Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2022 Volume 49 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2022 Volume 49 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Pathophysiology of stress granules: An emerging link to diseases (Review)

  • Authors:
    • Jihui Wang
    • Yixia Gan
    • Jian Cao
    • Xuefen Dong
    • Wei Ouyang
  • View Affiliations / Copyright

    Affiliations: Department of Kinesiology and Human Sciences, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 44
    |
    Published online on: February 7, 2022
       https://doi.org/10.3892/ijmm.2022.5099
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Under unfavorable environmental conditions, eukaryotic cells may form stress granules (SGs) in the cytosol to protect against injury and promote cell survival. The initiation, mRNA and protein composition, distribution and degradation of SGs are subject to multiple intracellular post‑translational modifications and signaling pathways to cope with stress damage. Despite accumulated comprehensive knowledge of their composition and dynamics, the function of SGs remains poorly understood. When the stress persists, aberrant and/or persistent intracellular SGs and aggregation of SGs‑related proteins may lead to various diseases. In the present article, the research progress regarding the generation, modification and function of SGs was reviewed. The regulatory effects and influencing factors of SGs in the development of tumors, cardiovascular diseases, viral infections and neurodegenerative diseases were also summarized, which may provide novel insight for preventing and treating SG‑related diseases.
View Figures

Figure 1

Figure 2

View References

1 

Ivanov P, Kedersha N and Anderson P: Stress granules and processing bodies in translational control. Cold Spring Harb Perspect Biol. 11:a0328132019. View Article : Google Scholar

2 

Hentze MW, Castello A, Schwarzl T and Preiss T: A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol. 19:327–341. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Shin Y and Brangwynne CP: Liquid phase condensation in cell physiology and disease. Science. 357:eaaf43822017. View Article : Google Scholar : PubMed/NCBI

4 

Riggs CL, Kedersha N, Ivanov P and Anderson P: Mammalian stress granules and P bodies at a glance. J Cell Sci. 133:jcs2424872020. View Article : Google Scholar : PubMed/NCBI

5 

Heberle AM, Razquin Navas P, Langelaar-Makkinje M, Kasack K, Sadik A, Faessler E, Hahn U, Marx-Stoelting P, Opitz CA, Sers C, et al: The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Life Sci Alliance. 2:e2018002572019. View Article : Google Scholar :

6 

Golob-Schwarzl N, Krassnig S, Toeglhofer AM, Park YN, Gogg-Kamerer M, Vierlinger K, Schröder F, Rhee H, Schicho R, Fickert P and Haybaeck J: New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. Eur J Cancer. 83:56–70. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Sfakianos AP, Mellor LE, Pang YF, Kritsiligkou P, Needs H, Abou-Hamdan H, Désaubry L, Poulin GB, Ashe MP and Whitmarsh AJ: The mTOR-S6 kinase pathway promotes stress granule assembly. Cell Death Differ. 25:1766–1780. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Onomoto K, Yoneyama M, Fung G, Kato H and Fujita T: Antiviral innate immunity and stress granule responses. Trends Immunol. 35:420–428. 2014. View Article : Google Scholar : PubMed/NCBI

9 

McCormick C and Khaperskyy DA: Translation inhibition and stress granules in the antiviral immune response. Nat Rev Immunol. 17:647–660. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Li Q, Leng K, Liu Y, Sun H, Gao J, Ren Q, Zhou T, Dong J and Xia J: The impact of hyperglycaemia on PKM2-mediated NLRP3 inflammasome/stress granule signalling in macrophages and its correlation with plaque vulnerability: An in vivo and in vitro study. Metabolism. 107:1542312020. View Article : Google Scholar : PubMed/NCBI

11 

Herman AB, Silva Afonso M, Kelemen SE, Ray M, Vrakas CN, Burke AC, Scalia RG, Moore K and Autieri MV: Regulation of stress granule formation by inflammation, vascular injury, and atherosclerosis. Arterioscler Thromb Vasc Biol. 39:2014–2027. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, et al: A Liquid-to-Solid phase transition of the ALS Protein FUS accelerated by disease mutation. Cell. 162:1066–1077. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Ramaswami M, Taylor JP and Parker R: Altered ribostasis: RNA-protein granules in degenerative disorders. Cell. 154:727–736. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Ambadipudi S, Biernat J, Riedel D, Mandelkow E and Zweckstetter M: Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat Commu. 8:2752017. View Article : Google Scholar

15 

Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE, Dujardin S, Laskowski PR, MacKenzie D, Kamath T, Commins C, et al: Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 37:e980492018. View Article : Google Scholar : PubMed/NCBI

16 

Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J and Anderson P: Evidence that ternary complex (eIF2-GTP-tRNA(i) (Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell. 13:195–210. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Anderson P and Kedersha N: Visibly stressed: The role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones. 7:213–221. 2002. View Article : Google Scholar

18 

Hofmann S, Kedersha N, Anderson P and Ivanov P: Molecular mechanisms of stress granule assembly and disassembly. Biochim Biophys Acta Mol Cell Res. 1868:1188762021. View Article : Google Scholar

19 

Wolozin B and Ivanov P: Stress granules and neurodegeneration. Na Rev Neurosci. 20:649–666. 2019. View Article : Google Scholar

20 

Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A and Parker R: ATPase-modulated stress granules contain a diverse proteome and substructure. Cell. 164:487–498. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Protter DSW and Parker R: Principles and properties of stress granules. Trends Cell Biol. 26:668–679. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Markmiller S, Soltanieh S, Server KL, Mak R, Jin W, Fang MY, Luo EC, Krach F, Yang D, Sen A, et al: Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell. 172:590–604.e13. 2018. View Article : Google Scholar :

23 

Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P and Anderson P: G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol. 212:845–860. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Anderson P and Kedersha N: Stress granules: The Tao of RNA triage. Trends Biochem Sci. 33:141–150. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Kaehler C, Isensee J, Hucho T, Lehrach H and Krobitsch S: 5-fluorouracil affects assembly of stress granules based on RNA incorporation. Nucleic Acids Res. 42:6436–6447. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Fujimura K, Sasaki AT and Anderson P: Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Res. 40:8099–8110. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Ohn T, Kedersha N, Hickman T, Tisdale S and Anderson P: A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat Cell Biol. 10:1224–1231. 2008. View Article : Google Scholar

28 

Aulas A, Lyons SM, Fay MM, Anderson P and Ivanov P: Nitric oxide triggers the assembly of 'type II' stress granules linked to decreased cell viability. Cell Death Dis. 9:11292018. View Article : Google Scholar

29 

Anderson P and Kedersha N: RNA granules. J Cell Biol. 172:803–808. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Huang C, Chen Y, Dai H, Zhang H, Xie M, Zhang H, Chen F, Kang X, Bai X and Chen Z: UBAP2L arginine methylation by PRMT1 modulates stress granule assembly. Cell Death Differ. 27:227–241. 2020. View Article : Google Scholar

31 

Tsai WC, Gayatri S, Reineke LC, Sbardella G, Bedford MT and Lloyd RE: Arginine demethylation of G3BP1 promotes stress granule assembly. J Biol Chemistry. 291:22671–22685. 2016. View Article : Google Scholar

32 

Kedersha N and Anderson P: Stress granules: Sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans. 30:963–969. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Mateju D, Eichenberger B, Voigt F, Eglinger J, Roth G and Chao JA: Single-molecule imaging reveals translation of mRNAs localized to stress granules. Cell. 183:1801–1812.e13. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H and Takekawa M: Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol. 10:1324–1332. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Park YJ, Choi DW, Cho SW, Han J, Yang S and Choi CY: Stress granule formation attenuates RACK1-mediated apoptotic cell death induced by morusin. Int J Mol Sci. 21:53602020. View Article : Google Scholar :

36 

Panas MD, Ivanov P and Anderson P: Mechanistic insights into mammalian stress granule dynamics. J Cell Biol. 215:313–323. 2016. View Article : Google Scholar :

37 

Tourrière H, Chebli K, Zekri L, Courselaud B, Blanchard JM, Bertrand E and Tazi J: The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol. 160:823–831. 2003. View Article : Google Scholar

38 

Omer A, Patel D, Moran JL, Lian XJ, Di Marco S and Gallouzi IE: Autophagy and heat-shock response impair stress granule assembly during cellular senescence. Mech Ageing Dev. 192:1113822020. View Article : Google Scholar : PubMed/NCBI

39 

Omer A, Barrera MC, Moran JL, Lian XJ, Di Marco S, Beausejour C and Gallouzi IE: G3BP1 controls the senescence-associated secretome and its impact on cancer progression. Nat Commun. 11:49792020. View Article : Google Scholar : PubMed/NCBI

40 

Coppé JP, Desprez PY, Krtolica A and Campisi J: The senescence-associated secretory phenotype: The dark side of tumor suppression. Annu Rev Pathol. 5:99–118. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Anderson P, Kedersha N and Ivanov P: Stress granules, P-bodies and cancer. Biochim Biophys Acta. 1849:861–870. 2015. View Article : Google Scholar :

42 

El-Naggar AM and Sorensen PH: Translational control of aberrant stress responses as a hallmark of cancer. J Pathol. 244:650–666. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Vilas-Boas Fde A, da Silva AM, de Sousa LP, Lima KM, Vago JP, Bittencourt LF, Dantas AE, Gomes DA, Vilela MC, Teixeira MM and Barcelos LS: Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents. J Neurooncol. 127:253–260. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Fournier MJ, Gareau C and Mazroui R: The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int. 10:122010. View Article : Google Scholar :

45 

Gao X, Jiang L, Gong Y, Chen X, Ying M, Zhu H, He Q, Yang B and Cao J: Stress granule: A promising target for cancer treatment. Br J Pharmacol. 176:4421–4433. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Khan FH, Dervan E, Bhattacharyya DD, McAuliffe JD, Miranda KM and Glynn SA: The role of nitric oxide in cancer: Master regulator or NOt? Int J Mol Sci. 21:93932020. View Article : Google Scholar :

47 

Alam U and Kennedy D: G3BP1 and G3BP2 regulate translation of interferon-stimulated genes: IFITM1, IFITM2 and IFITM3 in the cancer cell line MCF7. Mol Cell Biochem. 459:189–204. 2019. View Article : Google Scholar

48 

Gupta N, Badeaux M, Liu Y, Naxerova K, Sgroi D, Munn LL, Jain RK and Garkavtsev I: Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proc Natl Acad Sci USA. 114:1033–1038. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TG, Zhang F, Ng T, Delattre O, Evdokimova V, et al: YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol. 208:913–929. 2015. View Article : Google Scholar :

50 

Ramachandran B, Stabley JN, Cheng SL, Behrmann AS, Gay A, Li L, Mead M, Kozlitina J, Lemoff A, Mirzaei H, et al: A GTPase-activating protein-binding protein (G3BP1)/antiviral protein relay conveys arteriosclerotic Wnt signals in aortic smooth muscle cells. J Biol Chem. 293:7942–7968. 2018. View Article : Google Scholar :

51 

Schneider JW, Oommen S, Qureshi MY, Goetsch SC, Pease DR, Sundsbak RS, Guo W, Sun M, Sun H, Kuroyanagi H, et al: Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat Med. 26:1788–1800. 2020. View Article : Google Scholar

52 

Smit M, Coetzee AR and Lochner A: The pathophysiology of myocardial ischemia and perioperative myocardial infarction. J Cardiothorac Vasc Anesth. 34:2501–2512. 2020. View Article : Google Scholar

53 

Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al: Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019. View Article : Google Scholar : PubMed/NCBI

54 

Mahboubi H and Stochaj U: Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim Biophys Acta Mol Basis Dis. 1863:884–895. 2017. View Article : Google Scholar

55 

Yoneyama M, Jogi M and Onomoto K: Regulation of antiviral innate immune signaling by stress-induced RNA granules. J Biochem. 159:279–286. 2016.PubMed/NCBI

56 

Xu S, Chen D, Chen D, Hu Q, Zhou L, Ge X, Han J, Guo X and Yang H: Pseudorabies virus infection inhibits stress granules formation via dephosphorylating eIF2α. Vet Microbiol. 247:1087862020. View Article : Google Scholar

57 

Khong A, Kerr CH, Yeung CHL, Keatings K, Nayak A, Allan DW and Jan E: Disruption of stress granule formation by the multifunctional cricket paralysis virus 1A protein. J Virol. 91:e01779–16. 2017. View Article : Google Scholar :

58 

Visser LJ, Medina GN, Rabouw HH, de Groot RJ, Langereis MA, de Los Santos T and van Kuppeveld FJM: Foot-and-Mouth disease virus leader protease cleaves G3BP1 and G3BP2 and inhibits stress granule formation. J Virol. 93:e00922–18. 2019. View Article : Google Scholar :

59 

Dougherty JD, Tsai WC and Lloyd RE: Multiple poliovirus proteins repress cytoplasmic RNA granules. Viruses. 7:6127–6140. 2015. View Article : Google Scholar

60 

Yang X, Hu Z, Fan S, Zhang Q, Zhong Y, Guo D, Qin Y and Chen M: Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathog. 14:e10069012018. View Article : Google Scholar : PubMed/NCBI

61 

Le Sage V, Cinti A, McCarthy S, Amorim R, Rao S, Daino GL, Tramontano E, Branch DR and Mouland AJ: Ebola virus VP35 blocks stress granule assembly. Virology. 502:73–83. 2017. View Article : Google Scholar

62 

Savastano A, Ibáñez de Opakua A, Rankovic M and Zweckstetter M: Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat Commun. 11:60412020. View Article : Google Scholar : PubMed/NCBI

63 

Wang J, Shi C, Xu Q and Yin H: SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation into stress granules through its N-terminal intrinsically disordered region. Cell Discov. 7:52021. View Article : Google Scholar : PubMed/NCBI

64 

Lu S, Ye Q, Singh D, Cao Y, Diedrich JK, Yates JR III, Villa E, Cleveland DW and Corbett KD: The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat Commun. 12:5022021. View Article : Google Scholar : PubMed/NCBI

65 

Prasad K, Alasmari AF, Ali N, Khan R, Alghamdi A and Kumar V: Insights into the SARS-CoV-2-Mediated alteration in the stress granule protein regulatory networks in humans. Pathogens. 10:14592021. View Article : Google Scholar : PubMed/NCBI

66 

Thoms M, Buschauer R, Ameismeier M, Koepke L, Denk T, Hirschenberger M, Kratzat H, Hayn M, Mackens-Kiani T, Cheng J, et al: Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science. 369:1249–1255. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Shi M, Wang L, Fontana P, Vora S, Zhang Y, Fu TM, Lieberman J and Wu H: SARS-CoV-2 Nsp1 suppresses host but not viral translation through a bipartite mechanism. bioRxiv. 2020:3029012020.

68 

Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler LA, Leibundgut M, Thiel V, Mühlemann O and Ban N: SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat Struct Mol Biol. 27:959–966. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Nakagawa K, Narayanan K, Wada M and Makino S: Inhibition of stress granule formation by middle east respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. J Virol. 92:e00902–18. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Callaway E: Heavily mutated omicron variant puts scientists on alert. Nature. 600:212021. View Article : Google Scholar : PubMed/NCBI

71 

Dudman J and Qi X: Stress granule dysregulation in amyotrophic lateral sclerosis. Front Cell Neurosci. 14:5985172020. View Article : Google Scholar : PubMed/NCBI

72 

Anderson EN, Gochenaur L, Singh A, Grant R, Patel K, Watkins S, Wu JY and Pandey UB: Traumatic injury induces stress granule formation and enhances motor dysfunctions in ALS/FTD models. Hum Mol Genet. 27:1366–1381. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Ayuso MI, Martínez-Alonso E, Regidor I and Alcázar A: Stress granule induction after brain ischemia is independent of eukaryotic translation initiation factor (eIF) 2α phosphorylation and is correlated with a decrease in eIF4B and eIF4E proteins. J Biol Chemistry. 291:27252–27264. 2016. View Article : Google Scholar

74 

Correia AS, Patel P, Dutta K and Julien JP: Inflammation induces TDP-43 mislocalization and aggregation. PLoS One. 10:e01402482015. View Article : Google Scholar : PubMed/NCBI

75 

Cao X, Jin X and Liu B: The involvement of stress granules in aging and aging-associated diseases. Aging Cell. 19:e131362020. View Article : Google Scholar : PubMed/NCBI

76 

Cruz A, Verma M and Wolozin B: The Pathophysiology of tau and stress granules in disease. Adv Exp Med Biol. 1184:359–372. 2019. View Article : Google Scholar

77 

Webber CJ, Lei SE and Wolozin B: The pathophysiology of neurodegenerative disease: Disturbing the balance between phase separation and irreversible aggregation. Prog Mol Biol Transl Sci. 174:187–223. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Rozpędek-Kamińska W, Siwecka N, Wawrzynkiewicz A, Wojtczak R, Pytel D, Diehl JA and Majsterek I: The PERK-dependent molecular mechanisms as a novel therapeutic target for neurodegenerative diseases. Int J Mol Sci. 21:21082020. View Article : Google Scholar

79 

Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, Cavener DR and Klann E: Suppression of eIF2α kinases alleviates Alzheimer's disease-related plasticity and memory deficits. Nat Neurosci. 16:1299–1305. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Kim HJ, Raphael AR, LaDow ES, McGurk L, Weber RA, Trojanowski JQ, Lee VM, Finkbeiner S, Gitler AD and Bonini NM: Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat Genet. 46:152–160. 2014. View Article : Google Scholar

81 

Banani SF, Lee HO, Hyman AA and Rosen MK: Biomolecular condensates: Organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 18:285–298. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Flores BN, Li X, Malik AM, Martinez J, Beg AA and Barmada SJ: An intramolecular salt bridge linking TDP43 RNA binding, protein stability, and TDP43-dependent neurodegeneration. Cell Rep. 27:1133–1150.e8. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Archbold HC, Jackson KL, Arora A, Weskamp K, Tank EM, Li X, Miguez R, Dayton RD, Tamir S, Klein RL and Barmada SJ: TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia. Sci Rep. 8:46062018. View Article : Google Scholar :

84 

Suk TR and Rousseaux MWC: The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener. 15:452020. View Article : Google Scholar : PubMed/NCBI

85 

Tomé SO, Vandenberghe R, Ospitalieri S, Van Schoor E, Tousseyn T, Otto M, von Arnim CAF and Thal DR: Distinct molecular patterns of TDP-43 pathology in Alzheimer's disease: Relationship with clinical phenotypes. Acta Neuropathol Commun. 8:612020. View Article : Google Scholar

86 

Vanderweyde T, Apicco DJ, Youmans-Kidder K, Ash PEA, Cook C, Lummertz da Rocha E, Jansen-West K, Frame AA, Citro A, Leszyk JD, et al: Interaction of tau with the RNA-binding Protein TIA1 regulates tau pathophysiology and toxicity. Cell Rep. 15:1455–1466. 2016. View Article : Google Scholar : PubMed/NCBI

87 

Apicco DJ, Ash PEA, Maziuk B, LeBlang C, Medalla M, Al Abdullatif A, Ferragud A, Botelho E, Ballance HI, Dhawan U, et al: Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci. 21:72–80. 2018. View Article : Google Scholar

88 

Gal J, Kuang L, Barnett KR, Zhu BZ, Shissler SC, Korotkov KV, Hayward LJ, Kasarskis EJ and Zhu H: ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathol. 132:563–576. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Sidibé H, Dubinski A and Vande Velde C: The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem. 157:944–962. 2021. View Article : Google Scholar

90 

Gogia N, Sarkar A, Mehta AS, Ramesh N, Deshpande P, Kango-Singh M, Pandey UB and Singh A: Inactivation of Hippo and cJun-N-terminal Kinase (JNK) signaling mitigate FUS mediated neurodegeneration in vivo. Neurobio Dis. 140:1048372020. View Article : Google Scholar

91 

Picchiarelli G, Demestre M, Zuko A, Been M, Higelin J, Dieterlé S, Goy MA, Mallik M, Sellier C, Scekic-Zahirovic J, et al: FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nat Neurosci. 22:1793–1805. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Fifita JA, Zhang KY, Galper J, Williams KL, McCann EP, Hogan AL, Saunders N, Bauer D, Tarr IS, Pamphlett R, et al: Genetic and pathological assessment of hnRNPA1, hnRNPA2/B1, and hnRNPA3 in familial and sporadic amyotrophic lateral sclerosis. Neurodegener Dis. 17:304–312. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, et al: Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multi-system proteinopathy and ALS. Nature. 495:467–473. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Montalbano M, McAllen S, Cascio FL, Sengupta U, Garcia S, Bhatt N, Ellsworth A, Heidelman EA, Johnson OD, Doskocil S and Kayed R: TDP-43 and tau oligomers in Alzheimer's disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Neurobiol Dis. 146:1051302020. View Article : Google Scholar : PubMed/NCBI

95 

Zhao M, Kim JR, van Bruggen R and Park J: RNA-binding proteins in amyotrophic lateral sclerosis. Mol Cells. 41:818–829. 2018.PubMed/NCBI

96 

Mackenzie IR, Nicholson AM, Sarkar M, Messing J, Purice MD, Pottier C, Annu K, Baker M, Perkerson RB, Kurti A, et al: TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron. 95:808–816.e9. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Chew J, Gendron TF, Prudencio M, Sasaguri H, Zhang YJ, Castanedes-Casey M, Lee CW, Jansen-West K, Kurti A, Murray ME, et al: Neurodegeneration. C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science. 348:1151–1154. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Chew J, Cook C, Gendron TF, Jansen-West K, Del Rosso G, Daughrity LM, Castanedes-Casey M, Kurti A, Stankowski JN, Disney MD, et al: Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol Neurodegener. 14:92019. View Article : Google Scholar :

99 

Chitiprolu M, Jagow C, Tremblay V, Bondy-Chorney E, Paris G, Savard A, Palidwor G, Barry FA, Zinman L, Keith J, et al: A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat Commun. 9:27942018. View Article : Google Scholar : PubMed/NCBI

100 

Deng Z, Lim J, Wang Q, Purtell K, Wu S, Palomo GM, Tan H, Manfredi G, Zhao Y, Peng J, et al: ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway. Autophagy. 16:917–931. 2020. View Article : Google Scholar :

101 

Jiang Z, Belforte JE, Lu Y, Yabe Y, Pickel J, Smith CB, Je HS, Lu B and Nakazawa K: eIF2alpha Phosphorylation-dependent translation in CA1 pyramidal cells impairs hippocampal memory consolidation without affecting general translation. J Neurosci. 30:2582–2594. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Trinh MA, Ma T, Kaphzan H, Bhattacharya A, Antion MD, Cavener DR, Hoeffer CA and Klann E: The eIF2α kinase PERK limits the expression of hippocampal metabotropic glutamate receptor-dependent long-term depression. Learn Mem. 21:298–304. 2014. View Article : Google Scholar :

103 

Hijioka M, Inden M, Yanagisawa D and Kitamura Y: DJ-1/PARK7: A new therapeutic target for neurodegenerative disorders. Biol Pharm Bull. 40:548–552. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Repici M, Hassanjani M, Maddison DC, Garção P, Cimini S, Patel B, Szegö ÉM, Straatman KR, Lilley KS, Borsello T, et al: The Parkinson's disease-linked protein DJ-1 associates with cytoplasmic mRNP granules during stress and neurodegeneration. Mol Neurobiol. 56:61–77. 2019. View Article : Google Scholar

105 

Ma J, Wu R, Zhang Q, Wu JB, Lou J, Zheng Z, Ding JQ and Yuan Z: DJ-1 interacts with RACK1 and protects neurons from oxidative-stress-induced apoptosis. Biochem J. 462:489–497. 2014. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Gan Y, Cao J, Dong X and Ouyang W: Pathophysiology of stress granules: An emerging link to diseases (Review). Int J Mol Med 49: 44, 2022.
APA
Wang, J., Gan, Y., Cao, J., Dong, X., & Ouyang, W. (2022). Pathophysiology of stress granules: An emerging link to diseases (Review). International Journal of Molecular Medicine, 49, 44. https://doi.org/10.3892/ijmm.2022.5099
MLA
Wang, J., Gan, Y., Cao, J., Dong, X., Ouyang, W."Pathophysiology of stress granules: An emerging link to diseases (Review)". International Journal of Molecular Medicine 49.4 (2022): 44.
Chicago
Wang, J., Gan, Y., Cao, J., Dong, X., Ouyang, W."Pathophysiology of stress granules: An emerging link to diseases (Review)". International Journal of Molecular Medicine 49, no. 4 (2022): 44. https://doi.org/10.3892/ijmm.2022.5099
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Gan Y, Cao J, Dong X and Ouyang W: Pathophysiology of stress granules: An emerging link to diseases (Review). Int J Mol Med 49: 44, 2022.
APA
Wang, J., Gan, Y., Cao, J., Dong, X., & Ouyang, W. (2022). Pathophysiology of stress granules: An emerging link to diseases (Review). International Journal of Molecular Medicine, 49, 44. https://doi.org/10.3892/ijmm.2022.5099
MLA
Wang, J., Gan, Y., Cao, J., Dong, X., Ouyang, W."Pathophysiology of stress granules: An emerging link to diseases (Review)". International Journal of Molecular Medicine 49.4 (2022): 44.
Chicago
Wang, J., Gan, Y., Cao, J., Dong, X., Ouyang, W."Pathophysiology of stress granules: An emerging link to diseases (Review)". International Journal of Molecular Medicine 49, no. 4 (2022): 44. https://doi.org/10.3892/ijmm.2022.5099
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team