|
1
|
Cuyvers E and Sleegers K: Genetic
variations underlying Alzheimer's disease: Evidence from
genome-wide association studies and beyond. Lancet Neurol.
15:857–868. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ballard C, Gauthier S, Corbett A, Brayne
C, Aarsland D and Jones E: Alzheimer's disease. Lancet.
377:1019–1031. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Braak H, Thal DR, Ghebremedhin E and Del
Tredici K: Stages of the pathologic process in Alzheimer disease:
Age categories from 1 to 100 years. J Neuropathol Exp Neurol.
70:960–969. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fliss R, Le Gall D, Etcharry-Bouyx F,
Chauviré V, Desgranges B and Allain P: Theory of Mind and social
reserve: Alternative hypothesis of progressive Theory of Mind decay
during different stages of Alzheimer's disease. Soc Neurosci.
11:409–423. 2016. View Article : Google Scholar
|
|
5
|
Scheltens P, Blennow K, Breteler MM, de
Strooper B, Frisoni GB, Salloway S and Van der Flier WM:
Alzheimer's disease. Lancet. 388:505–517. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Krokidis MG, Exarchos TP and Vlamos P:
Data-driven biomarker analysis using computational omics approaches
to assess neurodegenerative disease progression. Math Biosci Eng.
18:1813–1832. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Verheijen J and Sleegers K: Understanding
Alzheimer disease at the interface between genetics and
transcriptomics. Trends Genetics. 34:434–447. 2018. View Article : Google Scholar
|
|
8
|
Prince M, Bryce R, Albanese E, Wimo A,
Ribeiro W and Ferri CP: The global prevalence of dementia: A
systematic review and metaanalysis. Alzheimers Dement. 9:63–75.e62.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Heppner FL, Ransohoff RM and Becher B:
Immune attack: The role of inflammation in Alzheimer disease. Nat
Rev Neurosci. 16:358–372. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Medeiros R, Kitazawa M, Passos GF,
Baglietto-Vargas D, Cheng D, Cribbs DH and LaFerla FM:
Aspirin-triggered lipoxin A4 stimulates alternative activation of
microglia and reduces Alzheimer disease-like pathology in mice. Am
J Pathol. 182:1780–1789. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Prokop S, Miller KR and Heppner FL:
Microglia actions in Alzheimer's disease. Acta Neuropathol.
126:461–477. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Heneka MT, Kummer MP and Latz E: Innate
immune activation in neurodegenerative disease. Nat Rev Immunol.
14:463–477. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Labzin LI, Heneka MT and Latz E: Innate
Immunity and Neurodegeneration. Annu Rev Med. 69:437–449. 2018.
View Article : Google Scholar
|
|
14
|
Aubry S, Shin W, Crary JF, Lefort R,
Qureshi YH, Lefebvre C, Califano A and Shelanski ML: Assembly and
interrogation of Alzheimer's disease genetic networks reveal novel
regulators of progression. PLoS One. 10:e01203522015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chouraki V and Seshadri S: Genetics of
Alzheimer's disease. Adv Genet. 87:245–294. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Greenough MA: The Role of presenilin in
protein trafficking and degradation-implications for metal
homeostasis. J Mol Neurosci. 60:289–297. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Millan MJ: Linking deregulation of
non-coding RNA to the core pathophysiology of Alzheimer's disease:
An integrative review. Prog Neurobiol. 156:1–68. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Huang YA, Zhou B, Wernig M and Südhof TC:
ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription
and Aβ secretion. Cell. 168:427–441.e21. 2017. View Article : Google Scholar
|
|
19
|
Jiang T, Yu JT, Tian Y and Tan L:
Epidemiology and etiology of Alzheimer's disease: From genetic to
non-genetic factors. Curr Alzheimer Res. 10:852–867. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kanekiyo T, Xu H and Bu G: ApoE and Aβ in
Alzheimer's disease: Accidental encounters or partners? Neuron.
81:740–754. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Vlachakis D, Papakonstantinou E, Sagar R,
Bacopoulou F, Exarchos T, Kourouthanassis P, Karyotis V, Vlamos P,
Lyketsos C, Avramopoulos D and Mahairaki V: Improving the utility
of polygenic risk scores as a biomarker for Alzheimer's disease.
Cells. 10:2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yan Y, Zhao A, Qui Y, Li Y, Yan R, Wang Y,
Xu W and Deng Y: Genetic Association of FERMT2, HLA-DRB1, CD2AP,
and PTK2B Polymorphisms with Alzheimer's disease risk in the
southern Chinese population. Front Aging Neurosci. 12:162020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chin-Chan M, Navarro-Yepes J and
Quintanilla-Vega B: Environmental pollutants as risk factors for
neurodegenerative disorders: Alzheimer and Parkinson diseases.
Front Cell Neurosci. 9:1242015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Reitz C, Brayne C and Mayeux R:
Epidemiology of Alzheimer disease. Nat Rev Neurol. 7:137–152. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tremlett H, Bauer KC, Appel-Cresswell S,
Finlay BB and Waubant E: The gut microbiome in human neurological
disease: A review. Ann Neurol. 81:369–382. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Blennow K, Dubois B, Fagan AM, Lewczuk P,
de Leon MJ and Hampel H: Clinical utility of cerebrospinal fluid
biomarkers in the diagnosis of early Alzheimer's disease.
Alzheimers Dement. 11:58–69. 2015. View Article : Google Scholar
|
|
27
|
Sancesario GM and Bernardini S: How many
biomarkers to discriminate neurodegenerative dementia? Crit Rev
Clin Lab Sci. 52:314–326. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sancesario GM and Bernardini S:
Alzheimer's disease in the omics era. Clin Biochem. 59:9–16. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Trushina E, Dutta T, Persson X-MT, Mielke
MM and Petersen RC: Identification of altered metabolic pathways in
plasma and CSF in mild cognitive impairment and Alzheimer's disease
using metabolomics. PLoS One. 8:e636442013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nday CM, Eleftheriadou D and Jackson G:
Shared pathological pathways of Alzheimer's disease with specific
comorbidities: Current perspectives and interventions. J Neurochem.
144:360–389. 2018. View Article : Google Scholar
|
|
31
|
Morgan SL, Naderi P, Koler K, Pita-Juarez
Y, Prokopenko D, Vlachos IS, Tanzi RE, Bertram L and Hide WA: Most
pathways can be related to the pathogenesis of Alzheimer's disease.
Front Aging Neurosci. 14:8469022022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Colpaert RMW and Calore M: Epigenetics and
microRNAs in cardiovascular diseases. Genomics. 113:540–551. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ramzan F, Vickers MH and Mithen RF:
Epigenetics, microRNA and metabolic syndrome: A comprehensive
review. Int J Mol Sci. 22:50472021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Suzuki H, Maruyama R, Yamamoto E and Kai
M: Epigenetic alteration and microRNA dysregulation in cancer.
Front Genet. 4:2582013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lau P, Bossers K, Janky R, Salta E,
Frigerio CS, Barbash S, Rothman R, Sierksma AS, Thathiah A,
Greenberg D, et al: Alteration of the microRNA network during the
progression of Alzheimer's disease. EMBO Mol Med. 5:1613–1634.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Maoz R, Garfinkel BP and Soreq H:
Alzheimer's disease and ncRNAs. Adv Exp Med Biol. 978:337–361.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sun AX, Crabtree GR and Yoo AS: MicroRNAs:
Regulators of neuronal fate. Curr Opin Cell Biol. 25:215–221. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM
and Zhang GZ: Biological functions of microRNAs: A review. J
Physiol Biochem. 67:129–139. 2011. View Article : Google Scholar
|
|
39
|
Fiore R, Khudayberdiev S, Saba R and
Schratt G: MicroRNA function in the nervous system. Prog Mol Biol
Transl Sci. 102:47–100. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Goodall EF, Heath PR, Bandmann O, Kirby J
and Shaw PJ: Neuronal dark matter: The emerging role of microRNAs
in neurodegeneration. Front Cell Neurosci. 7:1782013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Niwa R, Zhou F, Li C and Slack FJ: The
expression of the Alzheimer's amyloid precursor protein-like gene
is regulated by developmental timing microRNAs and their targets in
Caenorhabditis elegans. Dev Biol. 315:418–425. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Patel N, Hoang D, Miller N, Ansaloni S,
Huang Q, Rogers JT, Lee JC and Saunders AJ: MicroRNAs can regulate
human APP levels. Mol Neurodegener. 3:102008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T,
Liu M, Li X and Tang H: miR-20a promotes proliferation and invasion
by targeting APP in human ovarian cancer cells. Acta Biochim
Biophys Sin (Shanghai). 42:318–324. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hébert SS, Horré K, Nicolaï L, Bergmans B,
Papadopoulou AS, Delacourte A and De Strooper B: MicroRNA
regulation of Alzheimer's Amyloid precursor protein expression.
Neurobiol Dis. 33:422–428. 2009. View Article : Google Scholar
|
|
45
|
Vilardo E, Barbato C, Ciotti M, Cogoni C
and Ruberti F: MicroRNA-101 regulates amyloid precursor protein
expression in hippocampal neurons. J Biol Chem. 285:18344–18351.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Glinsky GV: An SNP-guided microRNA map of
fifteen common human disorders identifies a consensus disease
phenocode aiming at principal components of the nuclear import
pathway. Cell Cycle. 7:2570–2583. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Delay C, Calon F, Mathews P and Hébert SS:
Alzheimer-specific variants in the 3′UTR of Amyloid precursor
protein affect microRNA function. Mol Neurodegener. 6:702011.
View Article : Google Scholar
|
|
48
|
Smith P, Al Hashimi A, Girard J, Delay C
and Hébert SS: In vivo regulation of amyloid precursor protein
neuronal splicing by microRNAs. J Neurochem. 116:240–247. 2011.
View Article : Google Scholar
|
|
49
|
Kong Y, Wu J, Zhang D, Wan C and Yuan L:
The role of miR-124 in drosophila Alzheimer's disease model by
targeting delta in notch signaling pathway. Curr Mol Med.
15:980–989. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Schonrock N, Matamales M, Ittner LM and
Götz J: MicroRNA networks surrounding APP and amyloid-β
metabolism-implications for Alzheimer's disease. Exp Neurol.
235:447–454. 2012. View Article : Google Scholar
|
|
51
|
Rockenstein EM, McConlogue L, Tan H, Power
M, Masliah E and Mucke L: Levels and alternative splicing of
amyloid beta protein precursor (APP) transcripts in brains of APP
transgenic mice and humans with Alzheimer's disease. J Biol Chem.
270:28257–28267. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Donev R, Newall A, Thome J and Sheer D: A
role for SC35 and hnRNPA1 in the determination of amyloid precursor
protein isoforms. Mol Psychiatry. 12:681–690. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang LB, Lindholm K, Yan R, Citron M, Xia
W, Yang XL, Beach T, Sue L, Wong P, Price D, et al: Elevated
beta-secretase expression and enzymatic activity detected in
sporadic Alzheimer disease. Nat Med. 9:3–4. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yang G, Song Y, Zhou X, Deng Y, Liu T,
Weng G, Yu D and Pan S: MicroRNA-29c targets β-site amyloid
precursor protein-cleaving enzyme 1 and has a neuroprotective role
in vitro and in vivo. Mol Med Rep. 12:3081–3088. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lei X, Lei L, Zhang Z, Zhang Z and Cheng
Y: Downregulated miR-29c correlates with increased BACE1 expression
in sporadic Alzheimer's disease. Int J Clin Exp Pathol.
8:1565–1574. 2015.PubMed/NCBI
|
|
56
|
Zong Y, Wang H, Dong W, Quan X, Zhu H, Xu
Y, Huang L, Ma C and Qin C: miR-29c regulates BACE1 protein
expression. Brain Res. 1395:108–115. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Boissonneault V, Plante I, Rivest S and
Provost P: MicroRNA-298 and microRNA-328 regulate expression of
mouse beta-amyloid precursor protein-converting enzyme 1. J Biol
Chem. 284:1971–1981. 2009. View Article : Google Scholar
|
|
58
|
Liu T, Huang Y, Chen J, Chi H, Yu Z, Wang
J and Chen C: Attenuated ability of BACE1 to cleave the amyloid
precursor protein via silencing long noncoding RNA BACE1-AS
expression. Mol Med Rep. 10:1275–1281. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang Y, Xing H, Guo S, Zheng Z, Wang H
and Xu D: MicroRNA-135b has a neuroprotective role via targeting of
β-site APP-cleaving enzyme 1. Exp Ther Med. 12:809–814. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xie H, Zhao Y, Zhou Y, Wang D, Zhang S and
Yang M: MiR-9 regulates the expression of BACE1 in dementia induced
by chronic brain hypoperfusion in rats. Cell Physiol Biochem.
42:1213–1226. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhu HC, Wang LM, Wang M, Song B, Tan S,
Teng JF and Duan DX: MicroRNA-195 downregulates Alzheimer's disease
amyloid-β production by targeting BACE1. Brain Res Bull.
88:596–601. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang WX, Rajeev BW, Stromberg AJ, Ren N,
Tang G, Huang Q, Rigoutsos I and Nelson PT: The expression of
microRNA miR-107 decreases early in Alzheimer's disease and may
accelerate disease progression through regulation of beta-site
amyloid precursor protein-cleaving enzyme 1. J Neurosci.
28:1213–1223. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rybak-Wolf A and Plass M: RNA dynamics in
Alzheimer's disease. Molecules. 26:51132021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chang F, Zhang LH, Xu WP, Jing P and Zhan
PY: microRNA-9 attenuates amyloidβ-induced synaptotoxicity by
targeting calcium/calmodulin-dependent protein kinase kinase 2. Mol
Med Rep. 9:1917–1922. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Janson J, Laedtke T, Parisi JE, O'Brien P,
Petersen RC and Butler PC: Increased risk of type 2 diabetes in
Alzheimer disease. Diabetes. 53:474–481. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Cheng C, Li W, Zhang Z, Yoshimura S, Hao
Q, Zhang C and Wang Z: MicroRNA-144 is regulated by activator
protein-1 (AP-1) and decreases expression of Alzheimer
disease-related a disintegrin and metalloprotease 10 (ADAM10). J
Biol Chem. 288:13748–13761. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dubois B, Padovani A, Scheltens P, Rossi A
and Dell'Agnello G: Timely diagnosis for Alzheimer's disease: A
literature review on benefits and challenges. J Alzheimers Dis.
49:617–631. 2016. View Article : Google Scholar
|
|
68
|
Wei W, Wang ZY, Ma LN, Zhang TT, Cao Y and
Li H: MicroRNAs in Alzheimer's disease: Function and potential
applications as diagnostic biomarkers. Front Mol Neurosci. 13:2020.
View Article : Google Scholar
|
|
69
|
Schwarzenbach H, Nishida N, Calin GA and
Pantel K: Clinical relevance of circulating cell-free microRNAs in
cancer. Nat Rev Clin Oncol. 11:145–156. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Bekris LM and Leverenz JB: The biomarker
and therapeutic potential of miRNA in Alzheimer's disease.
Neurodegener Dis Manag. 5:61–74. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cogswell JP, Ward J, Taylor IA, Waters M,
Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, et al:
Identification of miRNA changes in Alzheimer's disease brain and
CSF yields putative biomarkers and insights into disease pathways.
J Alzheimers Dis. 14:27–41. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Siedlecki-Wullich D, Català-Solsona J,
Fábregas C, Hernández I, Clarimon J, Lleó A, Boada M, Saura CA,
Rodríguez-Álvarez J and Miñano-Molina AJ: Altered microRNAs related
to synaptic function as potential plasma biomarkers for Alzheimer's
disease. Alzheimers Res Ther. 11:462019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Denk J, Boelmans K, Siegismund C, Lassner
D, Arlt S and Jahn H: MicroRNA profiling of CSF reveals potential
biomarkers to detect Alzheimer's disease. PLoS One.
10:e01264232015. View Article : Google Scholar
|
|
74
|
Alexandrov PN, Dua P and Lukiw WJ:
Up-regulation of miRNA-146a in progressive, Age-related
inflammatory neurodegenerative disorders of the human CNS. Front
Neurol. 5:1812014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Arena A, Iyer A, Milenkovic I, Kovacs GG,
Ferrer I, Perluigi M and Aronica E: Developmental expression and
dysregulation of miR-146a and miR-155 in Down's syndrome and mouse
models of Down's syndrome and Alzheimer's disease. Curr Alzheimer
Res. 14:1305–1317. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kumar S and Reddy PH: Elevated levels of
MicroRNA-455-3p in the cerebrospinal fluid of Alzheimer's patients:
A potential biomarker for Alzheimer's disease. Biochim Biophys Acta
Mol Basis Dis. 1867:1660522021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Yu L, Li H, Liu W, Zhang L, Tian Q, Li H
and Li M: MiR-485-3p serves as a biomarker and therapeutic target
of Alzheimer's disease via regulating neuronal cell viability and
neuroinflammation by targeting AKT3. Mol Genet Genomic Med.
9:e15482021. View Article : Google Scholar
|
|
78
|
Andreeva K and Cooper NGF: Circular RNAs:
New players in gene regulation. Adv Bioscience Biotechnol. 06(06):
82015. View Article : Google Scholar
|
|
79
|
Gruner H, Cortés-López M, Cooper DA, Bauer
M and Miura P: CircRNA accumulation in the aging mouse brain. Sci
Rep. 6:389072016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Akhter R: Circular RNA and Alzheimer's
disease. Adv Exp Med Biol. 1087:239–243. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lukiw WJ: Circular RNA (circRNA) in
Alzheimer's disease (AD). Front Genet. 4:3072013. View Article : Google Scholar
|
|
83
|
Lonskaya I, Shekoyan AR, Hebron ML,
Desforges N, Algarzae NK and Moussa CE: Diminished parkin
solubility and Co-localization with intraneuronal amyloid-β are
associated with autophagic defects in Alzheimer's disease. J
Alzheimers Dis. 33:231–247. 2013. View Article : Google Scholar
|
|
84
|
Dube U, Del-Aguila JL, Li Z, Budde JP,
Jiang S, Hsu S, Ibanez L, Fernandez MV, Farias F, Norton J, et al:
An atlas of cortical circular RNA expression in Alzheimer disease
brains demonstrates clinical and pathological associations. Nat
Neurosci. 22:1903–1912. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang Y, Yu F, Bao S and Sun J: Systematic
characterization of circular RNA-associated CeRNA network
identified novel circRNA biomarkers in Alzheimer's disease. Front
Bioeng Biotechnol. 7:2222019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lu Y, Tan L and Wang X: Circular
HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid
precursor protein processing deficits in Alzheimer's disease.
Neurosci Bull. 35:877–888. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yang H, Wang H, Shang H, Chen X, Yang S,
Qu Y, Ding J and Li X: Circular RNA circ_0000950 promotes neuron
apoptosis, suppresses neurite outgrowth and elevates inflammatory
cytokines levels via directly sponging miR-103 in Alzheimer's
disease. Cell Cycle. 18:2197–2214. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Diling C, Yinrui G, Longkai Q, Xiaocui T,
Yadi L, Xin Y, Guoyan H, Ou S, Tianqiao Y, Dongdong W, et al:
Circular RNA NF1-419 enhances autophagy to ameliorate senile
dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like
mice. Aging (Albany NY). 11:12002–12031. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhang M and Bian Z: The emerging role of
circular RNAs in Alzheimer's disease and Parkinson's disease. Front
Aging Neurosci. 13:6915122021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Huang X and Wong G: An old weapon with a
new function: PIWI-interacting RNAs in neurodegenerative diseases.
Transl Neurodegener. 10:92021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Qiu W, Guo X, Lin X, Yang Q, Zhang W,
Zhang Y, Zuo L, Zhu Y, Li CR, Ma C and Luo X: Transcriptome-wide
piRNA profiling in human brains of Alzheimer's disease. Neurobiol
Aging. 57:170–177. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Roy J, Sarkar A, Parida S, Ghosh Z and
Mallick B: Small RNA sequencing revealed dysregulated piRNAs in
Alzheimer's disease and their probable role in pathogenesis. Mol
Biosyst. 13:565–576. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mercer TR, Dinger ME and Mattick JS: Long
non-coding RNAs: Insights into functions. Nat Rev Genet.
10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wilusz JE, Sunwoo H and Spector DL: Long
noncoding RNAs: Functional surprises from the RNA world. Genes Dev.
23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Clark MB and Mattick JS: Long noncoding
RNAs in cell biology. Semin Cell Dev Biol. 22:366–376. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Martianov I, Ramadass A, Serra Barros A,
Chow N and Akoulitchev A: Repression of the human dihydrofolate
reductase gene by a non-coding interfering transcript. Nature.
445:666–670. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Tripathi V, Ellis JD, Shen Z, Song DY, Pan
Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The
nuclear-retained noncoding RNA MALAT1 regulates alternative
splicing by modulating SR splicing factor phosphorylation. Mol
Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Huarte M, Guttman M, Feldser D, Garber M,
Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M,
et al: A large intergenic noncoding RNA induced by p53 mediates
global gene repression in the p53 response. Cell. 142:409–419.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Mourtada-Maarabouni M, Hedge VL, Kirkham
L, Farzaneh F and Williams GT: Growth arrest in human T-cells is
controlled by the non-coding RNA growth-arrest-specific transcript
5 (GAS5). J Cell Sci. 121:939–946. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li F, Wang Y, Yang H, Xu Y, Zhou X, Zhang
X, Xie Z and Bi J: The effect of BACE1-AS on β-amyloid generation
by regulating BACE1 mRNA expression. BMC Mol Biol. 20:232019.
View Article : Google Scholar
|
|
101
|
Faghihi MA, Modarresi F, Khalil AM, Wood
DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G III, Kenny PJ and
Wahlestedt C: Expression of a noncoding RNA is elevated in
Alzheimer's disease and drives rapid feed-forward regulation of
beta-secretase. Nat Med. 14:723–730. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zeng T, Ni H, Yu Y, Zhang M, Wu M, Wang Q,
Wang L, Xu S, Xu Z, Xu C, et al: BACE1-AS prevents BACE1 mRNA
degradation through the sequestration of BACE1-targeting miRNAs. J
Chem Neuroanat. 98:87–96. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhou Y, Ge Y, Liu Q, Li YX, Chao X, Guan
JJ, Diwu YC and Zhang Q: LncRNA BACE1-AS promotes
autophagy-mediated neuronal damage through the miR-214-3p/ATG5
signalling axis in Alzheimer's disease. Neuroscience. 455:52–64.
2021. View Article : Google Scholar
|
|
104
|
Parenti R, Paratore S, Torrisi A and
Cavallaro S: A natural antisense transcript against Rad18,
specifically expressed in neurons and upregulated during
beta-amyloid-induced apoptosis. Eur J Neurosci. 26:2444–2457. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Li D, Zhang J, Li X, Chen Y, Yu F and Liu
Q: Insights into lncRNAs in Alzheimer's disease mechanisms. RNA
Biol. 18:1037–1047. 2021. View Article : Google Scholar
|
|
106
|
Ciarlo E, Massone S, Penna I, Nizzari M,
Gigoni A, Dieci G, Russo C, Florio T, Cancedda R and Pagano A: An
intronic ncRNA-dependent regulation of SORL1 expression affecting
Aβ formation is upregulated in post-mortem Alzheimer's disease
brain samples. Dis Model Mech. 6:424–433. 2013.
|
|
107
|
Massone S, Vassallo I, Fiorino G,
Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E,
Russo C, et al: 17A, a novel non-coding RNA, regulates GABA B
alternative splicing and signaling in response to inflammatory
stimuli and in Alzheimer disease. Neurobiol Dis. 41:308–317. 2011.
View Article : Google Scholar
|
|
108
|
Zhang J and Wang R: Deregulated lncRNA
MAGI2-AS3 in Alzheimer's disease attenuates amyloid-β induced
neurotoxicity and neuroinflammation by sponging miR-374b-5p. Exp
Gerontol. 144:1111802021. View Article : Google Scholar
|
|
109
|
Mus E, Hof PR and Tiedge H: Dendritic
BC200 RNA in aging and in Alzheimer's disease. Proc Natl Acad Sci
USA. 104:10679–10684. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhou X and Xu J: Identification of
Alzheimer's disease-associated long noncoding RNAs. Neurobiol
Aging. 36:2925–2931. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Magistri M, Velmeshev D, Makhmutova M and
Faghihi MA: Transcriptomics profiling of Alzheimer's disease reveal
neurovascular defects, altered Amyloid-β homeostasis, and
deregulated expression of long noncoding RNAs. J Alzheimers Dis.
48:647–665. 2015. View Article : Google Scholar
|
|
112
|
Subramanian I, Verma S, Kumar S, Jere A
and Anamika K: Multi-omics data integration, interpretation, and
its application. Bioinformatics Biol Insights.
14:11779322198990512020. View Article : Google Scholar
|
|
113
|
Peña-Bautista C, Baquero M, Vento M and
Cháfer-Pericás C: Omics-based Biomarkers for the Early Alzheimer
disease diagnosis and reliable therapeutic targets development.
Curr Neuropharmacol. 17:630–647. 2019. View Article : Google Scholar :
|
|
114
|
Tan MS, Cheah PL, Chin AV, Looi LM and
Chang SW: A review on omics-based biomarkers discovery for
Alzheimer's disease from the bioinformatics perspectives:
Statistical approach vs machine learning approach. Comput Biol Med.
139:1049472021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Giri M, Zhang M and Lü Y: Genes associated
with Alzheimer's disease: An overview and current status. Clin
Interv Aging. 11:665–681. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ridge PG, Mukherjee S, Crane PK and Kauwe
JSK; Alzheimer's Disease Genetics Consortium: Alzheimer's disease:
Analyzing the missing heritability. PLoS One. 8:e797712013.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lambert JC, Ibrahim-Verbaas CA, Harold D,
Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW,
Grenier-Boley B, et al: Meta-analysis of 74,046 individuals
identifies 11 new susceptibility loci for Alzheimer's disease. Nat
Genet. 45:1452–1458. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Naj AC, Jun G, Beecham GW, Wang LS,
Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP and Crane
PK: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are
associated with late-onset Alzheimer's disease. Nat Genet.
43:436–441. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
119
|
Jonsson T, Stefansson H, Steinberg S,
Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J,
Levey AI, Lah JJ, et al: Variant of TREM2 associated with the Risk
of Alzheimer's disease. N Eng J Med. 368:107–116. 2012. View Article : Google Scholar
|
|
120
|
Cruchaga C, Karch CM, Jin SC, Benitez BA,
Cai Y, Guerreiro R, Harari O, Norton J, Budde J, Bertelsen S, et
al: Rare coding variants in the phospholipase D3 gene confer risk
for Alzheimer's disease. Nature. 505:550–554. 2014. View Article : Google Scholar
|
|
121
|
Bennett DA, Yu L, Yang J, Srivastava GP,
Aubin C and De Jager PL: Epigenomics of Alzheimer's disease. Transl
Res. 165:200–220. 2015. View Article : Google Scholar
|
|
122
|
Lunnon K, Smith R, Hannon E, De Jager PL,
Srivastava G, Volta M, Troakes C, Al-Sarraj S, Burrage J, Macdonald
R, et al: Methylomic profiling implicates cortical deregulation of
ANK1 in Alzheimer's disease. Nat Neurosci. 17:1164–1170. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
De Jager PL, Srivastava G, Lunnon K,
Burgess J, Schalkwyk LC, Yu L, Eaton ML, Keenan BT, Ernst J, McCabe
C, et al: Alzheimer's disease: Early alterations in brain DNA
methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci.
17:1156–1163. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhang K, Schrag M, Crofton A, Trivedi R,
Vinters H and Kirsch W: Targeted proteomics for quantification of
histone acetylation in Alzheimer's disease. Proteomics.
12:1261–1268. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Lu X, Deng Y, Yu D, Cao H, Wang L, Liu L,
Yu C, Zhang Y, Guo X and Yu G: Histone acetyltransferase p300
mediates histone acetylation of PS1 and BACE1 in a cellular model
of Alzheimer's disease. PLoS One. 9:e1030672014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Rao JS, Keleshian VL, Klein S and Rapoport
SI: Epigenetic modifications in frontal cortex from Alzheimer's
disease and bipolar disorder patients. Transl Psychiatry.
2:e1322012. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Narayan PJ, Lill C, Faull R, Curtis MA and
Dragunow M: Increased acetyl and total histone levels in
post-mortem Alzheimer's disease brain. Neurobiol Dis. 74:281–294.
2015. View Article : Google Scholar
|
|
128
|
Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang
Y and Chang W: The role of Non-coding RNAs in Alzheimer's disease:
From regulated mechanism to therapeutic targets and diagnostic
biomarkers. Front Aging Neurosci. 13:6549782021. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Idda ML, Munk R, Abdelmohsen K and Gorospe
M: Noncoding RNAs in Alzheimer's disease. Wiley Interdiscip Rev
RNA. Jan 12–2018.Epub ahead of print. View Article : Google Scholar
|
|
130
|
Wang M, Qin L and Tang B: MicroRNAs in
Alzheimer's disease. Front Genet. 10:1532019. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Formosa A, Piro MC, Docimo R, Maturo P,
Sollecito DR, Kalimutho M, Sancesario G, Barlattani A, Melino G,
Candi E and Bernardini S: Salivary miRNAome profiling uncovers
epithelial and proliferative miRNAs with differential expression
across dentition stages. Cell Cycle. 10:3359–3368. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Dehghani R, Rahmani F and Rezaei N:
MicroRNA in Alzheimer's disease revisited: Implications for major
neuropathological mechanisms. Rev Neurosci. 29:161–182. 2018.
View Article : Google Scholar
|
|
133
|
Shevchenko G, Konzer A, Musunuri S and
Bergquist J: Neuroproteomics tools in clinical practice. Biochim
Biophys Acta. 1854:705–717. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Henkel AW, Müller K, Lewczuk P, Müller T,
Marcus K, Kornhuber J and Wiltfang J: Multidimensional plasma
protein separation technique for identification of potential
Alzheimer's disease plasma biomarkers: A pilot study. J Neural
Transm (Vienna). 119:779–788. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Thambisetty M, Simmons A, Velayudhan L,
Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A,
Güntert A, et al: Association of plasma clusterin concentration
with severity, pathology, and progression in Alzheimer disease.
Arch Gen Psychiatry. 67:739–748. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Korolainen MA, Nyman TA, Aittokallio T and
Pirttilä T: An update on clinical proteomics in Alzheimer's
research. J Neurochem. 112:1386–1414. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Pannee J, Portelius E, Oppermann M, Atkins
A, Hornshaw M, Zegers I, Höjrup P, Minthon L, Hansson O, Zetterberg
H, et al: A selected reaction monitoring (SRM)-based method for
absolute quantification of Aβ 38, Aβ 40, and Aβ 42 in cerebrospinal
fluid of Alzheimer's disease patients and healthy controls. J
Alzheimers Dis. 33:1021–1032. 2013. View Article : Google Scholar
|
|
138
|
Erik P, Niklas M, Ulf A, Kaj B and Henrik
Z: Novel AβIsoforms in Alzheimer's disease-their role in diagnosis
and treatment. Curr Pharmaceutical Design. 17:2594–2602. 2011.
View Article : Google Scholar
|
|
139
|
Brinkmalm G, Brinkmalm A, Bourgeois P,
Persson R, Hansson O, Portelius E, Mercken M, Andreasson U, Parent
S, Lipari F, et al: Soluble amyloid precursor protein α and β in
CSF in Alzheimer's disease. Brain Res. 1513:117–126. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Thorsell A, Bjerke M, Gobom J, Brunhage E,
Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H and
Blennow K: Neurogranin in cerebrospinal fluid as a marker of
synaptic degeneration in Alzheimer's disease. Brain Res.
1362:13–22. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Han SH, Kim JS, Lee Y, Choi H, Kim JW, Na
DL, Yang EG, Yu MH, Hwang D, Lee C and Mook-Jung I: Both targeted
mass spectrometry and flow sorting analysis methods detected the
decreased serum apolipoprotein E level in Alzheimer's disease
patients. Mol Cell Proteomics. 13:407–419. 2014. View Article : Google Scholar :
|
|
142
|
André W, Nondier I, Valensi M, Guillonneau
F, Federici C, Hoffner G and Djian P: Identification of brain
substrates of transglutaminase by functional proteomics supports
its role in neurodegenerative diseases. Neurobiol Dis. 101:40–58.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Sultana R, Perluigi M and Butterfield DA:
Lipid peroxidation triggers neurodegeneration: A redox proteomics
view into the Alzheimer disease brain. Free Radic Biol Med.
62:157–169. 2013. View Article : Google Scholar :
|
|
144
|
Chiasserini D, van Weering JRT, Piersma
SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H and Jiménez CR:
Proteomic analysis of cerebrospinal fluid extracellular vesicles: A
comprehensive dataset. J Proteomics. 106:191–204. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Koal T, Klavins K, Seppi D, Kemmler G and
Humpel C: Sphingomyelin SM(d18:1/18:0) is significantly enhanced in
cerebrospinal fluid samples dichotomized by pathological
amyloid-β42, tau, and phospho-tau-181 levels. J Alzheimers Dis.
44:1193–1201. 2015. View Article : Google Scholar
|
|
146
|
Guiraud SP, Montoliu I, Da Silva L, Dayon
L, Galindo AN, Corthésy J, Kussmann M and Martin FP:
High-throughput and simultaneous quantitative analysis of
homocysteine-methionine cycle metabolites and co-factors in blood
plasma and cerebrospinal fluid by isotope dilution LC-MS/MS. Anal
Bioanal Chem. 409:295–305. 2017. View Article : Google Scholar
|
|
147
|
Toledo JB, Arnold M, Kastenmüller G, Chang
R, Baillie RA, Han X, Thambisetty M, Tenenbaum JD, Suhre K,
Thompson JW, et al: Metabolic network failures in Alzheimer's
disease: A biochemical road map. Alzheimers Dement. 13:965–984.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Mapstone M, Cheema AK, Fiandaca MS, Zhong
X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley
JM, et al: Plasma phospholipids identify antecedent memory
impairment in older adults. Nat Med. 20:415–418. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Fiandaca MS, Zhong X, Cheema AK, Orquiza
MH, Chidambaram S, Tan MT, Gresenz CR, FitzGerald KT, Nalls MA,
Singleton AB, et al: Plasma 24-metabolite panel predicts
preclinical transition to clinical stages of Alzheimer's disease.
Front Neurol. 6:2372015. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Pimplikar SW: Multi-omics and Alzheimer's
disease: A slower but surer path to an efficacious therapy? Am J
Physiol Cell Physiol. 313:C1–C2. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Moreno-Indias I, Lahti L, Nedyalkova M,
Elbere I, Roshchupkin G, Adilovic M, Aydemir O, Bakir-Gungor B,
Santa Pau EC, D'Elia D, et al: Statistical and machine learning
techniques in human microbiome studies: Contemporary challenges and
solutions. Front Microbiol. 12:6357812021. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Papageorgiou L, Papakonstantinou E, Salis
C, Polychronidou E, Hagidimitriou M, Maroulis D, Eliopoulos E and
Vlachakis D: Drugena: A fully automated immunoinformatics platform
for the design of antibody-drug conjugates against
neurodegenerative diseases. Adv Exp Med Biol. 1194:203–215. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Termine A, Fabrizio C, Strafella C, Caputo
V, Petrosini L, Caltagirone C, Giardina E and Cascella R:
Multi-Layer picture of neurodegenerative diseases: Lessons from the
use of big data through artificial intelligence. J Pers Med.
11:2802021. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Clark C, Dayon L, Masoodi M, Bowman GL and
Popp J: An integrative multi-omics approach reveals new central
nervous system pathway alterations in Alzheimer's disease.
Alzheimers Res Ther. 13:712021. View Article : Google Scholar : PubMed/NCBI
|