|
1
|
Zhang Z, Rong L and Li YP: Flaviviridae
viruses and oxidative stress: Implications for viral pathogenesis.
Oxid Med Cell Longev. 2019:14095822019.
|
|
2
|
Pizzino G, Irrera N, Cucinotta M, Pallio
G, Mannino F, Arcoraci V, Squadrito F, Altavilla D and Bitto A:
Oxidative stress: Harms and benefits for human health. Oxid Med
Cell Longev. 2017:84167632017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hayes JD, Dinkova-Kostova AT and Tew KD:
Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Beyfuss K and Hood DA: A systematic review
of p53 regulation of oxidative stress in skeletal muscle. Redox
Rep. 23:100–117. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pisoschi AM, Pop A, Iordache F, Stanca L,
Predoi G and Serban AI: Oxidative stress mitigation by
antioxidants-An overview on their chemistry and influences on
health status. Eur J Med Chem. 209:1128912021. View Article : Google Scholar
|
|
6
|
Zuo L and Wijegunawardana D: Redox role of
ROS and inflammation in pulmonary diseases. Adv Exp Med Biol.
1304:187–204. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Czarnocka W and Karpiński S: Friend or
foe? Reactive oxygen species production, scavenging and signaling
in plant response to environmental stresses. Free Radic Biol Med.
122:4–20. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Samavarchi Tehrani S, Mahmoodzadeh
Hosseini H, Yousefi T, Abolghasemi M, Qujeq D, Maniati M and Amani
J: The crosstalk between trace elements with DNA damage response,
repair, and oxidative stress in cancer. J Cell Biochem. Oct
30–2018.Epub ahead of print. PubMed/NCBI
|
|
9
|
Ping Z, Peng Y, Lang H, Xinyong C, Zhiyi
Z, Xiaocheng W, Hong Z and Liang S: Oxidative stress in
radiation-induced cardiotoxicity. Oxid Med Cell Longev.
2020:35791432020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang XQ, Wang W, Peng M and Zhang XZ: Free
radicals for cancer theranostics. Biomaterials. 266:1204742021.
View Article : Google Scholar
|
|
11
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y and
Fang J: Small molecules regulating reactive oxygen species
homeostasis for cancer therapy. Med Res Rev. 41:342–394. 2021.
View Article : Google Scholar
|
|
12
|
Moloney JN and Cotter TG: ROS signalling
in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018.
View Article : Google Scholar
|
|
13
|
Zou Z, Chang H, Li H and Wang S: Induction
of reactive oxygen species: An emerging approach for cancer
therapy. Apoptosis. 22:1321–1335. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rodic S and Vincent MD: Reactive oxygen
species (ROS) are a key determinant of Cancer's metabolic
phenotype. Int J Cancer. 142:440–448. 2018. View Article : Google Scholar
|
|
15
|
Wang S, Luo J, Zhang Z, Dong D, Shen Y,
Fang Y, Hu L, Liu M, Dai C, Peng S, et al: Iron and magnetic: New
research direction of the ferroptosis-based cancer therapy. Am J
Cancer Res. 8:1933–1946. 2018.PubMed/NCBI
|
|
16
|
Snezhkina AV, Kudryavtseva AV, Kardymon
OL, Savvateeva MV, Melnikova NV, Krasnov GS and Dmitriev AA: ROS
Generation and antioxidant defense systems in normal and malignant
cells. Oxid Med Cell Longev. 2019:61758042019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Helfinger V and Schröder K: Redox control
in cancer development and progression. Mol Aspects Med. 63:88–98.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sánchez-Sánchez AM, Martín V,
García-Santos G, Rodríguez-Blanco J, Casado-Zapico S,
Suarez-Garnacho S, Antolín I and Rodriguez C: Intracellular redox
state as determinant for melatonin antiproliferative vs cytotoxic
effects in cancer cells. Free Radic Res. 45:1333–1341. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Klaunig JE: Oxidative stress and cancer.
Curr Pharm Des. 24:4771–4778. 2018. View Article : Google Scholar
|
|
20
|
Xie Q, Lan G, Zhou Y, Huang J, Liang Y,
Zheng W, Fu X, Fan C and Chen T: Strategy to enhance the anticancer
efficacy of X-ray radiotherapy in melanoma cells by platinum
complexes, the role of ROS-mediated signaling pathways. Cancer
Lett. 354:58–67. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Galeaz C, Totis C and Bisio A: Radiation
resistance: A matter of transcription factors. Front Oncol.
11:6628402021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sonis ST: Superoxide dismutase as an
intervention for radiation therapy-associated toxicities: Review
and profile of avasopasem manganese as a treatment option for
radiation-induced mucositis. Drug Des Devel Ther. 15:1021–1029.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Perillo B, Di Donato M, Pezone A, Di Zazzo
E, Giovannelli P, Galasso G, Castoria G and Migliaccio A: ROS in
cancer therapy: The bright side of the moon. Exp Mol Med.
52:192–203. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kim SJ, Kim HS and Seo YR: Understanding
of ROS-inducing strategy in anticancer therapy. Oxid Med Cell
Longev. 2019:53816922019. View Article : Google Scholar
|
|
25
|
Hu J, Li Y, Li H, Shi F, Xie L, Zhao L,
Tang M, Luo X, Jia W, Fan J, et al: Targeting Epstein-Barr virus
oncoprotein LMP1-mediated high oxidative stress suppresses EBV
lytic reactivation and sensitizes tumors to radiation therapy.
Theranostics. 10:11921–11937. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Poprac P, Jomova K, Simunkova M, Kollar V,
Rhodes CJ and Valko M: Targeting free radicals in oxidative
stress-related human diseases. Trends Pharmacol Sci. 38:592–607.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jiang H, Wang H and De Ridder M: Targeting
antioxidant enzymes as a radiosensitizing strategy. Cancer Lett.
438:154–164. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jaganjac M, Milkovic L, Sunjic SB and
Zarkovic N: The NRF2, Thioredoxin, and Glutathione system in
tumorigenesis and anticancer therapies. Antioxidants (Basel).
9:E11512020. View Article : Google Scholar
|
|
29
|
Reczek CR and Chandel NS: The two faces of
reactive oxygen species in cancer. Ann Rev Cancer Biol. 1:79–98.
2017. View Article : Google Scholar
|
|
30
|
Koyama H, Nojiri H, Kawakami S, Sunagawa
T, Shirasawa T and Shimizu T: Antioxidants improve the phenotypes
of dilated cardiomyopathy and muscle fatigue in mitochondrial
superoxide dismutase-deficient mice. Molecules. 18:1383–1393. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ighodaro OM and Akinloye OA: First line
defence antioxidantssuperoxide dismutase (SOD), catalase (CAT) and
glutathione peroxidase (GPX): Their fundamental role in the entire
antioxidant defence grid. Alexandria J Med. 54:287–293. 2018.
View Article : Google Scholar
|
|
32
|
Haddad M, Hervé V, Ben Khedher MR, Rabanel
JM and Ramassamy C: Glutathione: An old and small molecule with
great functions and new applications in the brain and in
Alzheimer's disease. Antioxid Redox Signal. 35:270–292. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Marrocco I, Altieri F and Peluso I:
Measurement and clinical significance of biomarkers of oxidative
stress in humans. Oxid Med Cell Longev. 2017:65010462017.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ,
Shen JX and Liu J: Involvement of glutathione peroxidases in the
occurrence and development of breast cancers. J Transl Med.
18:2472020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu X, Zhang Y, Zhuang L, Olszewski K and
Gan B: NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated
cystine uptake as a double-edged sword in cellular redox
regulation. Genes Dis. 8:731–745. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu J, Xia X and Huang P: xCT: A critical
molecule that links cancer metabolism to redox signaling. Mol Ther.
28:2358–2366. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lu J, Chew EH and Holmgren A: Targeting
thioredoxin reductase is a basis for cancer therapy by arsenic
trioxide. Proc Natl Acad Sci USA. 104:12288–12293. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ren X, Zou L, Zhang X, Branco V, Wang J,
Carvalho C, Holmgren A and Lu J: Redox signaling mediated by
thioredoxin and glutathione systems in the central nervous system.
Antioxid Redox Signal. 27:989–1010. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu TI, Lu TY, Yang YC, Chang SH, Chen HH,
Lu IL, Sabu A and Chiu HC: New combination treatment from
ROS-Induced sensitized radiotherapy with nanophototherapeutics to
fully eradicate orthotopic breast cancer and inhibit metastasis.
Biomaterials. 257:1202292020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Shevtsov M, Sato H, Multhoff G and Shibata
A: Novel approaches to improve the efficacy of immuno-Radiotherapy.
Front Oncol. 9:1562019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rabus H: Nanodosimetry-on the 'tracks' of
biological radiation effectiveness. Z Med Phys. 30:91–94. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang H, Jiang H, Van De Gucht M and De
Ridder M: Hypoxic radioresistance: Can ROS be the key to overcome
it? Cancers (Basel). 11:1122019. View Article : Google Scholar
|
|
43
|
Alizadeh E, Orlando TM and Sanche L:
Biomolecular damage induced by ionizing radiation: The direct and
indirect effects of low-energy electrons on DNA. Annu Rev Phys
Chem. 66:379–398. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Baskar R, Dai J, Wenlong N, Yeo R and Yeoh
KW: Biological response of cancer cells to radiation treatment.
Front Mol Biosci. 1:242014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Le Caër S: Water Radiolysis: Influence of
oxide surfaces on H2 production under ionizing radiation. Water.
3:235–253. 2011. View Article : Google Scholar
|
|
46
|
Baldacchino G, Brun E, Denden I, Bouhadoun
S, Roux R, Khodja H and Sicard-Roselli C: Importance of radiolytic
reactions during high-LET irradiation modalities: LET effect, role
of O2 and radiosensitization by nanoparticles. Cancer Nanotechnol.
10:32019. View Article : Google Scholar
|
|
47
|
Gong L, Zhang Y, Liu C, Zhang M and Han S:
Application of radiosensitizers in cancer radiotherapy. Int J
Nanomedicine. 16:1083–1102. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Collin F: Chemical basis of reactive
oxygen species reactivity and involvement in neurodegenerative
diseases. Int J Mol Sci. 20:24072019. View Article : Google Scholar :
|
|
49
|
Dayal R, Singh A, Pandey A and Mishra KP:
Reactive oxygen species as mediator of tumor radiosensitivity. J
Cancer Res Ther. 10:811–818. 2014. View Article : Google Scholar
|
|
50
|
Azzam EI, Jay-Gerin JP and Pain D:
Ionizing radiation-induced metabolic oxidative stress and prolonged
cell injury. Cancer Lett. 327:48–60. 2012. View Article : Google Scholar
|
|
51
|
Robinett ZN, Bathla G, Wu A, Clark JJ,
Sibenaller ZA, Wilson T, Kirby P, Allen BG and Hansen MR:
Persistent oxidative stress in vestibular schwannomas after
stereotactic radiation therapy. Otol Neurotol. 39:1184–1190. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Buonanno M, de Toledo SM, Pain D and Azzam
EI: Long-Term consequences of radiation-induced bystander effects
depend on radiation quality and dose and correlate with oxidative
stress. Radiat Res. 175:405–415. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang QY, Wang FX, Jia KK and Kong LD:
Natural product interventions for chemotherapy and
radiotherapy-induced side effects. Front Pharmacol. 9:12532018.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Musa AE, Shabeeb D and Alhilfi HSQ:
Protective effect of melatonin against radiotherapy-induced small
intestinal oxidative stress: Biochemical evaluation. Medicina
(Kaunas). 55:3082019. View Article : Google Scholar
|
|
55
|
Lei G, Mao C, Yan Y, Zhuang L and Gan B:
Ferroptosis, radiotherapy, and combination therapeutic strategies.
Protein Cell. 12:836–857. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu B, Bhatt D, Oltvai ZN, Greenberger JS
and Bahar I: Significance of p53 dynamics in regulating apoptosis
in response to ionizing radiation and polypharmacological
strategies. Sci Rep. 4:62452014. View Article : Google Scholar
|
|
57
|
Zanella F, Link W and Carnero A:
Understanding FOXO, new views on old transcription factors. Curr
Cancer Drug Targets. 10:135–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Schmidt-Ullrich RK, Contessa JN, Lammering
G, Amorino G and Lin PS: ERBB receptor tyrosine kinases and
cellular radiation responses. Oncogene. 22:5855–5865. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of non-apoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhu J, Xiong Y, Zhang Y, Wen J, Cai N,
Cheng K, Liang H and Zhang W: The molecular mechanisms of
regulating oxidative stress-induced ferroptosis and therapeutic
strategy in tumors. Oxid Med Cell Longev. 2020:88107852020.
View Article : Google Scholar
|
|
61
|
Barrera G: Oxidative stress and lipid
peroxidation products in cancer progression and therapy. ISRN
Oncol. 2012:1372892012.PubMed/NCBI
|
|
62
|
Stockwell BR, Jiang X and Gu W: Emerging
mechanisms and disease relevance of ferroptosis. Trends Cell Biol.
30:478–490. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lang X, Green MD, Wang W, Yu J, Choi JE,
Jiang L, Liao P, Zhou J, Zhang Q, Dow A, et al: Radiotherapy and
immunotherapy promote tumoral lipid oxidation and ferroptosis via
synergistic repression of SLC7A11. Cancer Discov. 9:1673–1685.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li X, Duan L, Yuan S, Zhuang X, Qiao T and
He J: Ferroptosis inhibitor alleviates Radiation-induced lung
fibrosis (RILF) via down-regulation of TGF-β1. J Inflamm (Lond).
16:112019. View Article : Google Scholar
|
|
65
|
Lei G, Zhang Y, Koppula P, Liu X, Zhang J,
Lin SH, Ajani JA, Xiao Q, Liao Z, Wang H and Gan B: The role of
ferroptosis in ionizing radiation-induced cell death and tumor
suppression. Cell Res. 30:146–162. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao
N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell
Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jiang L, Kon N, Li T, Wang SJ, Su T,
Hibshoosh H, Baer R and Gu W: Ferroptosis as a p53-mediated
activity during tumour suppression. Nature. 520:57–62. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dodson M, Castro-Portuguez R and Zhang DD:
NRF2 plays a critical role in mitigating lipid peroxidation and
ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cameron BD, Sekhar KR, Ofori M and Freeman
ML: The role of Nrf2 in the response to normal tissue radiation
injury. Radiat Res. 190:99–106. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sekhar KR and Freeman ML: Nrf2 promotes
survival following exposure to ionizing radiation. Free Radic Biol
Med. 88:268–274. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Feng L, Zhao K, Sun L, Yin X, Zhang J, Liu
C and Li B: SLC7A11 regulated by NRF2 modulates esophageal squamous
cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl
Med. 19:3672021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lippmann J, Petri K, Fulda S and Liese J:
Redox modulation and induction of ferroptosis as a new therapeutic
strategy in hepatocellular carcinoma. Transl Oncol. 13:1007852020.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jakobs P, Serbulea V, Leitinger N, Eckers
A and Haendeler J: Nuclear factor (Erythroid-Derived 2)-Like 2 and
Thioredoxin-1 in atherosclerosis and ischemia/reperfusion injury in
the heart. Antioxid Redox Signal. 26:630–644. 2017. View Article : Google Scholar :
|
|
74
|
Banning A, Deubel S, Kluth D, Zhou Z and
Brigelius-Flohé R: The GI-GPx Gene Is a target for Nrf2. Mol Cell
Biol. 25:4914–4923. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kim YJ, Ahn JY, Liang P, Ip C, Zhang Y and
Park YM: Human prx1 gene is a target of Nrf2 and is up-regulated by
hypoxia/reoxygenation: Implication to tumor biology. Cancer Res.
67:546–554. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Fisher AB: Peroxiredoxin 6: A Bifunctional
enzyme with glutathione peroxidase and phospholipase A2 activities.
Antioxid Redox Signal. 15:831–844. 2011. View Article : Google Scholar :
|
|
77
|
Yang H, Magilnick N, Lee C, Kalmaz D, Ou
X, Chan JY and Lu SC: Nrf1 and Nrf2 regulate rat glutamate-cysteine
ligase catalytic subunit transcription indirectly via NF-kappaB and
AP-1. Mol Cell Biol. 25:5933–5946. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sinha K, Das J, Pal PB and Sil PC:
Oxidative stress: The mitochondria-dependent and
mitochondria-independent pathways of apoptosis. Arch Toxicol.
87:1157–1180. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen KW, Demarco B, Heilig R, Shkarina K,
Boettcher A, Farady CJ, Pelczar P and Broz P: Extrinsic and
intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome
assembly. EMBO J. 38:e1016382019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cao X, Wen P, Fu Y, Gao Y, Qi X, Chen B,
Tao Y, Wu L, Xu A, Lu H and Zhao G: Radiation induces apoptosis
primarily through the intrinsic pathway in mammalian cells. Cell
Signal. 62:1093372019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu C, Mann D, Sinha UK and Kokot NC: The
molecular mechanisms of increased radiosensitivity of HPV-positive
oropharyngeal squamous cell carcinoma (OPSCC): An extensive review.
J Otolaryngol Head Neck Surg. 47:592018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mendes F, Sales T, Domingues C, Schugk S,
Abrantes AM, Gonçalves AC, Teixo R, Silva R, Casalta-Lopes J, Rocha
C, et al: Effects of X-radiation on lung cancer cells: the
interplay between oxidative stress and P53 levels. Med Oncol.
32:2662015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Mortezaee K, Najafi M, Farhood B, Ahmadi
A, Potes Y, Shabeeb D and Musa AE: Modulation of apoptosis by
melatonin for improving cancer treatment efficiency: An updated
review. Life Sci. 228:228–241. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Qin C, Chen X, Bai Q, Davis MR and Fang Y:
Factors associated with radiosensitivity of cervical cancer.
Anticancer Res. 34:4649–4656. 2014.PubMed/NCBI
|
|
85
|
Kim W, Lee S, Seo D, Kim D, Kim K, Kim E,
Kang J, Seong KM, Youn H and Youn B: Cellular stress responses in
radiotherapy. Cells. 8:11052019. View Article : Google Scholar :
|
|
86
|
Chang HW, Lee M, Lee YS, Kim SH, Lee JC,
Park JJ, Nam HY, Kim MR, Han MW, Kim SW and Kim SY: p53-dependent
glutamine usage determines susceptibility to oxidative stress in
radioresistant head and neck cancer cells. Cell Signal.
77:1098202021. View Article : Google Scholar
|
|
87
|
Maya R, Balass M, Kim ST, Shkedy D, Leal
JF, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, et al:
ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53
activation by DNA damage. Genes Dev. 15:1067–1077. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kim EM, Jung CH, Kim J, Hwang SG, Park JK
and Um HD: The p53/p21 complex regulates cancer cell invasion and
apoptosis by targeting Bcl-2 family proteins. Cancer Res.
77:3092–3100. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Budanov AV: The role of tumor suppressor
p53 in the antioxidant defense and metabolism. Subcell Biochem.
85:337–358. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Rastogi S, Rizwani W, Joshi B, Kunigal S
and Chellappan SP: TNF-α response of vascular endothelial and
vascular smooth muscle cells involve differential utilization of
ASK1 kinase and p73. Cell Death Differ. 19:274–283. 2012.
View Article : Google Scholar
|
|
91
|
Feltham R, Jamal K, Tenev T, Liccardi G,
Jaco I, Domingues CM, Morris O, John SW, Annibaldi A, Widya M, et
al: Mind bomb regulates cell death during TNF signaling by
suppressing RIPK1's cytotoxic potential. Cell Rep. 23:470–484.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kokolakis G, Sabat R, Krüger-Krasagakis S
and Eberle J: Ambivalent effects of tumor necrosis factor alpha on
apoptosis of malignant and normal human keratinocytes. Skin
Pharmacol Physiol. 34:94–102. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Stoytcheva ZR and Berry MJ:
Transcriptional regulation of mammalian selenoprotein expression.
Biochim Biophys Acta. 1790:1429–1440. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ross MJ, Martinka S, D'Agati VD and
Bruggeman LA: NF-kappaB regulates Fas-mediated apoptosis in
HIV-associated nephropathy. J Am Soc Nephrol. 16:2403–2411. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Morgan MJ and Liu Z: Crosstalk of reactive
oxygen species and NF-κB signaling. Cell Res. 21:103–115. 2011.
View Article : Google Scholar
|
|
96
|
Li Q, Sun Y, Liu B, Li J, Hao X, Ge W,
Zhang X, Bao S, Gong J, Jiang Z, et al: ACT001 modulates the
NF-κB/MnSOD/ROS axis by targeting IKKβ to inhibit glioblastoma cell
growth. J Mol Med (Berl). 98:263–277. 2020. View Article : Google Scholar
|
|
97
|
Kumar S and Clair DS: Radioresistance in
prostate cancer: Focus on the interplay between NF-κB and SOD.
Antioxidants (Basel). 10:19252021. View Article : Google Scholar
|
|
98
|
Soh R, Hardy A and Zur Nieden NI: The FOXO
signaling axis displays conjoined functions in redox homeostasis
and stemness. Free Radic Biol Med. 169:224–237. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ponugoti B, Dong G and Graves DT: Role of
forkhead transcription factors in diabetes-induced oxidative
stress. Exp Diabetes Res. 2012:9397512012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yang JY, Xia W and Hu MC: Ionizing
radiation activates expression of FOXO3a, Fas ligand, and Bim, and
induces cell apoptosis. Int J Oncol. 29:643–648. 2006.PubMed/NCBI
|
|
101
|
Lim SW, Jin L, Luo K, Jin J, Shin YJ, Hong
SY and Yang CW: Klotho enhances FoxO3-mediated manganese superoxide
dismutase expression by negatively regulating PI3K/AKT pathway
during tacrolimus-induced oxidative stress. Cell Death Dis.
8:e29722017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Tseng AH, Wu LH, Shieh SS and Wang DL:
SIRT3 interactions with FOXO3 acetylation, phosphorylation and
ubiquitinylation mediate endothelial cell responses to hypoxia.
Biochem J. 464:157–168. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang Y, Chen S and Li H: Hydrogen peroxide
stress stimulates phosphorylation of FoxO1 in rat aortic
endothelial cells. Acta Pharmacol Sin. 31:160–164. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Guan L, Zhang L, Gong Z, Hou X, Xu Y, Feng
X, Wang H and You H: FoxO3 inactivation promotes human
cholangiocarcinoma tumorigenesis and chemoresistance through
Keap1-Nrf2 signaling. Hepatology. 63:1914–1927. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Araujo J, Breuer P, Dieringer S, Krauss S,
Dorn S, Zimmermann K, Pfeifer A, Klockgether T, Wuellner U and
Evert BO: FOXO4-dependent upregulation of superoxide dismutase-2 in
response to oxidative stress is impaired in spinocerebellar ataxia
type 3. Hum Mol Genet. 20:2928–2941. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Rached MT, Kode A, Xu L, Yoshikawa Y, Paik
JH, DePinho RA and Kousteni S: FoxO1 is a positive regulator of
bone formation by favoring protein synthesis and resistance to
oxidative stress in osteoblasts. Cell Metab. 11:147–160. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ye P, Mimura J, Okada T, Sato H, Liu T,
Maruyama A, Ohyama C and Itoh K: Nrf2- and ATF4-dependent
upregulation of xCT modulates the sensitivity of T24 bladder
carcinoma cells to proteasome inhibition. Mol Cell Biol.
34:3421–3434. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wang Z: ErbB receptors and cancer. Methods
Mol Biol. 1652:3–35. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Valerie K, Yacoub A, Hagan MP, Curiel DT,
Fisher PB, Grant S and Dent P: Radiation-induced cell signaling:
Inside-out and outside-in. Mol Cancer Ther. 6:789–801. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Appert-Collin A, Hubert P, Crémel G and
Bennasroune A: Role of ErbB receptors in cancer cell migration and
invasion. Front Pharmacol. 6:2832015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wee P and Wang Z: Epidermal growth factor
receptor cell proliferation signaling pathways. Cancers (Basel).
9:522017. View Article : Google Scholar
|
|
112
|
Rezatabar S, Karimian A, Rameshknia V,
Parsian H, Majidinia M, Kopi TA, Bishayee A, Sadeghinia A, Yousefi
M, Monirialamdari M and Yousefi B: RAS/MAPK signaling functions in
oxidative stress, DNA damage response and cancer progression. J
Cell Physiol. Feb 27–2019.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kim MJ, Choi WG, Ahn KJ, Chae IG, Yu R and
Back SH: Reduced EGFR level in eIF2α PhosphorylationDeficient
hepatocytes is responsible for susceptibility to oxidative stress.
Mol Cells. 43:264–275. 2020.PubMed/NCBI
|
|
114
|
Zhang W, Yang H, Zhu L, Luo Y, Nie L and
Li G: Role of EGFR/ErbB2 and PI3K/AKT/e-NOS in Lycium barbarum
polysaccharides ameliorating endothelial dysfunction induced by
oxidative stress. Am J Chin Med. 47:1523–1539. 2019. View Article : Google Scholar
|
|
115
|
Boeckx C, Van den Bossche J, De Pauw I,
Peeters M, Lardon F, Baay M and Wouters A: The hypoxic tumor
microenvironment and drug resistance against EGFR inhibitors:
Preclinical study in cetuximab-sensitive head and neck squamous
cell carcinoma cell lines. BMC Res Notes. 8:2032015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Bierl C, Voetsch B, Jin RC, Handy DE and
Loscalzo J: Determinants of human plasma glutathione peroxidase
(GPx-3) expression. J Biol Chem. 279:26839–26845. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Tonelli C, Chio IIC and Tuveson DA:
Transcriptional regulation by Nrf2. Antioxid Redox Signal.
29:1727–1745. 2018. View Article : Google Scholar :
|
|
118
|
Kang HJ, Yi YW, Hong YB, Kim HJ, Jang YJ,
Seong YS and Bae I: HER2 confers drug resistance of human breast
cancer cells through activation of NRF2 by direct interaction. Sci
Rep. 4:72012014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sakurai A, Nishimoto M, Himeno S, Imura N,
Tsujimoto M, Kunimoto M and Hara S: Transcriptional regulation of
thioredoxin reductase 1 expression by cadmium in vascular
endothelial cells: Role of NF-E2-related factor-2. J Cell Physiol.
203:529–537. 2005. View Article : Google Scholar
|
|
120
|
Gordon LI, Burke MA, Singh AT, Prachand S,
Lieberman ED, Sun L, Naik TJ, Prasad SV and Ardehali H: Blockade of
the erbB2 receptor induces cardiomyocyte death through
mitochondrial and reactive oxygen species-dependent pathways. J
Biol Chem. 284:2080–2087. 2009. View Article : Google Scholar :
|
|
121
|
Allegra AG, Mannino F, Innao V, Musolino C
and Allegra A: Radioprotective agents and enhancers factors
Preventive and therapeutic strategies for oxidative induced
radiotherapy damages in hematological malignancies. Antioxidants
(Basel). 9:11162020. View Article : Google Scholar
|
|
122
|
Jasek-Gajda E, Jurkowska H, Jasińska M and
Lis GJ: Targeting the MAPK/ERK and PI3K/AKT signaling pathways
affects NRF2, Trx and GSH antioxidant systems in leukemia cells.
Antioxidants (Basel). 9:6332020. View Article : Google Scholar
|
|
123
|
Chen QM and Maltagliati AJ: Nrf2 at the
heart of oxidative stress and cardiac protection. Physiol Genomics.
50:77–97. 2018. View Article : Google Scholar :
|
|
124
|
Qin S, He X, Lin H, Schulte BA, Zhao M,
Tew KD and Wang GY: Nrf2 inhibition sensitizes breast cancer stem
cells to ionizing radiation via suppressing DNA repair. Free Radic
Biol Med. 169:238–247. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Sun X, Wang Q, Wang Y, Du L, Xu C and Liu
Q: Brusatol enhances the radiosensitivity of A549 cells by
promoting ROS production and enhancing DNA damage. Int J Mol Sci.
17:E9972016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Lee S, Lim MJ, Kim MH, Yu CH, Yun YS, Ahn
J and Song JY: An effective strategy for increasing the
radiosensitivity of Human lung Cancer cells by blocking
Nrf2-dependent antioxidant responses. Free Radic Biol Med.
53:807–816. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Tsuchida K, Tsujita T, Hayashi M, Ojima A,
Keleku-Lukwete N, Katsuoka F, Otsuki A, Kikuchi H, Oshima Y, Suzuki
M and Yamamoto M: Halofuginone enhances the chemo-sensitivity of
cancer cells by suppressing NRF2 accumulation. Free Radic Biol Med.
103:236–247. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Park M, Kwon J, Shin HJ, Moon SM, Kim SB,
Shin US, Han YH and Kim Y: Butyrate enhances the efficacy of
radiotherapy via FOXO3A in colorectal cancer patient-derived
organoids. Int J Oncol. 57:1307–1318. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Liu Z, Li Y, She G, Zheng X, Shao L, Wang
P, Pang M, Xie S and Sun Y: Resveratrol induces cervical cancer
HeLa cell apoptosis through the activation and nuclear
translocation promotion of FOXO3a. Pharmazie. 75:250–254.
2020.PubMed/NCBI
|
|
130
|
Wang H, Bouzakoura S, de Mey S, Jiang H,
Law K, Dufait I, Corbet C, Verovski V, Gevaert T, Feron O, et al:
Auranofin radiosensitizes tumor cells through targeting thioredoxin
reductase and resulting overproduction of reactive oxygen species.
Oncotarget. 8:35728–35742. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Xie Q, Zhou Y, Lan G, Yang L, Zheng W,
Liang Y and Chen T: Sensitization of cancer cells to radiation by
selenadiazole derivatives by regulation of ROS-mediated DNA damage
and ERK and AKT pathways. Biochem Biophys Res Commun. 449:88–93.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Liang YW, Zheng J, Li X, Zheng W and Chen
T: Selenadiazole derivatives as potent thioredoxin reductase
inhibitors that enhance the radiosensitivity of cancer cells. Eur J
Med Chem. 84:335–342. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Jia JJ, Geng WS, Wang ZQ, Chen L and Zeng
XS: The role of thioredoxin system in cancer: Strategy for cancer
therapy. Cancer Chemother Pharmacol. 84:453–470. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Kimple RJ, Vaseva AV, Cox AD, Baerman KM,
Calvo BF, Tepper JE, Shields JM and Sartor CI: Radiosensitization
of epidermal growth factor receptor/HER2-positive pancreatic cancer
is mediated by inhibition of Akt independent of ras mutational
status. Clin Cancer Res. 16:912–923. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Zhang S, Fu Y, Wang D and Wang J: Icotinib
enhances lung cancer cell radiosensitivity in vitro and in vivo by
inhibiting MAPK/ERK and AKT activation. Clin Exp Pharmacol Physiol.
May 16–2018.Epub ahead of print. View Article : Google Scholar
|
|
136
|
Yi H, Yan X, Luo Q, Yuan L, Li B, Pan W,
Zhang L, Chen H, Wang J, Zhang Y, et al: A novel small molecule
inhibitor of MDM2-p53 (APG-115) enhances radiosensitivity of
gastric adenocarcinoma. J Exp Clin Cancer Res. 37:972018.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Wang J, Wang H and Qian H: Biological
effects of radiation on cancer cells. Mil Med Res.
5:202018.PubMed/NCBI
|
|
138
|
Desouky O, Ding N and Zhou G: Targeted and
non-targeted effects of ionizing radiation. J Radiation Res App
Sci. 8:247–254. 2015.
|
|
139
|
De Ruysscher D, Niedermann G, Burnet NG,
Siva S, Lee AWM and Hegi-Johnson F: Radiotherapy toxicity. Nat Rev
Dis Primers. 5:132019. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Mukherjee D, Coates PJ, Lorimore SA and
Wright EG: Responses to ionizing radiation mediated by inflammatory
mechanisms. J Pathol. 232:289–299. 2014. View Article : Google Scholar
|
|
141
|
LeBaron TW, Kura B, Kalocayova B,
Tribulova N and Slezak J: A new approach for the prevention and
treatment of cardiovascular disorders. Molecular Hydrogen
Significantly Reduces the Effects of Oxidative Stress. Molecules.
24:20762019. View Article : Google Scholar :
|
|
142
|
Ebrahimi S, Soltani A and Hashemy SI:
Oxidative stress in cervical cancer pathogenesis and resistance to
therapy. J Cell Biochem. Nov 13–2018.Epub ahead of print.
PubMed/NCBI
|
|
143
|
Gudkov AV and Komarova EA: The role of p53
in determining sensitivity to radiotherapy. Nat Rev Cancer.
3:117–129. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
144
|
Li P, Zhao QL, Wu LH, Jawaid P, Jiao YF,
Kadowaki M and Kondo T: Isofraxidin, a potent reactive oxygen
species (ROS) scavenger, protects human leukemia cells from
radiation-induced apoptosis via ROS/mitochondria pathway in
p53-independent manner. Apoptosis. 19:1043–1053. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Qin H, Zhang H, Zhang X, Zhang S, Zhu S
and Wang H: Resveratrol attenuates radiation enteritis through the
SIRT1/FOXO3a and PI3K/AKT signaling pathways. Biochem Biophys Res
Commun. 554:199–205. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Nuszkiewicz J, Woźniak A and
Szewczyk-Golec K: Ionizing radiation as a source of oxidative
stress-the protective role of melatonin and vitamin D. Int J Mol
Sci. 21:58042020. View Article : Google Scholar
|
|
147
|
Farhood B, Goradel NH, Mortezaee K,
Khanlarkhani N, Salehi E, Nashtaei MS, Mirtavoos-Mahyari H,
Motevaseli E, Shabeeb D, Musa AE and Najafi M: Melatonin as an
adjuvant in radiotherapy for radioprotection and
radiosensitization. Clin Transl Oncol. 21:268–279. 2019. View Article : Google Scholar
|
|
148
|
Batinic-Haberle I, Tovmasyan A and
Spasojevic I: Mn Porphyrin-based redox-active drugs: Differential
effects as cancer therapeutics and protectors of normal tissue
against oxidative injury. Antioxid Redox Signal. 29:1691–1724.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Batinic-Haberle I, Tovmasyan A, Huang Z,
Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I
and Alvarez Secord A: H2O2-Driven Anticancer
Activity of Mn Porphyrins and the underlying molecular pathways.
Oxid Med Cell Longev. 2021:66537902021. View Article : Google Scholar
|