randeva, H. S., Spandidos, D. A., Saravi, S., Kyrou, I., Karteris, E."Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review)". International Journal of Molecular Medicine 49.2 (2022): 20.
Chicago
Katopodis, P., Randeva, H. S., Spandidos, D. A., Saravi, S., Kyrou, I., Karteris, E."Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review)". International Journal of Molecular Medicine 49, no. 2 (2022): 20. https://doi.org/10.3892/ijmm.2021.5075
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team