Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2023 Volume 51 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 51 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Exosomal delivery of TRAIL and miR‑335 for the treatment of hepatocellular carcinoma (Review)

  • Authors:
    • Nikita Thapa
    • Yong Joon Chwae
    • Kwang Ho Yoo
    • Tae-Bin Won
    • Daewook Kang
    • Daae Choi
    • Jaeyoung Kim
  • View Affiliations / Copyright

    Affiliations: CK‑Exogene, Inc., Seongnam, Gyeonggi‑do 13201, Republic of Korea, Department of Microbiology, Ajou University School of Medicine, Suwon, Gyeonggi‑do 16499, Republic of Korea, Department of Dermatology, Chung‑Ang University College of Medicine, Seoul 06973, Republic of Korea, Department of Otorhinolaryngology, Seoul National University Hospital, Seoul 03080, Republic of Korea
    Copyright: © Thapa et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 3
    |
    Published online on: November 18, 2022
       https://doi.org/10.3892/ijmm.2022.5206
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Liver cancer is the sixth most prevalent type of cancer worldwide and accounts for the third most frequent cause of cancer‑associated mortality. Conventional anticancer drugs display limited efficacy owing to their short half‑life, poor solubility and inefficient drug delivery. Despite advancements being made in drug discovery and development for the treatment of hepatocellular carcinoma (HCC), drug inefficacy and drug continue to pose significant obstacles to effective treatment. Therefore, it is imperative that novel treatment strategies be developed with the aim of developing anticancer treatments without any side‑effects and with long‑term durability. Extracellular vesicles, such as exosomes, intercellular communication agents which have the ability to carry heterogenous molecules with high penetrability, low immunogenicity and longer durability, may provide a versatile natural delivery system. The present review article illustrates the innovative treatment strategy using exosomes as a delivery agent for two distinct anticancer candidates, i.e., tumor necrosis factor‑related apoptosis‑inducing ligand and microRNA‑335. The aim of the present review was to present a unique strategy for the development of an exceptional anticancer treatment therapy exploiting exosomes as a delivery vehicle which may be used for HCC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Singal AG and El-Serag HB: Hepatocellular carcinoma from epidemiology to prevention: Translating knowledge into practice. Clin Gastroenterol Hepatol. 13:2140–2151. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Dasgupta P, Henshaw C, Youlden DR, Clark PJ, Aitken JF and Baade PD: Global trends in incidence rates of primary adult liver cancers: A systematic review and meta-analysis. Front Oncol. 10:1712020. View Article : Google Scholar : PubMed/NCBI

4 

Gomes MA, Priolli DG, Tralhão JG and Botelho MF: Hepatocellular carcinoma: Epidemiology, biology, diagnosis, and therapies. Rev Assoc Med Bras (1992). 59:514–524. 2013.In English, Portuguese. View Article : Google Scholar : PubMed/NCBI

5 

Center MM and Jemal A: International trends in liver cancer incidence rates. Cancer Epidemiol Biomarkers Prev. 20:2362–2368. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Farinati F, Sergio A, Baldan A, Giacomin A, Di Nolfo MA, Del Poggio P, Benvegnu L, Rapaccini G, Zoli M, Borzio F, et al: Early and very early hepatocellular carcinoma: When and how much do staging and choice of treatment really matter? A multi-center study. BMC Cancer. 9:332009. View Article : Google Scholar : PubMed/NCBI

7 

Kakushadze Z, Raghubanshi R and Yu W: Estimating cost savings from early cancer diagnosis. Data. 2:302017. View Article : Google Scholar

8 

Finn RS: Emerging targeted strategies in advanced hepatocellular carcinoma. Semin Liver Dis. 33(Suppl 1): S11–S19. 2013. View Article : Google Scholar : PubMed/NCBI

9 

WHO's International Agency for Research on Cancer (IARC): World Cancer Report 2014. Stewart BW and Kleihues P: IARC Press; Lyon: 2014

10 

Dimitroulis D, Damaskos C, Valsami S, Davakis S, Garmpis N, Spartalis E, Athanasiou A, Moris D, Sakellariou S, Kykalos S, et al: From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world. World J Gastroenterol. 23:5282–5294. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M and González-Fernández A: Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 3:3279–3330. 2011. View Article : Google Scholar : PubMed/NCBI

12 

El-Serag HB, Marrero JA, Rudolph L and Reddy KR: Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 134:1752–1763. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI

14 

Kane RC, Farrell AT, Madabushi R, Booth B, Chattopadhyay S, Sridhara R, Justice R and Pazdur R: Sorafenib for the treatment of unresectable hepatocellular carcinoma. Oncologist. 14:95–100. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, Wilhelm S, Lynch M and Carter C: Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851–11858. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Kudo M, Finn RS, Qin S, Han KH, Ikeda K, Piscaglia F, Baron A, Park JW, Han G, Jassem J, et al: Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet. 391:1163–1173. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, Kudo M, Breder V, Merle P, Kaseb AO, et al: Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. 382:1894–1905. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Ikeda K, Kudo M, Kawazoe S, Osaki Y, Ikeda M, Okusaka T, Tamai T, Suzuki T, Hisai T, Hayato S, et al: Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J Gastroenterol. 52:512–519. 2017. View Article : Google Scholar :

19 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST and Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 133:647–658. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Jin C, Wang A, Liu L, Wang G, Li G and Han Z: miR-145-5p inhibits tumor occurrence and metastasis through the NF-κB signaling pathway by targeting TLR4 in malignant melanoma. J Cell Biochem. Jan 30–2019.Epub ahead of print. View Article : Google Scholar

22 

Su Z, Yang Z, Xu Y, Chen Y and Yu Q: MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget. 6:8474–8490. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Hydbring P, Wang Y, Fassl A, Li X, Matia V, Otto T, Choi YJ, Sweeney KE, Suski JM, Yin H, et al: Cell-cycle-targeting MicroRNAs as therapeutic tools against refractory cancers. Cancer Cell. 31:576–590.e8. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Nagy Á, Lánczky A, Menyhárt O and Győrffy B: Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 8:92272018. View Article : Google Scholar : PubMed/NCBI

25 

Wang L, Zhao Y, Xu M, Zhou F and Yan J: Serum miR-1301-3p, miR-335-5p, miR-28-5p and their target B7-H3 may serve as novel biomarkers for colorectal cancer. J BUON. 24:1120–1127. 2019.PubMed/NCBI

26 

Du W, Tang H, Lei Z, Zhu J, Zeng Y, Liu Z and Huang JA: miR-335-5p inhibits TGF-β1-induced epithelial-mesenchymal transition in non-small cell lung cancer via ROCK1. Respir Res. 20:2252019. View Article : Google Scholar

27 

Xu X, Tao Y, Shan L, Chen R, Jiang H, Qian Z, Cai F, Ma L and Yu Y: The role of MicroRNAs in hepatocellular carcinoma. J Cancer. 9:3557–3569. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Wang G, Dong F, Xu Z, Sharma S, Hu X, Chen D, Zhang L, Zhang J and Dong Q: MicroRNA profile in HBV-induced infection and hepatocellular carcinoma. BMC Cancer. 17:8052017. View Article : Google Scholar : PubMed/NCBI

29 

Gougelet A: Exosomal microRNAs as a potential therapeutic strategy in hepatocellular carcinoma. World J Hepatol. 10:785–789. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Ye L, Wang F, Wu H, Yang H, Yang Y, Ma Y, Xue A, Zhu J, Chen M, Wang J and Zhang QA: Functions and targets of miR-335 in cancer. Onco Targets Ther. 14:3335–3349. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Scarola M, Schoeftner S, Schneider C and Benetti R: miR-335 directly targets Rb1 (pRb/p105) in a proximal connection to p53-dependent stress response. Cancer Res. 70:6925–6933. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Liu J, Bian T, Feng J, Qian L, Zhang J, Jiang D, Zhang Q, Li X, Liu Y and Shi J: miR-335 inhibited cell proliferation of lung cancer cells by target Tra2β. Cancer Sci. 109:289–296. 2018. View Article : Google Scholar

33 

Tang H, Zhu J, Du W, Liu S, Zeng Y, Ding Z, Zhang Y, Wang X, Liu Z and Huang J: CPNE1 is a target of miR-335-5p and plays an important role in the pathogenesis of non-small cell lung cancer. J Exp Clin Cancer Res. 37:1312018. View Article : Google Scholar : PubMed/NCBI

34 

Li HW and Liu J: Circ_0009910 promotes proliferation and metastasis of hepatocellular carcinoma cells through miR-335-5p/ROCK1 axis. Eur Rev Med Pharmacol Sci. 24:1725–1735. 2020.PubMed/NCBI

35 

Liu H, Li W, Chen C, Pei Y and Long X: MiR-335 acts as a potential tumor suppressor miRNA via downregulating ROCK1 expression in hepatocellular carcinoma. Tumour Biol. 36:6313–6319. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Chen K and Zhang L: LINC00339 regulates ROCK1 by miR-152 to promote cell proliferation and migration in hepatocellular carcinoma. J Cell Biochem. 120:14431–14443. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Chen C, Wu CQ, Zhang ZQ, Yao DK and Zhu L: Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation. Exp Cell Res. 317:1714–1725. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Yang X, Song H, Zi Z, Kou J, Chen S, Dai Y, Wang J, Yuan L and Gao K: Circ_0005075 promotes hepatocellular carcinoma progression by suppression of microRNA-335. J Cell Physiol. 234:21937–21946. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K and Cobb MH: Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr Rev. 22:153–183. 2001.PubMed/NCBI

40 

Zhang D, Li X, Yao Z, Wei C, Ning N and Li J: GABAergic signaling facilitates breast cancer metastasis by promoting ERK1/2-dependent phosphorylation. Cancer Lett. 348:100–108. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Ji YY, Song Y and Wang AN: MiR-335-5p inhibits proliferation of Huh-7 liver cancer cells via targeting the Oct4/Akt pathway. Eur Rev Med Pharmacol Sci. 25:1853–1860. 2021.PubMed/NCBI

42 

Zhang BJ, Gong HY, Zheng F, Liu DJ and Liu HX: Up-regulation of miR-335 predicts a favorable prognosis in esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 7:6213–6218. 2014.PubMed/NCBI

43 

Kim Y, Kim H, Park D and Jeoung D: miR-335 targets SIAH2 and confers sensitivity to anti-cancer drugs by increasing the expression of HDAC3. Mol Cells. 38:562–572. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Cheng Y and Shen P: miR-335 acts as a tumor suppressor and enhances ionizing radiation-induced tumor regression by targeting ROCK1. Front Oncol. 10:2782020. View Article : Google Scholar : PubMed/NCBI

45 

Cui L, Hu Y, Bai B and Zhang S: Serum miR-335 level is associated with the treatment response to trans-arterial chemoembolization and prognosis in patients with hepatocellular carcinoma. Cell Physiol Biochem. 37:276–283. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Chen S and Xia X: Long noncoding RNA NEAT1 suppresses sorafenib sensitivity of hepatocellular carcinoma cells via regulating miR-335-c-Met. J Cell Physiol. Apr 1–2019.Epub ahead of print.

47 

Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K, Konishi C, Yamada N, Mitsuyoshi H, Yagi N, et al: Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol. 42:411–418. 2013. View Article : Google Scholar :

48 

Shang X, Li G, Liu H, Li T, Liu J, Zhao Q and Wang C: Comprehensive circular RNA profiling reveals that hsa_ circ_0005075, a new circular RNA biomarker, is involved in hepatocellular crcinoma development. Medicine (Baltimore). 95:e38112016. View Article : Google Scholar

49 

Nie Y, Zhu X, Bu N, Jiang Y, Su Y, Pan K and Li S: Circ_0064288 acts as an oncogene of hepatocellular carcinoma cells by inhibiting miR-335-5p expression and promoting ROCK1 expression. BMC Cancer. 22:2652022. View Article : Google Scholar : PubMed/NCBI

50 

Ashkenazi A and Dixit VM: Apoptosis control by death and decoy receptors. Curr Opin Cell Biol. 11:255–260. 1999. View Article : Google Scholar : PubMed/NCBI

51 

Wajant H: Molecular mode of action of TRAIL receptor agonists-common principles and their translational exploitation. Cancers (Basel). 11:9542019. View Article : Google Scholar : PubMed/NCBI

52 

Amarante-Mendes GP and Griffith TS: Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther. 155:117–131. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Willms A, Schittek H, Rahn S, Sosna J, Mert U, Adam D and Trauzold A: Impact of p53 status on TRAIL-mediated apoptotic and non-apoptotic signaling in cancer cells. PLoS One. 14:e02148472019. View Article : Google Scholar : PubMed/NCBI

54 

Micheau O, Shirley S and Dufour F: Death receptors as targets in cancer. Br J Pharmacol. 169:1723–1744. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK and El-Deiry WS: Targeting TRAIL in the treatment of cancer: New developments. Expert Opin Ther Targets. 19:1171–1185. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Graves JD, Kordich JJ, Huang TH, Piasecki J, Bush TL, Sullivan T, Foltz IN, Chang W, Douangpanya H, Dang T, et al: Apo2L/TRAIL and the death receptor 5 agonist antibody AMG 655 cooperate to promote receptor clustering and antitumor activity. Cancer Cell. 26:177–189. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, et al: Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 5:157–163. 1999. View Article : Google Scholar : PubMed/NCBI

58 

Zamai L, Ahmad M, Bennett IM, Azzoni L, Alnemri ES and Perussia B: Natural killer (NK) cell-mediated cytotoxicity: Differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med. 188:2375–2380. 1998. View Article : Google Scholar : PubMed/NCBI

59 

Huang Y, Yang X, Xu T, Kong Q, Zhang Y, Shen Y, Wei Y, Wang G and Chang KJ: Overcoming resistance to TRAIL-induced apoptosis in solid tumor cells by simultaneously targeting death receptors, c-FLIP and IAPs. Int J Oncol. 49:153–163. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, et al: Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest. 104:155–162. 1999. View Article : Google Scholar : PubMed/NCBI

61 

Galal El-Shemi A, Mohammed Ashshi A, Oh E, Jung BK, Basalamah M, Alsaegh A and Yun CO: Efficacy of combining ING4 and TRAIL genes in cancer-targeting gene virotherapy strategy: First evidence in preclinical hepatocellular carcinoma. Gene Ther. 25:54–65. 2018. View Article : Google Scholar :

62 

Herbst RS, Eckhardt SG, Kurzrock R, Ebbinghaus S, O'Dwyer PJ, Gordon MS, Novotny W, Goldwasser MA, Tohnya TM, Lum BL, et al: Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer. J Clin Oncol. 28:2839–2846. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, Sutherland GR, Smith TD, Rauch C, Smith CA, et al: Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 3:673–682. 1995. View Article : Google Scholar : PubMed/NCBI

64 

Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A and Ashkenazi A: Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 271:12687–12690. 1996. View Article : Google Scholar : PubMed/NCBI

65 

Liu CH, Chern GJ, Hsu FF, Huang KW, Sung YC, Huang HC, Qiu JT, Wang SK, Lin CC, Wu CH, et al: A multifunctional nanocarrier for efficient TRAIL-based gene therapy against hepatocellular carcinoma with desmoplasia in mice. Hepatology. 67:899–913. 2018. View Article : Google Scholar

66 

Kim CY, Jeong M, Mushiake H, Kim BM, Kim WB, Ko JP, Kim MH, Kim M, Kim TH, Robbins PD, et al: Cancer gene therapy using a novel secretable trimeric TRAIL. Gene Ther. 13:330–338. 2006. View Article : Google Scholar

67 

Grisendi G, Bussolari R, Cafarelli L, Petak I, Rasini V, Veronesi E, De Santis G, Spano C, Tagliazzucchi M, Barti-Juhasz H, et al: Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res. 70:3718–3729. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Liu S, Qiu J, He G, He W, Liu C, Cai D and Pan H: TRAIL promotes hepatocellular carcinoma apoptosis and inhibits proliferation and migration via interacting with IER3. Cancer Cell Int. 21:632021. View Article : Google Scholar : PubMed/NCBI

69 

Lemke J, von Karstedt S, Zinngrebe J and Walczak H: Getting TRAIL back on track for cancer therapy. Cell Death Differ. 21:1350–1364. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Holland PM: Death receptor agonist therapies for cancer, which is the right TRAIL? Cytokine Growth Factor Rev. 25:185–193. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Zhang L, Gu J, Lin T, Huang X, Roth JA and Fang B: Mechanisms involved in development of resistance to adenovirus-mediated proapoptotic gene therapy in DLD1 human colon cancer cell line. Gene Ther. 9:1262–1270. 2002. View Article : Google Scholar : PubMed/NCBI

72 

Hinz S, Trauzold A, Boenicke L, Sandberg C, Beckmann S, Bayer E, Walczak H, Kalthoff H and Ungefroren H: Bcl-XL protects pancreatic adenocarcinoma cells against CD95- and TRAIL-receptor-mediated apoptosis. Oncogene. 19:5477–5486. 2000. View Article : Google Scholar : PubMed/NCBI

73 

Eggert A, Grotzer MA, Zuzak TJ, Wiewrodt BR, Ho R, Ikegaki N and Brodeur GM: Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res. 61:1314–1319. 2001.PubMed/NCBI

74 

Marini P, Denzinger S, Schiller D, Kauder S, Welz S, Humphreys R, Daniel PT, Jendrossek V, Budach W and Belka C: Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: Enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene. 25:5145–5154. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Pukac L, Kanakaraj P, Humphreys R, Alderson R, Bloom M, Sung C, Riccobene T, Johnson R, Fiscella M, Mahoney A, et al: HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer. 92:1430–1441. 2005. View Article : Google Scholar : PubMed/NCBI

76 

Kelley SK, Harris LA, Xie D, Deforge L, Totpal K, Bussiere J and Fox JA: Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efcacy, pharmacokinetics, and safety. J Pharmacol Exp Ther. 299:31–38. 2001.PubMed/NCBI

77 

Hymowitz SG, O'Connell MP, Ultsch MH, Hurst A, Totpal K, Ashkenazi A, de Vos AM and Kelley RF: A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry. 39:633–640. 2000. View Article : Google Scholar : PubMed/NCBI

78 

Mérino D, Lalaoui N, Morizot A, Solary E and Micheau O: TRAIL in cancer therapy: Present and future challenges. Expert Opin Ther Targets. 11:1299–1314. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B, Hillan K, Totpal K, DeForge L, Schow P, et al: Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med. 7:383–385. 2001. View Article : Google Scholar : PubMed/NCBI

80 

Ashley DM, Riffkin CD, Lovric MM, Mikeska T, Dobrovic A, Maxwell JA, Friedman HS, Drummond KJ, Kaye AH, Gan HK, et al: In vitro sensitivity testing of minimally passaged and uncultured gliomas with TRAIL and/or chemotherapy drugs. Br J Cancer. 99:294–304. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Bae S, Ma K, Kim TH, Lee ES, Oh KT, Park ES, Lee KC and Youn YS: Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials. 33:1536–1546. 2012. View Article : Google Scholar

82 

Mitchell MJ, Wayne E, Rana K, Schaffer CB and King MR: TRAIL-coated leukocytes that kill cancer cells in the circulation. Proc Natl Acad Sci USA. 111:930–935. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Naval J, de Miguel D, Gallego-Lleyda A, Anel A and Martinez-Lostao L: Importance of TRAIL molecular anatomy in receptor oligomerization and signaling Implications for cancer therapy. Cancers (Basel). 11:4442019. View Article : Google Scholar

84 

Griffith T, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR and Fanger NA: Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med. 189:1343–1354. 1999. View Article : Google Scholar : PubMed/NCBI

85 

Kayagaki N, Yamaguchi N, Nakayama M, Kawasaki A, Akiba H, Okumura K and Yagita H: Involvement of TNF-related apoptosis-inducing ligand in human CD4+ T cell-mediated cytotoxicity. J Immunol. 162:2639–2647. 1999.PubMed/NCBI

86 

Monleón I, Martínez-Lorenzo MJ, Anel A, Lasierra P, Larrad L, Pineiro A, Naval J and Alava MA: CD59 cross-linking induces secretion of APO2 ligand in overactivated human T cells. Eur J Immunol. 30:1078–1087. 2000. View Article : Google Scholar : PubMed/NCBI

87 

Monleón I, Martinez-Lorenzo MJ, Monteagudo L, Lasierra P, Taulés M, Iturralde M, Piñeiro A, Larrad L, Alava MA, Naval J and Anel A: Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells. J Immunol. 167:6736–6744. 2001. View Article : Google Scholar : PubMed/NCBI

88 

Wajant H, Moosmayer D, Wüest T, Bartke T, Gerlach E, Schönherr U, Peters N, Scheurich P and Pfizenmaier K: Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene. 20:4101–4106. 2001. View Article : Google Scholar : PubMed/NCBI

89 

De Miguel D, Basáñez G, Sánchez D, Malo PG, Marzo I, Larrad L, Naval J, Pardo J, Anel A and Martinez-Lostao L: Liposomes decorated with Apo2L/TRAIL overcome chemoresistance of human hematologic tumor cells. Mol Pharm. 10:893–904. 2013. View Article : Google Scholar : PubMed/NCBI

90 

De Miguel D, Gallego-Lleyda A, Anel A and Martinez-Lostao L: Liposome-bound TRAIL induces superior DR5 clustering and enhanced DISC recruitment in histiocytic lymphoma U937 cells. Leuk Res. 39:657–666. 2015. View Article : Google Scholar : PubMed/NCBI

91 

De Miguel D, Gallego-Lleyda A, Ayuso JM, Erviti-Ardanaz S, Pazo-Cid R, del Agua C, Fernández LJ, Ochoa I, Anel A and Martinez-Lostao L: TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells. Nanotechnology. 27:1851012016. View Article : Google Scholar : PubMed/NCBI

92 

De Miguel D, Gallego-Lleyda A, Ayuso JM, Pejenaute-Ochoa D, Jarauta V, Marzo I, Fernández LJ, Ochoa I, Conde B, Anel A and Martinez-Lostao L: High-order TRAIL oligomer formation in TRAIL-coated lipid nanoparticles enhances DR5 cross-linking and increases antitumour effect against colon cancer. Cancer Lett. 383:250–260. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Kim TH, Jiang HH, Park CW, Youn YS, Lee S, Chen X and Lee KC: PEGylated TNF-related apoptosis-inducing ligand (TRAIL)-loaded sustained release PLGA microspheres for enhanced stability and antitumor activity. J Control Release. 150:63–69. 2011. View Article : Google Scholar

94 

Wang S and El-Deiry WS: TRAIL and apoptosis induction by TNF-family death receptors. Oncogene. 22:8628–8633. 2003. View Article : Google Scholar : PubMed/NCBI

95 

Chinnappan M, Srivastava A, Amreddy N, Razaq M, Pareek V, Ahmed R, Mehta M, Peterson JE, Munshi A and Ramesh R: Exosomes as drug delivery vehicle and contributor of resistance to anticancer drugs. Cancer Lett. 486:18–28. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Wang J, Yeung BZ, Cui M, Peer CJ, Lu Z, Figg WD, Guillaume Wientjes M, Woo S and Au JL: Exosome is a mechanism of inter-cellular drug transfer: Application of quantitative pharmacology. J Control Release. 268:147–158. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Lee Y, El Andaloussi S and Wood MJ: Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 21:R125–R134. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Lee JK, Park SR, Jung BK, Jeon YK, Lee YS, Kim MK, Kim YG, Jang JY and Kim CW: Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS One. 8:e842562013. View Article : Google Scholar

99 

Syn NL, Wang L, Chow EK, Lim CT and Goh BC: Exosomes in cancer nanomedicine and immunotherapy: Prospects and challenges. Trends Biotechnol. 35:665–676. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Ha D, Yang N and Nadithe V: Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm Sin B. 6:287–296. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, Nabavi SM, Curti V and Daglia M: Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv. 36:328–334. 2018. View Article : Google Scholar

102 

Maia J, Caja S, Strano Moraes MC, Couto N and Costa-Silva B: Exosome-based cell-cell communication in the tumor microenvironment. Front Cell Dev Biol. 6:182018. View Article : Google Scholar : PubMed/NCBI

103 

Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, The BJ and Lim SK: Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 65:336–341. 2013. View Article : Google Scholar

104 

Lou G, Chen Z, Zheng M and Liu Y: Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 49:e3462017. View Article : Google Scholar : PubMed/NCBI

105 

Cho BS, Kim JO, Ha DH and Yi YW: Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis. Stem Cell Res Ther. 9:1872018. View Article : Google Scholar : PubMed/NCBI

106 

El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, Alvarez-Erviti L, Sargent IL and Wood MJ: Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 7:2112–2126. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA, Epple M and Giebel B: Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces. 87:146–150. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Kalra H, Adda CG, Liem M, Ang CS, Mechler A, Simpson RJ, Hulett MD and Mathivanan S: Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 13:3354–3364. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Rani S, Ryan AE, Griffin MD and Ritter T: Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther. 23:812–823. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Sun L, Xu R, Sun X, Duan Y, Han Y, Zhao Y, Qian H, Zhu W and Xu W: Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy. 18:413–422. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S and Wood MJ: Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 29:341–345. 2011. View Article : Google Scholar : PubMed/NCBI

112 

El Andaloussi S, Lakhal S, Mäger I and Wood MJ: Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 65:391–397. 2013. View Article : Google Scholar

113 

Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, et al: Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: Results of thefirst phase I clinical trial. J Transl Med. 3:102005. View Article : Google Scholar : PubMed/NCBI

114 

Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, et al: A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 3:92005. View Article : Google Scholar : PubMed/NCBI

115 

Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H and Li G: Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther. 16:782–790. 2008. View Article : Google Scholar : PubMed/NCBI

116 

Iranifar E, Seresht BM, Momeni F, Fadaei E, Mehr MH, Ebrahimi Z, Rahmati M, Kharazinejad E and Mirzaei H: Exosomes and microRNAs: New potential therapeutic candidates in Alzheimer disease therapy. J Cell Physiol. 234:2296–2305. 2019. View Article : Google Scholar

117 

Qu M, Lin Q, Huang L, Fu Y, Wang L, He S, Fu Y, Yang S, Zhang Z, Zhang L and Sun X: Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson's disease. J Control Release. 287:156–166. 2018. View Article : Google Scholar : PubMed/NCBI

118 

Wang H, Sui H, Zheng Y, Jiang Y, Shi Y, Liang J and Zhao L: Curcumin-primed exosomes potently ameliorate cognitive function in AD mice by inhibiting hyperphosphorylation of the Tau protein through the AKT/GSK-3β pathway. Nanoscale. 11:7481–7496. 2019. View Article : Google Scholar : PubMed/NCBI

119 

Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, Kabanov AV and Batrakova EV: Engineering macro-phage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: In vitro and in vivo evaluations. Nanomedicine. 14:195–204. 2018. View Article : Google Scholar

120 

Azmi AS, Bao B and Sarkar FH: Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev. 32:623–642. 2013. View Article : Google Scholar : PubMed/NCBI

121 

Mendt M, Kamerkar S, Sugimoto H, McAndrews KM, Wu CC, Gagea M, Yang S, Blanko EVR, Peng Q, Ma X, et al: Generation and testing of clinical-grade exosomes for pancreatic cancer. JCI Insight. 3:e992632018. View Article : Google Scholar : PubMed/NCBI

122 

Wang Y, Balaji V, Kaniyappan S, Krüger L, Irsen S, Tepper K, Chandupatla R, Maetzler W, Schneider A, Mandelkow E and Mandelkow EM: The release and trans-synaptic transmission of Tau via exosomes. Mol Neurodegener. 12:52017. View Article : Google Scholar : PubMed/NCBI

123 

Jiang XC and Gao JQ: Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm. 521:167–175. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Hadla M, Palazzolo S, Corona G, Caligiuri I, Canzonieri V, Toffoli G and Rizzolio F: Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine (Lond). 11:2431–2441. 2016. View Article : Google Scholar : PubMed/NCBI

125 

Smyth TJ, Redzic JS, Graner MW and Anchordoquy TJ: Examination of the specificity of tumor cell derived exosomes with tumor cells in vitro. Biochim Biophys Acta. 1838:2954–2965. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, et al: Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 12:655–664. 2016. View Article : Google Scholar

127 

Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF and Chan WCW: Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 1:160142016. View Article : Google Scholar

128 

Faivre S, Rimassa L and Finn RS: Molecular therapies for HCC: Looking outside the box. J Hepatol. 72:342–352. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Trivedi R and Mishra DP: Trailing TRAIL resistance: Novel targets for TRAIL sensitization in cancer cells. Front Oncol. 5:692015. View Article : Google Scholar : PubMed/NCBI

130 

Sterzenbach U, Putz U, Low LH, Silke J, Tan SS and Howitt J: Engineered exosomes as vehicles for biologically active proteins. Mol Ther. 25:1269–1278. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Rivoltini L, Chiodoni C, Squarcina P, Tortoreto M, Villa A, Vergani B, Bürdek M, Botti L, Arioli I, Cova A, et al: TNF-related apoptosis-inducing ligand (TRAIL)-armed exosomes deliver proapoptotic signals to tumor site. Clin Cancer Res. 22:3499–3512. 2016. View Article : Google Scholar : PubMed/NCBI

132 

Yuan Z, Kolluri KK, Gowers KH and Janes SM: TRAIL delivery by MSC-derived extracellular vesicles is an effective anticancer therapy. J Extracell Vesicles. 6:12652912017. View Article : Google Scholar : PubMed/NCBI

133 

Shamili FH, Bayegi HR, Salmasi Z, Sadri K, Mahmoudi M, Kalantari M, Ramezani M and Abnous K: Exosomes derived from TRAIL-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model. Int J Pharm. 549:218–229. 2018. View Article : Google Scholar : PubMed/NCBI

134 

Nojiri K, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Ogura S, Kasai C, Kusagawa S, Yoneda M, Yamamoto N, et al: Sorafenib and TRAIL have synergistic effect on hepatocellular carcinoma. Int J Oncol. 42:101–108. 2013. View Article : Google Scholar

135 

Chen KF, Tai WT, Liu TH, Huang HP, Lin YC, Shiau CW, Li PK, Chen PJ and Cheng AL: Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin Cancer Res. 16:5189–5199. 2010. View Article : Google Scholar : PubMed/NCBI

136 

Munir J, Yoon JK and Ryu S: Therapeutic miRNA-enriched extracellular vesicles: Current approaches and future prospects. Cells. 9:22712020. View Article : Google Scholar : PubMed/NCBI

137 

Almanza G, Rodvold JJ, Tsui B, Jepsen K, Carter H and Zanetti M: Extracellular vesicles produced in B cells deliver tumor suppressor miR-335 to breast cancer cells disrupting oncogenic programming in vitro and in vivo. Sci Rep. 8:175812018. View Article : Google Scholar : PubMed/NCBI

138 

Li L, Piontek K, Ishida M, Fausther M, Dranoff JA, Fu R, Mezey E, Gould SJ, Fordjour FK, Meltzer SJ, et al: Extracellular vesicles carry microRNA-195 to intrahepatic cholangiocarcinoma and improve survival in a rat model. Hepatology. 65:501–514. 2017. View Article : Google Scholar

139 

Wang F, Li L, Piontek K, Sakaguchi M and Selaru FM: Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 67:940–954. 2018. View Article : Google Scholar

140 

Andriolo G, Provasi E, Lo Cicero V, Brambilla A, Soncin S, Torre T, Milano G, Biemmi V, Vassalli G, Turchetto L, et al: Exosomes from human cardiac progenitor cells for therapeutic applications: Development of a GMP-grade manufacturing method. Front Physiol. 9:11692018. View Article : Google Scholar : PubMed/NCBI

141 

Yoo KH, Thapa N, Kim BJ, Lee JO, Jang YN, Chwae YJ and Kim J: Possibility of exosome-based coronavirus disease 2019 vaccine (review). Mol Med Rep. 25:262022. View Article : Google Scholar

142 

Cooke JN, Ellis JA, Hossain S, Nguyen J, Bruce JN and Joshi S: Computational pharmacokinetic rationale for intra-arterial delivery to the brain. Drug Deliv Transl Res. 6:622–629. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Ciuleanu T, Bazin I, Lungulescu D, Miron L, Bondarenko I, Deptala A, Rodriguez-Torres M, Giantonio B, Fox NL, Wissel P, et al: A randomized, double-blind, placebo-controlled phase II study to assess the efficacy and safety of mapatumumab with sorafenib in patients with advanced hepatocellular carcinoma. Ann Oncol. 27:680–687. 2016. View Article : Google Scholar : PubMed/NCBI

144 

von Pawel J, Harvey JH, Spigel DR, Dediu M, Reck M, Cebotaru CL, Humphreys RC, Gribbin MJ, Fox NL and Camidge DR: Phase II trial of mapatumumab, a fully human agonist monoclonal anti-body to tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1), in combination with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer. Clin Lung Cancer. 15:188–196.e2. 2014. View Article : Google Scholar

145 

Davies A, Sage B, Kolluri K, Alrifai D, Graham R, Weil B, Rego R, Bain O, Patrick PS, Champion K, et al: TACTICAL: A phase I/II trial to assess the safety and efficacy of MSCTRAIL in the treatment of metastatic lung adenocarcinoma. J Clin Oncol. 37:TPS91162019. View Article : Google Scholar

146 

Forero A, Bendell JC, Kumar P, Janisch L, Rosen M, Wang Q, Copigneaux C, Desai M, Senaldi G and Maitland ML: First-in-human study of the antibody DR5 agonist DS-8273a in patients with advanced solid tumors. Invest New Drugs. 35:298–306. 2017. View Article : Google Scholar : PubMed/NCBI

147 

Xie Y, Bai O, Zhang H, Yuan J, Zong S, Chibbar R, Slattery K, Qureshi M, Wei Y, Deng Y and Xiang J: Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8(+) CTL- and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70. J Cell Mol Med. 14:2655–2666. 2010. View Article : Google Scholar

148 

Ke C, Hou H, Li J, Su K, Huang C, Lin Y, Lu Z, Du Z, Tan W and Yuan Z: Extracellular vesicle delivery of TRAIL eradicates resistant tumor growth in combination with CDK inhibition by dinaciclib. Cancers (Basel). 12:11572020. View Article : Google Scholar : PubMed/NCBI

149 

Yuan Q, Su K, Li S, Long X, Liu L, Yang M, Yuan X, Sun J, Hu J, Li Q, et al: Pulmonary delivery of extracellular vesicle-encapsulated dinaciclib as an effective lung cancer therapy. Cancers (Basel). 14:35502022. View Article : Google Scholar : PubMed/NCBI

150 

Jiang L, Gu Y, Du Y, Tang X, Wu X and Liu J: Engineering exosomes endowed with targeted delivery of triptolide for malignant melanoma therapy. ACS Appl Mater Interfaces. 13:42411–42428. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Thapa N, Chwae YJ, Yoo KH, Won T, Kang D, Choi D and Kim J: Exosomal delivery of TRAIL and miR‑335 for the treatment of hepatocellular carcinoma (Review). Int J Mol Med 51: 3, 2023.
APA
Thapa, N., Chwae, Y.J., Yoo, K.H., Won, T., Kang, D., Choi, D., & Kim, J. (2023). Exosomal delivery of TRAIL and miR‑335 for the treatment of hepatocellular carcinoma (Review). International Journal of Molecular Medicine, 51, 3. https://doi.org/10.3892/ijmm.2022.5206
MLA
Thapa, N., Chwae, Y. J., Yoo, K. H., Won, T., Kang, D., Choi, D., Kim, J."Exosomal delivery of TRAIL and miR‑335 for the treatment of hepatocellular carcinoma (Review)". International Journal of Molecular Medicine 51.1 (2023): 3.
Chicago
Thapa, N., Chwae, Y. J., Yoo, K. H., Won, T., Kang, D., Choi, D., Kim, J."Exosomal delivery of TRAIL and miR‑335 for the treatment of hepatocellular carcinoma (Review)". International Journal of Molecular Medicine 51, no. 1 (2023): 3. https://doi.org/10.3892/ijmm.2022.5206
Copy and paste a formatted citation
x
Spandidos Publications style
Thapa N, Chwae YJ, Yoo KH, Won T, Kang D, Choi D and Kim J: Exosomal delivery of TRAIL and miR‑335 for the treatment of hepatocellular carcinoma (Review). Int J Mol Med 51: 3, 2023.
APA
Thapa, N., Chwae, Y.J., Yoo, K.H., Won, T., Kang, D., Choi, D., & Kim, J. (2023). Exosomal delivery of TRAIL and miR‑335 for the treatment of hepatocellular carcinoma (Review). International Journal of Molecular Medicine, 51, 3. https://doi.org/10.3892/ijmm.2022.5206
MLA
Thapa, N., Chwae, Y. J., Yoo, K. H., Won, T., Kang, D., Choi, D., Kim, J."Exosomal delivery of TRAIL and miR‑335 for the treatment of hepatocellular carcinoma (Review)". International Journal of Molecular Medicine 51.1 (2023): 3.
Chicago
Thapa, N., Chwae, Y. J., Yoo, K. H., Won, T., Kang, D., Choi, D., Kim, J."Exosomal delivery of TRAIL and miR‑335 for the treatment of hepatocellular carcinoma (Review)". International Journal of Molecular Medicine 51, no. 1 (2023): 3. https://doi.org/10.3892/ijmm.2022.5206
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team