Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2023 Volume 51 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 51 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review)

  • Authors:
    • Katerina Pierouli
    • Eleni Papakonstantinou
    • Louis Papageorgiou
    • Io Diakou
    • Thanasis Mitsis
    • Konstantina Dragoumani
    • Demetrios A. Spandidos
    • Flora Bacopoulou
    • George P. Chrousos
    • George Ν. Goulielmos
    • Elias Eliopoulos
    • Dimitrios Vlachakis
  • View Affiliations / Copyright

    Affiliations: Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, University Research Institute of Maternal and Child Health and Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children's Hospital, 11527 Athens, Greece, Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71003 Heraklion, Greece
    Copyright: © Pierouli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 5
    |
    Published online on: November 24, 2022
       https://doi.org/10.3892/ijmm.2022.5208
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder that has a significant association with age. Despite its increasing incidence in the population, the etiology of the disease remains poorly understood, and there are currently no effective treatments readily available. The main genes that are associated with AD are the amyloid precursor protein, presenilin‑1 and presenilin‑2, as well as the apolipoprotein E gene. In addition to genetic factors, a wide range of environmental and lifestyle factors are equally characterized as risk factors for the development of AD, while non‑coding RNAs (ncRNAs) and other epigenetic mechanisms play a key role in their detrimental effects. Multiple types of ncRNAs, such as microRNAs, circular RNAs, Piwi‑interacting RNAs and long non‑coding RNAs are being increasingly implicated in AD. Alterations in ncRNAs can be detected in cerebrospinal fluid, as well in as the brain, highlighting these as promising biomarkers for the detection and treatment of AD. Developments in high‑throughput technologies have led to the so‑called ‘omics’ era, which involves the collection of big data and information at both molecular and protein levels, while combining the development of novel computational and statistical tools capable of analyzing and filtering such data. The present review discusses the role of ncRNAs and their use as biomarkers for AD, and summarizes the findings from the application of omics technologies in AD.
View Figures

Figure 1

View References

1 

Cuyvers E and Sleegers K: Genetic variations underlying Alzheimer's disease: Evidence from genome-wide association studies and beyond. Lancet Neurol. 15:857–868. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D and Jones E: Alzheimer's disease. Lancet. 377:1019–1031. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Braak H, Thal DR, Ghebremedhin E and Del Tredici K: Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. J Neuropathol Exp Neurol. 70:960–969. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Fliss R, Le Gall D, Etcharry-Bouyx F, Chauviré V, Desgranges B and Allain P: Theory of Mind and social reserve: Alternative hypothesis of progressive Theory of Mind decay during different stages of Alzheimer's disease. Soc Neurosci. 11:409–423. 2016. View Article : Google Scholar

5 

Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S and Van der Flier WM: Alzheimer's disease. Lancet. 388:505–517. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Krokidis MG, Exarchos TP and Vlamos P: Data-driven biomarker analysis using computational omics approaches to assess neurodegenerative disease progression. Math Biosci Eng. 18:1813–1832. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Verheijen J and Sleegers K: Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genetics. 34:434–447. 2018. View Article : Google Scholar

8 

Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W and Ferri CP: The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement. 9:63–75.e62. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Heppner FL, Ransohoff RM and Becher B: Immune attack: The role of inflammation in Alzheimer disease. Nat Rev Neurosci. 16:358–372. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Medeiros R, Kitazawa M, Passos GF, Baglietto-Vargas D, Cheng D, Cribbs DH and LaFerla FM: Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol. 182:1780–1789. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Prokop S, Miller KR and Heppner FL: Microglia actions in Alzheimer's disease. Acta Neuropathol. 126:461–477. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Heneka MT, Kummer MP and Latz E: Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 14:463–477. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Labzin LI, Heneka MT and Latz E: Innate Immunity and Neurodegeneration. Annu Rev Med. 69:437–449. 2018. View Article : Google Scholar

14 

Aubry S, Shin W, Crary JF, Lefort R, Qureshi YH, Lefebvre C, Califano A and Shelanski ML: Assembly and interrogation of Alzheimer's disease genetic networks reveal novel regulators of progression. PLoS One. 10:e01203522015. View Article : Google Scholar : PubMed/NCBI

15 

Chouraki V and Seshadri S: Genetics of Alzheimer's disease. Adv Genet. 87:245–294. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Greenough MA: The Role of presenilin in protein trafficking and degradation-implications for metal homeostasis. J Mol Neurosci. 60:289–297. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Millan MJ: Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: An integrative review. Prog Neurobiol. 156:1–68. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Huang YA, Zhou B, Wernig M and Südhof TC: ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell. 168:427–441.e21. 2017. View Article : Google Scholar

19 

Jiang T, Yu JT, Tian Y and Tan L: Epidemiology and etiology of Alzheimer's disease: From genetic to non-genetic factors. Curr Alzheimer Res. 10:852–867. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Kanekiyo T, Xu H and Bu G: ApoE and Aβ in Alzheimer's disease: Accidental encounters or partners? Neuron. 81:740–754. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Vlachakis D, Papakonstantinou E, Sagar R, Bacopoulou F, Exarchos T, Kourouthanassis P, Karyotis V, Vlamos P, Lyketsos C, Avramopoulos D and Mahairaki V: Improving the utility of polygenic risk scores as a biomarker for Alzheimer's disease. Cells. 10:2021. View Article : Google Scholar : PubMed/NCBI

22 

Yan Y, Zhao A, Qui Y, Li Y, Yan R, Wang Y, Xu W and Deng Y: Genetic Association of FERMT2, HLA-DRB1, CD2AP, and PTK2B Polymorphisms with Alzheimer's disease risk in the southern Chinese population. Front Aging Neurosci. 12:162020. View Article : Google Scholar : PubMed/NCBI

23 

Chin-Chan M, Navarro-Yepes J and Quintanilla-Vega B: Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 9:1242015. View Article : Google Scholar : PubMed/NCBI

24 

Reitz C, Brayne C and Mayeux R: Epidemiology of Alzheimer disease. Nat Rev Neurol. 7:137–152. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Tremlett H, Bauer KC, Appel-Cresswell S, Finlay BB and Waubant E: The gut microbiome in human neurological disease: A review. Ann Neurol. 81:369–382. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Blennow K, Dubois B, Fagan AM, Lewczuk P, de Leon MJ and Hampel H: Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease. Alzheimers Dement. 11:58–69. 2015. View Article : Google Scholar

27 

Sancesario GM and Bernardini S: How many biomarkers to discriminate neurodegenerative dementia? Crit Rev Clin Lab Sci. 52:314–326. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Sancesario GM and Bernardini S: Alzheimer's disease in the omics era. Clin Biochem. 59:9–16. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Trushina E, Dutta T, Persson X-MT, Mielke MM and Petersen RC: Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics. PLoS One. 8:e636442013. View Article : Google Scholar : PubMed/NCBI

30 

Nday CM, Eleftheriadou D and Jackson G: Shared pathological pathways of Alzheimer's disease with specific comorbidities: Current perspectives and interventions. J Neurochem. 144:360–389. 2018. View Article : Google Scholar

31 

Morgan SL, Naderi P, Koler K, Pita-Juarez Y, Prokopenko D, Vlachos IS, Tanzi RE, Bertram L and Hide WA: Most pathways can be related to the pathogenesis of Alzheimer's disease. Front Aging Neurosci. 14:8469022022. View Article : Google Scholar : PubMed/NCBI

32 

Colpaert RMW and Calore M: Epigenetics and microRNAs in cardiovascular diseases. Genomics. 113:540–551. 2021. View Article : Google Scholar : PubMed/NCBI

33 

Ramzan F, Vickers MH and Mithen RF: Epigenetics, microRNA and metabolic syndrome: A comprehensive review. Int J Mol Sci. 22:50472021. View Article : Google Scholar : PubMed/NCBI

34 

Suzuki H, Maruyama R, Yamamoto E and Kai M: Epigenetic alteration and microRNA dysregulation in cancer. Front Genet. 4:2582013. View Article : Google Scholar : PubMed/NCBI

35 

Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, Rothman R, Sierksma AS, Thathiah A, Greenberg D, et al: Alteration of the microRNA network during the progression of Alzheimer's disease. EMBO Mol Med. 5:1613–1634. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Maoz R, Garfinkel BP and Soreq H: Alzheimer's disease and ncRNAs. Adv Exp Med Biol. 978:337–361. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Sun AX, Crabtree GR and Yoo AS: MicroRNAs: Regulators of neuronal fate. Curr Opin Cell Biol. 25:215–221. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM and Zhang GZ: Biological functions of microRNAs: A review. J Physiol Biochem. 67:129–139. 2011. View Article : Google Scholar

39 

Fiore R, Khudayberdiev S, Saba R and Schratt G: MicroRNA function in the nervous system. Prog Mol Biol Transl Sci. 102:47–100. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Goodall EF, Heath PR, Bandmann O, Kirby J and Shaw PJ: Neuronal dark matter: The emerging role of microRNAs in neurodegeneration. Front Cell Neurosci. 7:1782013. View Article : Google Scholar : PubMed/NCBI

41 

Niwa R, Zhou F, Li C and Slack FJ: The expression of the Alzheimer's amyloid precursor protein-like gene is regulated by developmental timing microRNAs and their targets in Caenorhabditis elegans. Dev Biol. 315:418–425. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Patel N, Hoang D, Miller N, Ansaloni S, Huang Q, Rogers JT, Lee JC and Saunders AJ: MicroRNAs can regulate human APP levels. Mol Neurodegener. 3:102008. View Article : Google Scholar : PubMed/NCBI

43 

Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T, Liu M, Li X and Tang H: miR-20a promotes proliferation and invasion by targeting APP in human ovarian cancer cells. Acta Biochim Biophys Sin (Shanghai). 42:318–324. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A and De Strooper B: MicroRNA regulation of Alzheimer's Amyloid precursor protein expression. Neurobiol Dis. 33:422–428. 2009. View Article : Google Scholar

45 

Vilardo E, Barbato C, Ciotti M, Cogoni C and Ruberti F: MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem. 285:18344–18351. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Glinsky GV: An SNP-guided microRNA map of fifteen common human disorders identifies a consensus disease phenocode aiming at principal components of the nuclear import pathway. Cell Cycle. 7:2570–2583. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Delay C, Calon F, Mathews P and Hébert SS: Alzheimer-specific variants in the 3′UTR of Amyloid precursor protein affect microRNA function. Mol Neurodegener. 6:702011. View Article : Google Scholar

48 

Smith P, Al Hashimi A, Girard J, Delay C and Hébert SS: In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem. 116:240–247. 2011. View Article : Google Scholar

49 

Kong Y, Wu J, Zhang D, Wan C and Yuan L: The role of miR-124 in drosophila Alzheimer's disease model by targeting delta in notch signaling pathway. Curr Mol Med. 15:980–989. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Schonrock N, Matamales M, Ittner LM and Götz J: MicroRNA networks surrounding APP and amyloid-β metabolism-implications for Alzheimer's disease. Exp Neurol. 235:447–454. 2012. View Article : Google Scholar

51 

Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E and Mucke L: Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer's disease. J Biol Chem. 270:28257–28267. 1995. View Article : Google Scholar : PubMed/NCBI

52 

Donev R, Newall A, Thome J and Sheer D: A role for SC35 and hnRNPA1 in the determination of amyloid precursor protein isoforms. Mol Psychiatry. 12:681–690. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L, Wong P, Price D, et al: Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med. 9:3–4. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, Yu D and Pan S: MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Rep. 12:3081–3088. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Lei X, Lei L, Zhang Z, Zhang Z and Cheng Y: Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer's disease. Int J Clin Exp Pathol. 8:1565–1574. 2015.PubMed/NCBI

56 

Zong Y, Wang H, Dong W, Quan X, Zhu H, Xu Y, Huang L, Ma C and Qin C: miR-29c regulates BACE1 protein expression. Brain Res. 1395:108–115. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Boissonneault V, Plante I, Rivest S and Provost P: MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem. 284:1971–1981. 2009. View Article : Google Scholar

58 

Liu T, Huang Y, Chen J, Chi H, Yu Z, Wang J and Chen C: Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1-AS expression. Mol Med Rep. 10:1275–1281. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Zhang Y, Xing H, Guo S, Zheng Z, Wang H and Xu D: MicroRNA-135b has a neuroprotective role via targeting of β-site APP-cleaving enzyme 1. Exp Ther Med. 12:809–814. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Xie H, Zhao Y, Zhou Y, Wang D, Zhang S and Yang M: MiR-9 regulates the expression of BACE1 in dementia induced by chronic brain hypoperfusion in rats. Cell Physiol Biochem. 42:1213–1226. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Zhu HC, Wang LM, Wang M, Song B, Tan S, Teng JF and Duan DX: MicroRNA-195 downregulates Alzheimer's disease amyloid-β production by targeting BACE1. Brain Res Bull. 88:596–601. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I and Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 28:1213–1223. 2008. View Article : Google Scholar : PubMed/NCBI

63 

Rybak-Wolf A and Plass M: RNA dynamics in Alzheimer's disease. Molecules. 26:51132021. View Article : Google Scholar : PubMed/NCBI

64 

Chang F, Zhang LH, Xu WP, Jing P and Zhan PY: microRNA-9 attenuates amyloidβ-induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2. Mol Med Rep. 9:1917–1922. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Janson J, Laedtke T, Parisi JE, O'Brien P, Petersen RC and Butler PC: Increased risk of type 2 diabetes in Alzheimer disease. Diabetes. 53:474–481. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Cheng C, Li W, Zhang Z, Yoshimura S, Hao Q, Zhang C and Wang Z: MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J Biol Chem. 288:13748–13761. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Dubois B, Padovani A, Scheltens P, Rossi A and Dell'Agnello G: Timely diagnosis for Alzheimer's disease: A literature review on benefits and challenges. J Alzheimers Dis. 49:617–631. 2016. View Article : Google Scholar

68 

Wei W, Wang ZY, Ma LN, Zhang TT, Cao Y and Li H: MicroRNAs in Alzheimer's disease: Function and potential applications as diagnostic biomarkers. Front Mol Neurosci. 13:2020. View Article : Google Scholar

69 

Schwarzenbach H, Nishida N, Calin GA and Pantel K: Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol. 11:145–156. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Bekris LM and Leverenz JB: The biomarker and therapeutic potential of miRNA in Alzheimer's disease. Neurodegener Dis Manag. 5:61–74. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Cogswell JP, Ward J, Taylor IA, Waters M, Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, et al: Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways. J Alzheimers Dis. 14:27–41. 2008. View Article : Google Scholar : PubMed/NCBI

72 

Siedlecki-Wullich D, Català-Solsona J, Fábregas C, Hernández I, Clarimon J, Lleó A, Boada M, Saura CA, Rodríguez-Álvarez J and Miñano-Molina AJ: Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer's disease. Alzheimers Res Ther. 11:462019. View Article : Google Scholar : PubMed/NCBI

73 

Denk J, Boelmans K, Siegismund C, Lassner D, Arlt S and Jahn H: MicroRNA profiling of CSF reveals potential biomarkers to detect Alzheimer's disease. PLoS One. 10:e01264232015. View Article : Google Scholar

74 

Alexandrov PN, Dua P and Lukiw WJ: Up-regulation of miRNA-146a in progressive, Age-related inflammatory neurodegenerative disorders of the human CNS. Front Neurol. 5:1812014. View Article : Google Scholar : PubMed/NCBI

75 

Arena A, Iyer A, Milenkovic I, Kovacs GG, Ferrer I, Perluigi M and Aronica E: Developmental expression and dysregulation of miR-146a and miR-155 in Down's syndrome and mouse models of Down's syndrome and Alzheimer's disease. Curr Alzheimer Res. 14:1305–1317. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Kumar S and Reddy PH: Elevated levels of MicroRNA-455-3p in the cerebrospinal fluid of Alzheimer's patients: A potential biomarker for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis. 1867:1660522021. View Article : Google Scholar : PubMed/NCBI

77 

Yu L, Li H, Liu W, Zhang L, Tian Q, Li H and Li M: MiR-485-3p serves as a biomarker and therapeutic target of Alzheimer's disease via regulating neuronal cell viability and neuroinflammation by targeting AKT3. Mol Genet Genomic Med. 9:e15482021. View Article : Google Scholar

78 

Andreeva K and Cooper NGF: Circular RNAs: New players in gene regulation. Adv Bioscience Biotechnol. 06(06): 82015. View Article : Google Scholar

79 

Gruner H, Cortés-López M, Cooper DA, Bauer M and Miura P: CircRNA accumulation in the aging mouse brain. Sci Rep. 6:389072016. View Article : Google Scholar : PubMed/NCBI

80 

Akhter R: Circular RNA and Alzheimer's disease. Adv Exp Med Biol. 1087:239–243. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Lukiw WJ: Circular RNA (circRNA) in Alzheimer's disease (AD). Front Genet. 4:3072013. View Article : Google Scholar

83 

Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK and Moussa CE: Diminished parkin solubility and Co-localization with intraneuronal amyloid-β are associated with autophagic defects in Alzheimer's disease. J Alzheimers Dis. 33:231–247. 2013. View Article : Google Scholar

84 

Dube U, Del-Aguila JL, Li Z, Budde JP, Jiang S, Hsu S, Ibanez L, Fernandez MV, Farias F, Norton J, et al: An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci. 22:1903–1912. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Zhang Y, Yu F, Bao S and Sun J: Systematic characterization of circular RNA-associated CeRNA network identified novel circRNA biomarkers in Alzheimer's disease. Front Bioeng Biotechnol. 7:2222019. View Article : Google Scholar : PubMed/NCBI

86 

Lu Y, Tan L and Wang X: Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer's disease. Neurosci Bull. 35:877–888. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Yang H, Wang H, Shang H, Chen X, Yang S, Qu Y, Ding J and Li X: Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer's disease. Cell Cycle. 18:2197–2214. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Diling C, Yinrui G, Longkai Q, Xiaocui T, Yadi L, Xin Y, Guoyan H, Ou S, Tianqiao Y, Dongdong W, et al: Circular RNA NF1-419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging (Albany NY). 11:12002–12031. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Zhang M and Bian Z: The emerging role of circular RNAs in Alzheimer's disease and Parkinson's disease. Front Aging Neurosci. 13:6915122021. View Article : Google Scholar : PubMed/NCBI

90 

Huang X and Wong G: An old weapon with a new function: PIWI-interacting RNAs in neurodegenerative diseases. Transl Neurodegener. 10:92021. View Article : Google Scholar : PubMed/NCBI

91 

Qiu W, Guo X, Lin X, Yang Q, Zhang W, Zhang Y, Zuo L, Zhu Y, Li CR, Ma C and Luo X: Transcriptome-wide piRNA profiling in human brains of Alzheimer's disease. Neurobiol Aging. 57:170–177. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Roy J, Sarkar A, Parida S, Ghosh Z and Mallick B: Small RNA sequencing revealed dysregulated piRNAs in Alzheimer's disease and their probable role in pathogenesis. Mol Biosyst. 13:565–576. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Wilusz JE, Sunwoo H and Spector DL: Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Clark MB and Mattick JS: Long noncoding RNAs in cell biology. Semin Cell Dev Biol. 22:366–376. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Martianov I, Ramadass A, Serra Barros A, Chow N and Akoulitchev A: Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature. 445:666–670. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, et al: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 39:925–938. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F and Williams GT: Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J Cell Sci. 121:939–946. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Li F, Wang Y, Yang H, Xu Y, Zhou X, Zhang X, Xie Z and Bi J: The effect of BACE1-AS on β-amyloid generation by regulating BACE1 mRNA expression. BMC Mol Biol. 20:232019. View Article : Google Scholar

101 

Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St Laurent G III, Kenny PJ and Wahlestedt C: Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat Med. 14:723–730. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Zeng T, Ni H, Yu Y, Zhang M, Wu M, Wang Q, Wang L, Xu S, Xu Z, Xu C, et al: BACE1-AS prevents BACE1 mRNA degradation through the sequestration of BACE1-targeting miRNAs. J Chem Neuroanat. 98:87–96. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Zhou Y, Ge Y, Liu Q, Li YX, Chao X, Guan JJ, Diwu YC and Zhang Q: LncRNA BACE1-AS promotes autophagy-mediated neuronal damage through the miR-214-3p/ATG5 signalling axis in Alzheimer's disease. Neuroscience. 455:52–64. 2021. View Article : Google Scholar

104 

Parenti R, Paratore S, Torrisi A and Cavallaro S: A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during beta-amyloid-induced apoptosis. Eur J Neurosci. 26:2444–2457. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Li D, Zhang J, Li X, Chen Y, Yu F and Liu Q: Insights into lncRNAs in Alzheimer's disease mechanisms. RNA Biol. 18:1037–1047. 2021. View Article : Google Scholar

106 

Ciarlo E, Massone S, Penna I, Nizzari M, Gigoni A, Dieci G, Russo C, Florio T, Cancedda R and Pagano A: An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer's disease brain samples. Dis Model Mech. 6:424–433. 2013.

107 

Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, Tabaton M, Robello M, Gatta E, Russo C, et al: 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis. 41:308–317. 2011. View Article : Google Scholar

108 

Zhang J and Wang R: Deregulated lncRNA MAGI2-AS3 in Alzheimer's disease attenuates amyloid-β induced neurotoxicity and neuroinflammation by sponging miR-374b-5p. Exp Gerontol. 144:1111802021. View Article : Google Scholar

109 

Mus E, Hof PR and Tiedge H: Dendritic BC200 RNA in aging and in Alzheimer's disease. Proc Natl Acad Sci USA. 104:10679–10684. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Zhou X and Xu J: Identification of Alzheimer's disease-associated long noncoding RNAs. Neurobiol Aging. 36:2925–2931. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Magistri M, Velmeshev D, Makhmutova M and Faghihi MA: Transcriptomics profiling of Alzheimer's disease reveal neurovascular defects, altered Amyloid-β homeostasis, and deregulated expression of long noncoding RNAs. J Alzheimers Dis. 48:647–665. 2015. View Article : Google Scholar

112 

Subramanian I, Verma S, Kumar S, Jere A and Anamika K: Multi-omics data integration, interpretation, and its application. Bioinformatics Biol Insights. 14:11779322198990512020. View Article : Google Scholar

113 

Peña-Bautista C, Baquero M, Vento M and Cháfer-Pericás C: Omics-based Biomarkers for the Early Alzheimer disease diagnosis and reliable therapeutic targets development. Curr Neuropharmacol. 17:630–647. 2019. View Article : Google Scholar :

114 

Tan MS, Cheah PL, Chin AV, Looi LM and Chang SW: A review on omics-based biomarkers discovery for Alzheimer's disease from the bioinformatics perspectives: Statistical approach vs machine learning approach. Comput Biol Med. 139:1049472021. View Article : Google Scholar : PubMed/NCBI

115 

Giri M, Zhang M and Lü Y: Genes associated with Alzheimer's disease: An overview and current status. Clin Interv Aging. 11:665–681. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Ridge PG, Mukherjee S, Crane PK and Kauwe JSK; Alzheimer's Disease Genetics Consortium: Alzheimer's disease: Analyzing the missing heritability. PLoS One. 8:e797712013. View Article : Google Scholar : PubMed/NCBI

117 

Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, Beecham GW, Grenier-Boley B, et al: Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 45:1452–1458. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP and Crane PK: Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nat Genet. 43:436–441. 2011. View Article : Google Scholar : PubMed/NCBI

119 

Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, et al: Variant of TREM2 associated with the Risk of Alzheimer's disease. N Eng J Med. 368:107–116. 2012. View Article : Google Scholar

120 

Cruchaga C, Karch CM, Jin SC, Benitez BA, Cai Y, Guerreiro R, Harari O, Norton J, Budde J, Bertelsen S, et al: Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease. Nature. 505:550–554. 2014. View Article : Google Scholar

121 

Bennett DA, Yu L, Yang J, Srivastava GP, Aubin C and De Jager PL: Epigenomics of Alzheimer's disease. Transl Res. 165:200–220. 2015. View Article : Google Scholar

122 

Lunnon K, Smith R, Hannon E, De Jager PL, Srivastava G, Volta M, Troakes C, Al-Sarraj S, Burrage J, Macdonald R, et al: Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease. Nat Neurosci. 17:1164–1170. 2014. View Article : Google Scholar : PubMed/NCBI

123 

De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, Eaton ML, Keenan BT, Ernst J, McCabe C, et al: Alzheimer's disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci. 17:1156–1163. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H and Kirsch W: Targeted proteomics for quantification of histone acetylation in Alzheimer's disease. Proteomics. 12:1261–1268. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Lu X, Deng Y, Yu D, Cao H, Wang L, Liu L, Yu C, Zhang Y, Guo X and Yu G: Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer's disease. PLoS One. 9:e1030672014. View Article : Google Scholar : PubMed/NCBI

126 

Rao JS, Keleshian VL, Klein S and Rapoport SI: Epigenetic modifications in frontal cortex from Alzheimer's disease and bipolar disorder patients. Transl Psychiatry. 2:e1322012. View Article : Google Scholar : PubMed/NCBI

127 

Narayan PJ, Lill C, Faull R, Curtis MA and Dragunow M: Increased acetyl and total histone levels in post-mortem Alzheimer's disease brain. Neurobiol Dis. 74:281–294. 2015. View Article : Google Scholar

128 

Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y and Chang W: The role of Non-coding RNAs in Alzheimer's disease: From regulated mechanism to therapeutic targets and diagnostic biomarkers. Front Aging Neurosci. 13:6549782021. View Article : Google Scholar : PubMed/NCBI

129 

Idda ML, Munk R, Abdelmohsen K and Gorospe M: Noncoding RNAs in Alzheimer's disease. Wiley Interdiscip Rev RNA. Jan 12–2018.Epub ahead of print. View Article : Google Scholar

130 

Wang M, Qin L and Tang B: MicroRNAs in Alzheimer's disease. Front Genet. 10:1532019. View Article : Google Scholar : PubMed/NCBI

131 

Formosa A, Piro MC, Docimo R, Maturo P, Sollecito DR, Kalimutho M, Sancesario G, Barlattani A, Melino G, Candi E and Bernardini S: Salivary miRNAome profiling uncovers epithelial and proliferative miRNAs with differential expression across dentition stages. Cell Cycle. 10:3359–3368. 2011. View Article : Google Scholar : PubMed/NCBI

132 

Dehghani R, Rahmani F and Rezaei N: MicroRNA in Alzheimer's disease revisited: Implications for major neuropathological mechanisms. Rev Neurosci. 29:161–182. 2018. View Article : Google Scholar

133 

Shevchenko G, Konzer A, Musunuri S and Bergquist J: Neuroproteomics tools in clinical practice. Biochim Biophys Acta. 1854:705–717. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Henkel AW, Müller K, Lewczuk P, Müller T, Marcus K, Kornhuber J and Wiltfang J: Multidimensional plasma protein separation technique for identification of potential Alzheimer's disease plasma biomarkers: A pilot study. J Neural Transm (Vienna). 119:779–788. 2012. View Article : Google Scholar : PubMed/NCBI

135 

Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Güntert A, et al: Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry. 67:739–748. 2010. View Article : Google Scholar : PubMed/NCBI

136 

Korolainen MA, Nyman TA, Aittokallio T and Pirttilä T: An update on clinical proteomics in Alzheimer's research. J Neurochem. 112:1386–1414. 2010. View Article : Google Scholar : PubMed/NCBI

137 

Pannee J, Portelius E, Oppermann M, Atkins A, Hornshaw M, Zegers I, Höjrup P, Minthon L, Hansson O, Zetterberg H, et al: A selected reaction monitoring (SRM)-based method for absolute quantification of Aβ 38, Aβ 40, and Aβ 42 in cerebrospinal fluid of Alzheimer's disease patients and healthy controls. J Alzheimers Dis. 33:1021–1032. 2013. View Article : Google Scholar

138 

Erik P, Niklas M, Ulf A, Kaj B and Henrik Z: Novel AβIsoforms in Alzheimer's disease-their role in diagnosis and treatment. Curr Pharmaceutical Design. 17:2594–2602. 2011. View Article : Google Scholar

139 

Brinkmalm G, Brinkmalm A, Bourgeois P, Persson R, Hansson O, Portelius E, Mercken M, Andreasson U, Parent S, Lipari F, et al: Soluble amyloid precursor protein α and β in CSF in Alzheimer's disease. Brain Res. 1513:117–126. 2013. View Article : Google Scholar : PubMed/NCBI

140 

Thorsell A, Bjerke M, Gobom J, Brunhage E, Vanmechelen E, Andreasen N, Hansson O, Minthon L, Zetterberg H and Blennow K: Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer's disease. Brain Res. 1362:13–22. 2010. View Article : Google Scholar : PubMed/NCBI

141 

Han SH, Kim JS, Lee Y, Choi H, Kim JW, Na DL, Yang EG, Yu MH, Hwang D, Lee C and Mook-Jung I: Both targeted mass spectrometry and flow sorting analysis methods detected the decreased serum apolipoprotein E level in Alzheimer's disease patients. Mol Cell Proteomics. 13:407–419. 2014. View Article : Google Scholar :

142 

André W, Nondier I, Valensi M, Guillonneau F, Federici C, Hoffner G and Djian P: Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases. Neurobiol Dis. 101:40–58. 2017. View Article : Google Scholar : PubMed/NCBI

143 

Sultana R, Perluigi M and Butterfield DA: Lipid peroxidation triggers neurodegeneration: A redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med. 62:157–169. 2013. View Article : Google Scholar :

144 

Chiasserini D, van Weering JRT, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H and Jiménez CR: Proteomic analysis of cerebrospinal fluid extracellular vesicles: A comprehensive dataset. J Proteomics. 106:191–204. 2014. View Article : Google Scholar : PubMed/NCBI

145 

Koal T, Klavins K, Seppi D, Kemmler G and Humpel C: Sphingomyelin SM(d18:1/18:0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-β42, tau, and phospho-tau-181 levels. J Alzheimers Dis. 44:1193–1201. 2015. View Article : Google Scholar

146 

Guiraud SP, Montoliu I, Da Silva L, Dayon L, Galindo AN, Corthésy J, Kussmann M and Martin FP: High-throughput and simultaneous quantitative analysis of homocysteine-methionine cycle metabolites and co-factors in blood plasma and cerebrospinal fluid by isotope dilution LC-MS/MS. Anal Bioanal Chem. 409:295–305. 2017. View Article : Google Scholar

147 

Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X, Thambisetty M, Tenenbaum JD, Suhre K, Thompson JW, et al: Metabolic network failures in Alzheimer's disease: A biochemical road map. Alzheimers Dement. 13:965–984. 2017. View Article : Google Scholar : PubMed/NCBI

148 

Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, et al: Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 20:415–418. 2014. View Article : Google Scholar : PubMed/NCBI

149 

Fiandaca MS, Zhong X, Cheema AK, Orquiza MH, Chidambaram S, Tan MT, Gresenz CR, FitzGerald KT, Nalls MA, Singleton AB, et al: Plasma 24-metabolite panel predicts preclinical transition to clinical stages of Alzheimer's disease. Front Neurol. 6:2372015. View Article : Google Scholar : PubMed/NCBI

150 

Pimplikar SW: Multi-omics and Alzheimer's disease: A slower but surer path to an efficacious therapy? Am J Physiol Cell Physiol. 313:C1–C2. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Moreno-Indias I, Lahti L, Nedyalkova M, Elbere I, Roshchupkin G, Adilovic M, Aydemir O, Bakir-Gungor B, Santa Pau EC, D'Elia D, et al: Statistical and machine learning techniques in human microbiome studies: Contemporary challenges and solutions. Front Microbiol. 12:6357812021. View Article : Google Scholar : PubMed/NCBI

152 

Papageorgiou L, Papakonstantinou E, Salis C, Polychronidou E, Hagidimitriou M, Maroulis D, Eliopoulos E and Vlachakis D: Drugena: A fully automated immunoinformatics platform for the design of antibody-drug conjugates against neurodegenerative diseases. Adv Exp Med Biol. 1194:203–215. 2020. View Article : Google Scholar : PubMed/NCBI

153 

Termine A, Fabrizio C, Strafella C, Caputo V, Petrosini L, Caltagirone C, Giardina E and Cascella R: Multi-Layer picture of neurodegenerative diseases: Lessons from the use of big data through artificial intelligence. J Pers Med. 11:2802021. View Article : Google Scholar : PubMed/NCBI

154 

Clark C, Dayon L, Masoodi M, Bowman GL and Popp J: An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer's disease. Alzheimers Res Ther. 13:712021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Pierouli K, Papakonstantinou E, Papageorgiou L, Diakou I, Mitsis T, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Goulielmos GΝ, Goulielmos GΝ, et al: Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review). Int J Mol Med 51: 5, 2023.
APA
Pierouli, K., Papakonstantinou, E., Papageorgiou, L., Diakou, I., Mitsis, T., Dragoumani, K. ... Vlachakis, D. (2023). Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review). International Journal of Molecular Medicine, 51, 5. https://doi.org/10.3892/ijmm.2022.5208
MLA
Pierouli, K., Papakonstantinou, E., Papageorgiou, L., Diakou, I., Mitsis, T., Dragoumani, K., Spandidos, D. A., Bacopoulou, F., Chrousos, G. P., Goulielmos, G. Ν., Eliopoulos, E., Vlachakis, D."Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review)". International Journal of Molecular Medicine 51.1 (2023): 5.
Chicago
Pierouli, K., Papakonstantinou, E., Papageorgiou, L., Diakou, I., Mitsis, T., Dragoumani, K., Spandidos, D. A., Bacopoulou, F., Chrousos, G. P., Goulielmos, G. Ν., Eliopoulos, E., Vlachakis, D."Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review)". International Journal of Molecular Medicine 51, no. 1 (2023): 5. https://doi.org/10.3892/ijmm.2022.5208
Copy and paste a formatted citation
x
Spandidos Publications style
Pierouli K, Papakonstantinou E, Papageorgiou L, Diakou I, Mitsis T, Dragoumani K, Spandidos DA, Bacopoulou F, Chrousos GP, Goulielmos GΝ, Goulielmos GΝ, et al: Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review). Int J Mol Med 51: 5, 2023.
APA
Pierouli, K., Papakonstantinou, E., Papageorgiou, L., Diakou, I., Mitsis, T., Dragoumani, K. ... Vlachakis, D. (2023). Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review). International Journal of Molecular Medicine, 51, 5. https://doi.org/10.3892/ijmm.2022.5208
MLA
Pierouli, K., Papakonstantinou, E., Papageorgiou, L., Diakou, I., Mitsis, T., Dragoumani, K., Spandidos, D. A., Bacopoulou, F., Chrousos, G. P., Goulielmos, G. Ν., Eliopoulos, E., Vlachakis, D."Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review)". International Journal of Molecular Medicine 51.1 (2023): 5.
Chicago
Pierouli, K., Papakonstantinou, E., Papageorgiou, L., Diakou, I., Mitsis, T., Dragoumani, K., Spandidos, D. A., Bacopoulou, F., Chrousos, G. P., Goulielmos, G. Ν., Eliopoulos, E., Vlachakis, D."Role of non‑coding RNAs as biomarkers and the application of omics technologies in Alzheimer's disease (Review)". International Journal of Molecular Medicine 51, no. 1 (2023): 5. https://doi.org/10.3892/ijmm.2022.5208
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team