|
1
|
Papi A, Brightling C, Pedersen SE and
Reddel HK: Asthma. Lancet. 391:783–800. 2018. View Article : Google Scholar
|
|
2
|
Adcock IM, Caramori G and Chung KF: New
targets for drug development in asthma. Lancet. 372:1073–1087.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Barnes CB and Ulrik CS: Asthma and
adherence to inhaled corticosteroids: Current status and future
perspectives. Respir Care. 60:455–468. 2015. View Article : Google Scholar
|
|
4
|
Conner JB and Buck PO: Improving asthma
management: The case for mandatory inclusion of dose counters on
all rescue bronchodilators. J Asthma. 50:658–663. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Campo P, Rodriguez F, Sanchez-Garcia S,
Barranco P, Quirce S, Pérez-Francés C, Gómez-Torrijos E, Cárdenas
R, Olaguibel JM, Delgado J, et al: Phenotypes and endotypes of
uncontrolled severe asthma: New treatments. J Investig Allergol
Clin Immunol. 23:76–88; quiz 71 p follow 88. 2013.PubMed/NCBI
|
|
6
|
Martin MJ, Beasley R and Harrison TW:
Towards a personalised treatment approach for asthma attacks.
Thorax. 75:1119–1129. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pflanz S, Timans JC, Cheung J, Rosales R,
Kanzler H, Gilbert J, Hibbert L, Churakova T, Travis M, Vaisberg E,
et al: IL-27, a heterodimeric cytokine composed of EBI3 and p28
protein, induces proliferation of naive CD4+ T cells. Immunity.
16:779–790. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Owaki T, Asakawa M, Morishima N, Hata K,
Fukai F, Matsui M, Mizuguchi J and Yoshimoto T: A role for IL-27 in
early regulation of Th1 differentiation. J Immunol. 175:2191–2200.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hunter CA: New IL-12-family members: IL-23
and IL-27, cytokines with divergent functions. Nat Rev Immunol.
5:521–531. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Meka RR, Venkatesha SH, Dudics S, Acharya
B and Moudgil KD: IL-27-induced modulation of autoimmunity and its
therapeutic potential. Autoimmun Rev. 14:1131–1141. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Owaki T, Asakawa M, Fukai F, Mizuguchi J
and Yoshimoto T: IL-27 induces Th1 differentiation via p38
MAPK/T-bet- and intercellular adhesion
molecule-1/LFA-1/ERK1/2-dependent pathways. J Immunol.
177:7579–7587. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wang RX, Yu CR, Mahdi RM and Egwuagu CE:
Novel IL27p28/IL12p40 cytokine suppressed experimental autoimmune
uveitis by inhibiting autoreactive Th1/Th17 cells and promoting
expansion of regulatory T cells. J Biol Chem. 287:36012–36021.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Artis D, Villarino A, Silverman M, He W,
Thornton EM, Mu S, Summer S, Covey TM, Huang E, Yoshida H, et al:
The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive
elements of type 2 immunity. J Immunol. 173:5626–5634. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Moro K, Kabata H, Tanabe M, Koga S, Takeno
N, Mochizuki M, Fukunaga K, Asano K, Betsuyaku T and Koyasu S:
Interferon and IL-27 antagonize the function of group 2 innate
lymphoid cells and type 2 innate immune responses. Nat Immunol.
17:76–86. 2016. View Article : Google Scholar
|
|
15
|
Qin L, Li Z, Fan Y, Fang X, Zhang C, Yue
J, Xu Y, Wenzel SE and Xie M: Exploration of plasma interleukin-27
levels in asthma patients and the correlation with lung function.
Respir Med. 175:1062082020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Liu Z, Niu C, Ying L, Zhang Q, Long M and
Fu Z: Exploration of the serum interleukin-17 and interleukin-27
expression levels in children with bronchial asthma and their
correlation with indicators of lung function. Genet Test Mol
Biomarkers. 24:10–16. 2020. View Article : Google Scholar
|
|
17
|
Jirmo AC, Daluege K, Happle C, Albrecht M,
Dittrich AM, Busse M, Habener A, Skuljec J and Hansen G: IL-27 is
essential for suppression of experimental allergic asthma by the
TLR7/8 Agonist R848 (Resiquimod). J Immunol. 197:4219–4227. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lu D, Lu J, Ji X, Ji Y, Zhang Z, Peng H,
Sun F and Zhang C: IL27 suppresses airway inflammation,
hyperresponsiveness and remodeling via the STAT1 and STAT3 pathways
in mice with allergic asthma. Int J Mol Med. 46:641–652. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Roncarolo MG, Gregori S, Bacchetta R and
Battaglia M: Tr1 cells and the counter-regulation of immunity:
Natural mechanisms and therapeutic applications. Curr Top Microbiol
Immunol. 380:39–68. 2014.PubMed/NCBI
|
|
20
|
Song Y, Wang N, Chen L and Fang L: Tr1
cells as a key regulator for maintaining immune homeostasis in
transplantation. Front Immunol. 12:6715792021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Battaglia M, Gregori S, Bacchetta R and
Roncarolo MG: Tr1 cells: From discovery to their clinical
application. Semin Immunol. 18:120–127. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yoshimoto T, Yoshimoto T, Yasuda K,
Mizuguchi J and Nakanishi K: IL-27 suppresses Th2 cell development
and Th2 cytokines production from polarized Th2 cells: A novel
therapeutic way for Th2-mediated allergic inflammation. J Immunol.
179:4415–4423. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Su X, Pan J, Bai F, Yuan H, Dong N, Li D,
Wang X and Chen Z: IL-27 attenuates airway inflammation in a mouse
asthma model via the STAT1 and GADD45Y/p38 MAPK pathways. J Transl
Med. 14:2832016. View Article : Google Scholar
|
|
24
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press (US); Washington, DC: 2011
|
|
25
|
Reddy AT, Lakshmi SP and Reddy RC: Murine
model of allergen induced asthma. J Vis Exp. 63:e37712012.
|
|
26
|
Liu X, Li S, Jin J, Zhu T, Xu K, Liu C,
Zeng Y, Mao R, Wang X and Chen Z: Preventative tracheal
administration of interleukin-27 attenuates allergic asthma by
improving the lung Th1 microenvironment. J Cell Physiol.
234:6642–6653. 2019. View Article : Google Scholar
|
|
27
|
Overmyer KA, Thonusin C, Qi NR, Burant CF
and Evans CR: Impact of anesthesia and euthanasia on metabolomics
of mammalian tissues: Studies in a C57BL/6J mouse model. PLoS One.
10:e01172322015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kirstein F, Nieuwenhuizen NE, Jayakumar J,
Horsnell WGC and Brombacher F: Role of IL-4 receptor α-positive
CD4(+) T cells in chronic airway hyperresponsiveness. J Allergy
Clin Immunol. 137:1852–1862 e9. 2016. View Article : Google Scholar
|
|
29
|
O'Byrne PM and Inman MD: Airway
hyperresponsiveness. Chest. 123(3 Suppl): 411S–416S. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hoymann HG: Lung function measurements in
rodents in safety pharmacology studies. Front Pharmacol. 3:1562012.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Martin TR, Gerard NP, Galli SJ and Drazen
JM: Pulmonary responses to bronchoconstrictor agonists in the
mouse. J Appl Physiol (1985). 64:2318–2323. 1988. View Article : Google Scholar
|
|
32
|
Cataldo DD, Tournoy KG, Vermaelen K,
Munaut C, Foidart JM, Louis R, Noël A and Pauwels RA: Matrix
metalloproteinase-9 deficiency impairs cellular infiltration and
bronchial hyperresponsiveness during allergen-induced airway
inflammation. Am J Pathol. 161:491–498. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Polte T, Behrendt AK and Hansen G: Direct
evidence for a critical role of CD30 in the development of allergic
asthma. J Allergy Clin Immunol. 118:942–948. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lambrecht BN, Hammad H and Fahy JV: The
cytokines of asthma. Immunity. 50:975–991. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hammad H and Lambrecht BN: The basic
immunology of asthma. Cell. 184:2521–2522. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Albrecht M, Chen HC, Preston-Hurlburt P,
Ranney P, Hoymann HG, Maxeiner J, Staudt V, Taube C, Bottomly HK
and Dittrich AM: T(H)17 cells mediate pulmonary collateral priming.
J Allergy Clin Immunol. 128:168–177.e8. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kalidhindi RSR, Ambhore NS and Sathish V:
Cellular and biochemical analysis of bronchoalveolar lavage fluid
from murine lungs. Methods Mol Biol. 2223:201–215. 2021. View Article : Google Scholar :
|
|
38
|
Gregorczyk I and Maslanka T: Blockade of
RANKL/RANK and NF-kB signalling pathways as novel therapeutic
strategies for allergic asthma: A comparative study in a mouse
model of allergic airway inflammation. Eur J Pharmacol.
879:1731292020. View Article : Google Scholar
|
|
39
|
Chauhan PS, Subhashini, Dash D and Singh
R: Intranasal curcumin attenuates airway remodeling in murine model
of chronic asthma. Int Immunopharmacol. 21:63–75. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
|
41
|
Loke WS, Freeman A, Garthwaite L,
Prazakova S, Park M, Hsu K, Thomas PS and Herbert C: T-bet and
interleukin-27: Possible TH1 immunomodulators of sarcoidosis.
Inflammopharmacology. 23:283–290. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kelly-Welch AE, Melo ME, Smith E, Ford AQ,
Haudenschild C, Noben-Trauth N and Keegan AD: Complex role of the
IL-4 receptor alpha in a murine model of airway inflammation:
Expression of the IL-4 receptor alpha on nonlymphoid cells of bone
marrow origin contributes to severity of inflammation. J Immunol.
172:4545–4555. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tang X, Nian H, Li X, Yang Y, Wang X, Xu
L, Shi H, Yang X and Liu R: Effects of the combined extracts of
Herba Epimedii and Fructus Ligustrilucidi on airway remodeling in
the asthmatic rats with the treatment of budesonide. BMC Complement
Altern Med. 17:3802017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Komai M, Tanaka H, Masuda T, Nagao K,
Ishizaki M, Sawada M and Nagai H: Role of Th2 responses in the
development of allergen-induced airway remodelling in a murine
model of allergic asthma. Br J Pharmacol. 138:912–920. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kohan M, Breuer R and Berkman N:
Osteopontin induces airway remodeling and lung fibroblast
activation in a murine model of asthma. Am J Respir Cell Mol Biol.
41:290–296. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Eifan AO, Orban NT, Jacobson MR and Durham
SR: Severe persistent allergic rhinitis. Inflammation but No
histologic features of structural upper airway remodeling. Am J
Respir Crit Care Med. 192:1431–1439. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Apetoh L, Quintana FJ, Pot C, Joller N,
Xiao S, Kumar D, Burns EJ, Sherr DH, Weiner HL and Kuchroo VK: The
aryl hydrocarbon receptor interacts with c-Maf to promote the
differentiation of type 1 regulatory T cells induced by IL-27. Nat
Immunol. 11:854–861. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Aron JL and Akbari O: Regulatory T cells
and type 2 innate lymphoid cell-dependent asthma. Allergy.
72:1148–1155. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Afkarian M, Sedy JR, Yang J, Jacobson NG,
Cereb N, Yang SY, Murphy TL and Murphy KM: T-bet is a STAT1-induced
regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol.
3:549–557. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lighvani AA, Frucht DM, Jankovic D, Yamane
H, Aliberti J, Hissong BD, Nguyen BV, Gadina M, Sher A, Paul WE and
O'Shea JJ: T-bet is rapidly induced by interferon-gamma in lymphoid
and myeloid cells. Proc Natl Acad Sci USA. 98:15137–15142. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Doganci A, Eigenbrod T, Krug N, De Sanctis
GT, Hausding M, Erpenbeck VJ, Haddad el-B, Lehr HA, Schmitt E, Bopp
T, et al: The IL-6R alpha chain controls lung CD4+CD25+ Treg
development and function during allergic airway inflammation in
vivo. J Clin Invest. 115:313–325. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Finotto S, Eigenbrod T, Karwot R, Boross
I, Doganci A, Ito H, Nishimoto N, Yoshizaki K, Kishimoto T,
Rose-John S, et al: Local blockade of IL-6R signaling induces lung
CD4+ T cell apoptosis in a murine model of asthma via regulatory T
cells. Int Immunol. 19:685–693. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen Z, Wang S, Erekosima N, Li Y, Hong J,
Qi X, Merkel P, Nagabhushanam V, Choo E, Katial R, et al: IL-4
confers resistance to IL-27-mediated suppression on CD4+ T cells by
impairing signal transducer and activator of transcription 1
signaling. J Allergy Clin Immunol. 132:912–921. e1–5. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Boonpiyathad T, Sozener ZC, Satitsuksanoa
P and Akdis CA: Immunologic mechanisms in asthma. Semin Immunol.
46:1013332019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ray A and Kolls JK: Neutrophilic
Inflammation in asthma and association with disease severity.
Trends Immunol. 38:942–954. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
El-behi M, Ciric B, Yu S, Zhang GX,
Fitzgerald DC and Rostami A: Differential effect of IL-27 on
developing versus committed Th17 cells. J Immunol. 183:4957–4967.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
McHedlidze T, Kindermann M, Neves AT,
Voehringer D, Neurath MF and Wirtz S: IL-27 suppresses type 2
immune responses in vivo via direct effects on group 2 innate
lymphoid cells. Mucosal Immunol. 9:1384–1394. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ho J, Bailey M, Zaunders J, Mrad N, Sacks
R, Sewell W and Harvey RJ: Group 2 innate lymphoid cells (ILC2s)
are increased in chronic rhinosinusitis with nasal polyps or
eosinophilia. Clin Exp Allergy. 45:394–403. 2015. View Article : Google Scholar
|
|
59
|
Kabata H, Moro K, Koyasu S, Fukunaga K,
Asano K and Betsuyaku T: Mechanisms to Suppress ILC2-induced airway
inflammation. Ann Am Thorac Soc. 13(Suppl 1): S952016.PubMed/NCBI
|
|
60
|
Kato A: Group 2 innate lymphoid cells in
airway diseases. Chest. 156:141–149. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kabata H, Moro K and Koyasu S: The group 2
innate lymphoid cell (ILC2) regulatory network and its underlying
mechanisms. Immunol Rev. 286:37–52. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Matsuda M, Doi K, Tsutsumi T, Fujii S,
Kishima M, Nishimura K, Kuroda I, Tanahashi Y, Yuasa R, Kinjo T, et
al: Regulation of allergic airway inflammation by adoptive transfer
of CD4+ T cells preferentially producing IL-10. Eur J
Pharmacol. 812:38–47. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pot C, Apetoh L and Kuchroo VK: Type 1
regulatory T cells (Tr1) in autoimmunity. Semin Immunol.
23:202–208. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
McGee HS and Agrawal DK: TH2 cells in the
pathogenesis of airway remodeling: Regulatory T cells a plausible
panacea for asthma. Immunol Res. 35:219–232. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Smith N and Broadley KJ: Optimisation of
the sensitisation conditions for an ovalbumin challenge model of
asthma. Int Immunopharmacol. 7:183–190. 2007. View Article : Google Scholar
|
|
66
|
Akdis M, Verhagen J, Taylor A, Karamloo F,
Karagiannidis C, Crameri R, Thunberg S, Deniz G, Valenta R, Fiebig
H, et al: Immune responses in healthy and allergic individuals are
characterized by a fine balance between allergen-specific T
regulatory 1 and T helper 2 cells. J Exp Med. 199:1567–1575. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wirtz S and Neurath MF: Animal models of
intestinal inflammation: New insights into the molecular
pathogenesis and immunotherapy of inflammatory bowel disease. Int J
Colorectal Dis. 15:144–160. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Akdis CA and Akdis M: Mechanisms of
allergen-specific immunotherapy and immune tolerance to allergens.
World Allergy Organ J. 8:172015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhao ST and Wang CZ: Regulatory T cells
and asthma. J Zhejiang Univ Sci B. 19:663–673. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
O'Farrell AM, Liu Y, Moore KW and Mui AL:
IL-10 inhibits macrophage activation and proliferation by distinct
signaling mechanisms: Evidence for Stat3-dependent and -independent
pathways. EMBO J. 17:1006–1018. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Stumhofer JS, Silver JS, Laurence A,
Porrett PM, Harris TH, Turka LA, Ernst M, Saris CJ, O'Shea JJ and
Hunter CA: Interleukins 27 and 6 induce STAT3-mediated T cell
production of interleukin 10. Nat Immunol. 8:1363–1371. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li MO, Wan YY, Sanjabi S, Robertson AK and
Flavell RA: Transforming growth factor-beta regulation of immune
responses. Annu Rev Immunol. 24:99–146. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rowshanravan B, Halliday N and Sansom DM:
CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018.
View Article : Google Scholar
|
|
74
|
Mandapathil M, Szczepanski MJ, Szajnik M,
Ren J, Jackson EK, Johnson JT, Gorelik E, Lang S and Whiteside TL:
Adenosine and prostaglandin E2 cooperate in the suppression of
immune responses mediated by adaptive regulatory T cells. J Biol
Chem. 285:27571–27580. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Magnani CF, Alberigo G, Bacchetta R,
Serafini G, Andreani M, Roncarolo MG and Gregori S: Killing of
myeloid APCs via HLA class I, CD2 and CD226 defines a novel
mechanism of suppression by human Tr1 cells. Eur J Immunol.
41:1652–1662. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Pot C, Apetoh L, Awasthi A and Kuchroo VK:
Molecular pathways in the induction of interleukin-27-driven
regulatory type 1 cells. J Interferon Cytokine Res. 30:381–388.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Muallem G, Wagage S, Sun Y, DeLong JH,
Valenzuela A, Christian DA, Harms Pritchard G, Fang Q, Buza EL,
Jain D, et al: IL-27 limits type 2 immunopathology following
parainfluenza virus infection. PLoS Pathog. 13:e10061732017.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Akdis M: T-cell tolerance to inhaled
allergens: Mechanisms and therapeutic approaches. Expert Opin Biol
Ther. 8:769–777. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Pot C, Jin H, Awasthi A, Liu SM, Lai CY,
Madan R, Sharpe AH, Karp CL, Miaw SC, Ho IC and Kuchroo VK: Cutting
edge: IL-27 induces the transcription factor c-Maf, cytokine IL-21,
and the costimulatory receptor ICOS that coordinately act together
to promote differentiation of IL-10-producing Tr1 cells. J Immunol.
183:797–801. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Bauquet AT, Jin H, Paterson AM,
Mitsdoerffer M, Ho IC, Sharpe AH and Kuchroo VK: The costimulatory
molecule ICOS regulates the expression of c-Maf and IL-21 in the
development of follicular T helper cells and TH-17 cells. Nat
Immunol. 10:167–175. 2009. View Article : Google Scholar
|
|
81
|
Nurieva RI, Duong J, Kishikawa H, Dianzani
U, Rojo JM, Ho Ic, Flavell RA and Dong C: Transcriptional
regulation of th2 differentiation by inducible costimulator.
Immunity. 18:801–811. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Diegelmann J, Olszak T, Goke B, Blumberg
RS and Brand S: A novel role for interleukin-27 (IL-27) as mediator
of intestinal epithelial barrier protection mediated via
differential signal transducer and activator of transcription
(STAT) protein signaling and induction of antibacterial and
anti-inflammatory proteins. J Biol Chem. 287:286–298. 2012.
View Article : Google Scholar
|
|
83
|
Kamiya S, Owaki T, Morishima N, Fukai F,
Mizuguchi J and Yoshimoto T: An indispensable role for STAT1 in
IL-27-induced T-bet expression but not proliferation of naive CD4+
T cells. J Immunol. 173:3871–3877. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Karwacz K, Miraldi ER, Pokrovskii M, Madi
A, Yosef N, Wortman I, Chen X, Watters A, Carriero N, Awasthi A, et
al: Critical role of IRF1 and BATF in forming chromatin landscape
during type 1 regulatory cell differentiation. Nat Immunol.
18:412–421. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Pereira ABM, de Oliveira JR, Teixeira MM,
da Silva PR, Rodrigues Junior V and Rogerio AP: IL-27 regulates
IL-4-induced chemokine production in human bronchial epithelial
cells. Immunobiology. 226:1520292021. View Article : Google Scholar
|
|
86
|
Wang H, Meng R, Li Z, Yang B, Liu Y, Huang
F, Zhang J, Chen H and Wu C: IL-27 induces the differentiation of
Tr1-like cells from human naive CD4+ T cells via the
phosphorylation of STAT1 and STAT3. Immunol Lett. 136:21–28. 2011.
View Article : Google Scholar
|
|
87
|
Pot C, Apetoh L, Awasthi A and Kuchroo VK:
Induction of regulatory Tr1 cells and inhibition of T(H)17 cells by
IL-27. Semin Immunol. 23:438–445. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Harb H, Stephen-Victor E, Crestani E,
Benamar M, Massoud A, Cui Y, Charbonnier LM, Arbag S, Baris S,
Cunnigham A, et al: A regulatory T cell Notch4-GDF15 axis licenses
tissue inflammation in asthma. Nat Immunol. 21:1359–1370. 2020.
View Article : Google Scholar : PubMed/NCBI
|