Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2022 Volume 50 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 50 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Time‑dependent changes in NLRP3 and Nrf2 levels in lipopolysaccharide‑induced acute lung injury

  • Authors:
    • Rana Dhar
    • Ning Li
    • Lejun Zhang
    • Yajun Li
    • Mohammad Nasiruddin Rana
    • Xinwei Cao
    • Zhengqiang Hu
    • Xuefeng Wang
    • Xuyang Zheng
    • Xuanli Xu
    • Huifang Tang
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China, Department of Pharmacy, Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China, Department of Pediatrics, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China, Department of Respiratory Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
    Copyright: © Dhar et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 142
    |
    Published online on: October 27, 2022
       https://doi.org/10.3892/ijmm.2022.5198
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe clinical conditions with a high mortality rate. Nucleotide‑binding oligomerization domain (NOD)‑like receptor containing pyrin domain 3 (NLRP3) and nuclear factor E2‑related factor 2 (Nrf2) have been reported to be associated with ALI. However, the dynamic changes in the levels of these factors in lipopolysaccharide (LPS)‑induced lung injury remain unclear. Thus, the present study aimed to determine the LPS‑induced activation of immunological cascades, as well as the NLRP3/Nrf2 signaling pathway at different stages of lung injury. For this purpose, mice were divided into six groups as follows: The control, LPS‑4 h, LPS‑24 h, LPS‑48 h, LPS‑96 h and LPS‑144 h groups. LPS (4 mg/kg) was administered intratracheally to induce lung injury. Flow cytometry was used to determine the changes in macrophages, neutrophils and T‑cell subsets in lung tissue, hematoxylin and eosin staining were used to measure the histopathological changes in lung tissues, ELISA was performed to evaluate the levels of cytokines, western blot analysis was used to measure the levels of inflammatory proteins, and reverse transcription‑quantitative PCR used to determine the mRNA level of a target gene. Following LPS administration, evident histopathological damage with neutrophil infiltration was observed which peaked at 48 h. The levels of interleukin‑1β, keratinocyte‑derived chemokine, macrophage inflammatory protein 2 and tumor necrosis factor a were markedly increased in bronchoalveolar lavage fluid and serum from the mice, and these levels peaked at 4 h. Moreover, LPS promoted Toll like receptor‑4 expression and reactive oxygen species production, thus activating NLRP3/Nrf2 signaling and pyroptosis. Collectively, the present study demonstrates that LPS triggers multiple inflammatory molecules and immune cells during ALI, which may be closely involved in the irregular redox status, NLRP3/Nrf2 pathway and pyroptosis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L and Slutsky AS: Acute respiratory distress syndrome: The Berlin definition. JAMA. 307:2526–2533. 2012.PubMed/NCBI

2 

Kushimoto S, Endo T, Yamanouchi S, Sakamoto T, Ishikura H, Kitazawa Y, Taira Y, Okuchi K, Tagami T, Watanabe A, et al: Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the Berlin definition. Crit Care. 17:R1322013. View Article : Google Scholar : PubMed/NCBI

3 

Abdulnour REE and Levy BD: Acute lung injury and the acute respiratory distress syndrome. Med Manag Surg Patient A Textb Perioper Med Fifth Ed. 154–171. 2010.

4 

Johnston LK, Rims CR, Gill SE, McGuire JK and Manicone AM: Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury. Am J Respir Cell Mol Biol. 47:417–426. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Zhang A, Pan W, Lv J and Wu H: Protective effect of amygdalin on LPS-induced acute lung injury by inhibiting NF-κB and NLRP3 signaling pathways. Inflammation. 40:745–751. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Tianzhu Z and Shumin W: Esculin inhibits the inflammation of LPS-induced acute lung injury in mice via regulation of TLR/NF-κB pathways. Inflammation. 38:1529–1536. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Park EJ, Kim YM, Kim HJ and Chang KC: Luteolin activates ERK1/2- and Ca2+-dependent HO-1 induction that reduces LPS-induced HMGB1, iNOS/NO, and COX-2 expression in RAW264.7 cells and mitigates acute lung injury of endotoxin mice. Inflamm Res. 67:445–453. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Marsland BJ, Nembrini C, Grün K, Reissmann R, Kurrer M, Leipner C and Kopf M: TLR ligands act directly upon T cells to restore proliferation in the absence of protein kinase C-theta signaling and promote autoimmune myocarditis. J Immunol. 178:3466–3473. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Mandraju R, Murray S, Forman J and Pasare C: Differential ability of surface and endosomal TLRs to induce CD8 T cell responses in vivo. J Immunol. 192:4303–4315. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Imam F, Al-Harbi NO, Al-Harbi MM, Ansari MA, Zoheir KMA, Iqbal M, Anwer MK, Hoshani ARA, Attia SM and Ahmad SF: Diosmin downregulates the expression of T cell receptors, pro-inflammatory cytokines and NF-κB activation against LPS-induced acute lung injury in mice. Pharmacol Res. 102:1–11. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Boorsma CE, Draijer C and Melgert BN: Macrophage heterogeneity in respiratory diseases. Mediators Inflamm. 2013:7692142013. View Article : Google Scholar : PubMed/NCBI

12 

Byrne AJ, Mathie SA, Gregory LG and Lloyd CM: Pulmonary macrophages: Key players in the innate defence of the airways. Thorax. 70:1189–1196. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Lee JW, Chun W, Lee HJ, Min JH, Kim SM, Seo JY, Ahn KS and Oh SR: The role of macrophages in the development of acute and chronic inflammatory lung diseases. Cells. 10:8972021. View Article : Google Scholar : PubMed/NCBI

14 

Nakajima T, Suarez CJ, Lin KW, Jen KY, Schnitzer JE, Makani SS, Parker N, Perkins DL and Finn PW: T cell pathways involving CTLA4 contribute to a model of acute lung injury. J Immunol. 184:5835–5841. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Eberl G: RORγt, a multitask nuclear receptor at mucosal surfaces. Mucosal Immunol. 10:27–34. 2017. View Article : Google Scholar

16 

Noack M and Miossec P: Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 13:668–677. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Connors TJ, Ravindranath TM, Bickham KL, Bickham KL, Gordon CL, Zhang F, Levin B, Baird JS and Farber DL: Airway CD8+ T cells are associated with lung injury during infant viral respiratory tract infection. Am J Respir Cell Mol Biol. 54:822–830. 2016. View Article : Google Scholar :

18 

Wong JJM, Leong JY, Lee JH, Albani S and Yeo JG: Insights into the immuno-pathogenesis of acute respiratory distress syndrome. Ann Transl Med. 7:5042019. View Article : Google Scholar : PubMed/NCBI

19 

Kumar V: Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets. Int Immunopharmacol. 89:1070872020. View Article : Google Scholar : PubMed/NCBI

20 

Soy M, Keser G, Atagündüz P, Tabak F, Atagündüz I and Kayhan S: Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin Rheumatol. 39:2085–2094. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Hennig P, Garstkiewicz M, Grossi S, Filippo MD, French LE and Beer HD: The crosstalk between Nrf2 and Inflammasomes. Int J Mol Sci. 19:5622018. View Article : Google Scholar :

22 

Garstkiewicz M, Strittmatter GE, Grossi S, Sand J, Fenini G, Werner S, French LE and Beer HD: Opposing effects of Nrf2 and Nrf2-activating compounds on the NLRP3 inflammasome independent of Nrf2-mediated gene expression. Eur J Immunol. 47:806–817. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Maier NK, Leppla SH and Moayeri M: The cyclopentenone prostaglandin 15d-PGJ 2 inhibits the NLRP1 and NLRP3 inflammasomes. J Immunol. 194:2776–2785. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Tonelli C, Chio IIC and Tuveson DA: Transcriptional regulation by Nrf2. Antioxid Redox Signal. 29:1727–1745. 2018. View Article : Google Scholar :

25 

Kelley N, Jeltema D, Duan Y and He Y: The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar :

26 

Possomato-Vieira, José S and Khalil RAK: Mechanism and regulation of NLRP3 inflammasome activation. Physiol Behav. 176:139–148. 2016.

27 

Zhao C, Gillette DD, Li X, Zhang Z and Wen H: Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J Biol Chem. 289:17020–17029. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR and Poltorak A: Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci USA. 115:E10888–E10897. 2018. View Article : Google Scholar :

29 

Muendlein HI, Jetton D, Connolly WM, Eidell KP, Magri Z, Smirnova I and Poltorak A: CFLIPL protects macrophages from LPS-induced pyroptosis via inhibition of complex II formation. Science. 367:1379–1384. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Xia S, Hollingsworth LR and Wu H: Mechanism and regulation of gasdermin-mediated cell death. Cold Spring Harb Perspect Biol. 12:1–14. 2020. View Article : Google Scholar

31 

Cen M, Ouyang W, Zhang W, Yang L, Lin X, Dai M, Hu H, Tang H, Liu H, Xia J and Xu F: MitoQ protects against hyper-permeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol. 41:1019362021. View Article : Google Scholar

32 

Tseng TL, Chen MF, Tsai MJ, Hsu YH, Chen CP and Lee TJF: Oroxylin-a rescues LPS-induced acute lung injury via regulation of NF-κB signaling pathway in rodents. PLoS One. 7:e474032012. View Article : Google Scholar

33 

Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS and Kuebler WM: An official american thoracic society workshop report: Features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 44:725–738. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

35 

Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV and Arendash GW: Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol. 155:109–117. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Roberts CA, Dickinson AK and Taams LS: The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis. Front Immunol. 6:5712015. View Article : Google Scholar :

37 

Dagvadorj J, Shimada K, Chen S, Jones HD, Tumurkhuu G, Zhang W, Wawrowsky KA, Crother TR and Arditi M: Lipopolysaccharide induces alveolar macrophage necrosis via CD14 and the P2x7 receptor leading to Interleukin-1α release. Immunity. 42:640–653. 2016. View Article : Google Scholar

38 

Altemeier WA, Zhu X, Berrington WR, Harlan JM and Liles WC: Fas (CD95) induces macrophage proinflammatory chemokine production via a MyD88-dependent, caspase-independent pathway. J Leukoc Biol. 82:721–728. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Hatanaka E, Monteagudo PT, Marrocos MSM and Campa A: Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clin Exp Immunol. 146:443–447. 2006. View Article : Google Scholar : PubMed/NCBI

40 

An SJ, Pae HO, Oh GS, Choi BM, Jeong S, Jang SI, Oh H, Kwon TO, Song CE and Chung HT: Inhibition of TNF-α, IL-1β, and IL-6 productions and NF-κB activation in lipopolysaccharide-activated RAW 264.7 macrophages by catalposide, an iri glycoside isolated from Catalpa ovata G. Don (Bignoniaceae). Int Immunopharmacol. 2:1173–1181. 2002. View Article : Google Scholar : PubMed/NCBI

41 

Bosnar M, Bošnjak B, Čužić S, Hrvacic B, Marjanovic N, Glojnaric I, Culic O, Parnham MJ and Haber VE: Azithromycin and clarithromycin inhibit lipopolysaccharide-induced murine pulmonary neutrophilia mainly through effects on macrophage-derived granulocyte-macrophage colony-stimulating factor and interleukin-1β. J Pharmacol Exp Ther. 331:104–113. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Risso K, Kumar G, Ticchioni M, Sanfiorenzo C, Dellamonica J, Guillouet-de Salvador F, Bernardin G, Marquette CH and Roger PM: Early infectious acute respiratory distress syndrome is characterized by activation and proliferation of alveolar T-cells. Eur J Clin Microbiol Infect Dis. 34:1111–1118. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Janssen WJ, Barthel L, Muldrow A, Oberley-Deegan RE, Kearns MT, Jakubzick C and Henson PM: Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am J Respir Crit Care Med. 184:547–560. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Chen X, Tang J, Shuai W, Meng J, Feng J and Han Z: Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome. Inflamm Res. 69:883–895. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Williams MA, Rangasamy T, Bauer SM, Killedar S, Karp M, Kensler TW, Yamamoto M, Breysse P, Biswal S and Georas SN: Disruption of the transcription factor Nrf2 promotes pro-oxidative dendritic cells that stimulate Th2-like immunoresponsiveness upon activation by ambient particulate matter. J Immunol. 181:4545–4559. 2008. View Article : Google Scholar : PubMed/NCBI

46 

D'Souza NB, Mandujano FJ, Nelson S, Summer WR and Shellito JE: CD4+ T lymphocyte depletion attenuates lipopolysaccharide-induced tumor necrosis factor secretion by alveolar macrophages in the mouse. Lymphokine Cytokine Res. 13:359–366. 1994.PubMed/NCBI

47 

Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, Enelow RI, Ross TM, Witztum JL and Kolls JK: Critical role of IL-17RA in immunopathology of influenza infection. J Immunol. 183:5301–5310. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Chai YS, Chen YQ, Lin SH, Xie K, Wang CJ, Yang YZ and Xu F: Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice. Biomed Pharmacother. 125:1099462020. View Article : Google Scholar

49 

Philippakis GE, Lazaris AC, Papathomas TG, Zissis C, Agrogiannis G, Thomopoulou G, Nonni A, Xiromeritis K, Nikolopoulou-Stamati P, Bramis J, et al: Adrenaline attenuates the acute lung injury after intratracheal lipopolysaccharide instillation: An experimental study. Inhal Toxicol. 20:445–453. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Haring JS, Badovinac VP and Harty JT: Inflaming the CD8+ T cell response. Immunity. 25:19–29. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Ilatovskaya DV, Pitts C, Clayton J, Domondon M, Troncoso M, Pippin S and DeLeon-Pennell KY: CD8+ T-cells negatively regulate inflammation post-myocardial infarction. Am J Physiol Hear Circ Physiol. 317:H581–H596. 2019. View Article : Google Scholar

52 

den Haan JMM, Kraal G and Bevan MJ: Cutting edge: Lipopolysaccharide induces IL-10-producing regulatory CD4 + T cells that suppress the CD8 + T cell response. J Immunol. 178:5429–5433. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Hussein MR, Hassan HI, Hofny ERM, Elkholy M, Fatehy NA, Elmoniem AEA, El-Din AME, Afifi OA and Rashed HG: Alterations of mononuclear inflammatory cells, CD4/CD8+ T cells, interleukin 1β, and tumour necrosis factor α in the bronchoalveolar lavage fluid, peripheral blood, and skin of patients with systemic sclerosis. J Clin Pathol. 58:178–184. 2005. View Article : Google Scholar : PubMed/NCBI

54 

Cabrera-Perez J, Condotta SA, Badovinac VP and Griffith TS: Impact of sepsis on CD4 T cell immunity. J Leukoc Biol. 96:767–777. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Hori S, Nomura T and Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. J Immunol. 198:981–985. 2017.PubMed/NCBI

56 

Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ and Littman DR: The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126:1121–1133. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, Alcaide P, Grabie N, Luscinskas FW, Croce KJ and Lichtman AH: IL-17 and TNFα sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation1. J Immunol. 188:6287–6299. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Wen H, Miao EA and Ting JPY: Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity. 39:432–441. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Abais JM, Xia M, Zhang Y, Boini KM and Li PL: Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxidants Redox Signal. 22:1111–1129. 2015. View Article : Google Scholar

60 

Zhou R, Tardivel A, Thorens B, Choi I and Tschopp J: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 11:136–140. 2010. View Article : Google Scholar

61 

Zhou R, Yazdi AS, Menu P and Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–226. 2011. View Article : Google Scholar

62 

Vomund S, Schäfer A, Parnham MJ, Brüne B and Von Knethen A: Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 18:27722017. View Article : Google Scholar

63 

Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA and Latz E: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 9:847–856. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Jais A, Einwallner E, Sharif O, Gossens K, Lu TTH, Soyal SM, Medgyesi D, Neureiter D, Paier-Pourani J, Dalgaard K, et al: Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell. 158:25–40. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Tronel C, Rochefort GY, Arlicot N, Bodard S, Chalon S and Antier D: Oxidative stress is related to the deleterious effects of heme oxygenase-1 in an in vivo neuroinflammatory rat model. Oxid Med Cell Longev. 2013:2649352013. View Article : Google Scholar : PubMed/NCBI

66 

Raghawan AK, Sripada A, Gopinath G, Pushpanjali P, Kumar Y, Radha V and Swarup G: A disease-associated mutant of NLRC4 shows enhanced interaction with SUG1 leading to constitutive fadddependent caspase-8 activation and cell death. J Biol Chem. 292:1218–1230. 2017. View Article : Google Scholar

67 

Pierini R, Juruj C, Perret M, Jones CL, Mangeot P, Weiss DS and Henry T: AIM2/ASC triggers caspase-8-dependent apoptosis in francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 19:1709–1721. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Antonopoulos C, Russo HM, El Sanadi C, Martin BN, Li X, Kaiser WJ, Mocarski ES and Dubyak GR: Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling. J Biol Chem. 290:20167–20184. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA and Virág L: Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 26:1012392019. View Article : Google Scholar : PubMed/NCBI

70 

Haitao Lee PP: Neutrophil extracellular traps promoted alveolar macrophages pyroptosis in LPS induced ALI/ARDS. Eur Respir J. 52:PA42842018.

71 

Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, et al: Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 362:1064–1069. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dhar R, Li N, Zhang L, Li Y, Rana MN, Hu Z, Wang X, Zheng X, Xu X, Tang H, Tang H, et al: Time‑dependent changes in NLRP3 and Nrf2 levels in lipopolysaccharide‑induced acute lung injury. Int J Mol Med 50: 142, 2022.
APA
Dhar, R., Li, N., Zhang, L., Li, Y., Rana, M.N., Hu, Z. ... Cao, X. (2022). Time‑dependent changes in NLRP3 and Nrf2 levels in lipopolysaccharide‑induced acute lung injury. International Journal of Molecular Medicine, 50, 142. https://doi.org/10.3892/ijmm.2022.5198
MLA
Dhar, R., Li, N., Zhang, L., Li, Y., Rana, M. N., Hu, Z., Wang, X., Zheng, X., Xu, X., Tang, H., Cao, X."Time‑dependent changes in NLRP3 and Nrf2 levels in lipopolysaccharide‑induced acute lung injury". International Journal of Molecular Medicine 50.6 (2022): 142.
Chicago
Dhar, R., Li, N., Zhang, L., Li, Y., Rana, M. N., Hu, Z., Wang, X., Zheng, X., Xu, X., Tang, H., Cao, X."Time‑dependent changes in NLRP3 and Nrf2 levels in lipopolysaccharide‑induced acute lung injury". International Journal of Molecular Medicine 50, no. 6 (2022): 142. https://doi.org/10.3892/ijmm.2022.5198
Copy and paste a formatted citation
x
Spandidos Publications style
Dhar R, Li N, Zhang L, Li Y, Rana MN, Hu Z, Wang X, Zheng X, Xu X, Tang H, Tang H, et al: Time‑dependent changes in NLRP3 and Nrf2 levels in lipopolysaccharide‑induced acute lung injury. Int J Mol Med 50: 142, 2022.
APA
Dhar, R., Li, N., Zhang, L., Li, Y., Rana, M.N., Hu, Z. ... Cao, X. (2022). Time‑dependent changes in NLRP3 and Nrf2 levels in lipopolysaccharide‑induced acute lung injury. International Journal of Molecular Medicine, 50, 142. https://doi.org/10.3892/ijmm.2022.5198
MLA
Dhar, R., Li, N., Zhang, L., Li, Y., Rana, M. N., Hu, Z., Wang, X., Zheng, X., Xu, X., Tang, H., Cao, X."Time‑dependent changes in NLRP3 and Nrf2 levels in lipopolysaccharide‑induced acute lung injury". International Journal of Molecular Medicine 50.6 (2022): 142.
Chicago
Dhar, R., Li, N., Zhang, L., Li, Y., Rana, M. N., Hu, Z., Wang, X., Zheng, X., Xu, X., Tang, H., Cao, X."Time‑dependent changes in NLRP3 and Nrf2 levels in lipopolysaccharide‑induced acute lung injury". International Journal of Molecular Medicine 50, no. 6 (2022): 142. https://doi.org/10.3892/ijmm.2022.5198
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team