You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar | |
|
Mack M: Inflammation and fibrosis. Matrix Biol. 68-69:106–121. 2018. View Article : Google Scholar | |
|
Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kleaveland KR, Moore BB and Kim KK: Paracrine functions of fibrocytes to promote lung fibrosis. Expert Rev Respir Med. 8:163–172. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gregory RI, Chendrimada TP, Cooch N and Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 123:631–640. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM and Zhang GZ: Biological functions of microRNAs: A review. J Physiol Biochem. 67:129–139. 2011. View Article : Google Scholar | |
|
Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, Yoshimura A, Baltimore D and Rudensky AY: Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 142:914–929. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Zhang X, Ju Y, Zhao B, Yan X, Hu J, Shi L, Yang L, Ma Z, Chen L, et al: MicroRNA-146a feedback suppresses T cell immune function by targeting Stat1 in patients with chronic hepatitis B. J Immunol. 191:293–301. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, et al: miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 208:1189–1201. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao JL, Rao DS, Boldin MP, Taganov KD, O'Connell RM and Baltimore D: NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA. 108:9184–9189. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, Chang YL, Wu CT, Chang LY, Shih SR, et al: Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun. 5:33442014. View Article : Google Scholar : PubMed/NCBI | |
|
Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, Seabra MC, Round JL, Ward DM and O'Connell RM: Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 6:73212015. View Article : Google Scholar : PubMed/NCBI | |
|
Paterson MR and Kriegel AJ: MiR-146a/b: A family with shared seeds and different roots. Physiol Genomics. 49:243–252. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F and Locati M: Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci USA. 110:11499–11504. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Jaworski C, Duncan T, Cameron JE, Flemington EK, Hooks JJ and Redmond TM: Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1β, tumor necrosis factor-α, and interferon-γ. Mol Vis. 19:737–750. 2013. | |
|
Liu R, Liu C, Chen D, Yang WH, Liu X, Liu CG, Dugas CM, Tang F, Zheng P, Liu Y and Wang L: FOXP3 controls an miR-146/NF-κB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res. 75:1703–1713. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Taganov KD, Boldin MP, Chang KJ and Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 103:12481–12486. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ni S, Yang B, Xia L and Zhang H: EZH2 mediates miR-146a-5p/HIF-1 α to alleviate inflammation and glycolysis after acute spinal cord injury. Mediators Inflamm. 2021:55915822021. View Article : Google Scholar | |
|
Damodaran M, Paul SFD and Venkatesan V: Genetic polymorphisms in miR-146a, miR-196a2 and miR-125a genes and its association in prostate cancer. Pathol Oncol Res. 26:193–200. 2020. View Article : Google Scholar | |
|
Chae YS, Kim JG, Lee SJ, Kang BW, Lee YJ, Park JY, Jeon HS, Park JS and Choi GS: A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Res. 33:3233–3239. 2013.PubMed/NCBI | |
|
Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, Qian X, Tang Y, Lau YL, de Vries N, et al: A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 7:e10021282011. View Article : Google Scholar : PubMed/NCBI | |
|
Cui L, Tao H, Wang Y, Liu Z, Xu Z, Zhou H, Cai Y, Yao L, Chen B, Liang W, et al: A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drug-resistant epilepsy and seizures frequency. Seizure. 27:60–65. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kang JY and Lee JO: Structural biology of the Toll-like receptor family. Annu Rev Biochem. 80:917–941. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ, Yamamoto M, Akira S, O'Neill LA, Fitzgerald KA and Golenbock DT: The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA. 103:6299–6304. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Tanimura N, Saitoh S, Matsumoto F, Akashi-Takamura S and Miyake K: Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophys Res Commun. 368:94–99. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
De Nardo D: Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine. 74:181–189. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hayden MS and Ghosh S: Shared principles in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chen LF and Greene WC: Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 5:392–401. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Hoffmann A, Natoli G and Ghosh G: Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 25:6706–6716. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 441:431–436. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Luo JL, Kamata H and Karin M: IKK/NF-kappaB signaling: Balancing life and death-a new approach to cancer therapy. J Clin Invest. 115:2625–2632. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z and Cao X: MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol. 183:2150–2158. 2006. View Article : Google Scholar | |
|
He L, Wang Z, Zhou R, Xiong W, Yang Y, Song N and Qian J: Dexmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway. Biomed Pharmacother. 133:1109932021. View Article : Google Scholar | |
|
Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, Han J, Sun H, Ouyang Q, Hua S, et al: Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY). 13:3060–3079. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J, Deng Q, Deng X, Zhong W, Liu S and Zhong Z: MicroRNA-146a-5p alleviates lipopolysaccharide-induced NLRP3 inflammasome injury and pro-inflammatory cytokine production via the regulation of TRAF6 and IRAK1 in human umbilical vein endothelial cells (HUVECs). Ann Transl Med. 9:14332021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Liao J, Su X, Li W, Bi Z, Wang J, Su Q, Huang H, Wei Y, Gao Y, et al: Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics. 10:9561–9578. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang XP, Luoreng ZM, Zan LS, Li F and Li N: Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene. J Dairy Sci. 100:7648–7658. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Guo Y, Xu X, Tang T, Sun L, Wang H, Zhou W, Fang L, Li Q and Xie P: miR-146a promotes Borna disease virus 1 replication through IRAK1/TRAF6/NF-κB signaling pathway. Virus Res. 271:1976712019. View Article : Google Scholar | |
|
Iori V, Iyer AM, Ravizza T, Beltrame L, Paracchini L, Marchini S, Cerovic M, Hill C, Ferrari M, Zucchetti M, et al: Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis. 99:12–23. 2017. View Article : Google Scholar | |
|
Quinn EM, Wang JH, O'Callaghan G and Redmond HP: MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One. 8:e622322013. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Wu Z, Yuan B, Dong Y, Zhang L and Zeng Z: MicroRNA-146a-5p attenuates irradiation-induced and LPS-induced hepatic stellate cell activation and hepatocyte apoptosis through inhibition of TLR4 pathway. Cell Death Dis. 9:222018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P, Taganov KD, Zhao JL and Baltimore D: miR-146a controls the resolution of T cell responses in mice. J Exp Med. 209:1655–1670. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lochhead RB, Ma Y, Zachary JF, Baltimore D, Zhao JL, Weis JH, O'Connell RM and Weis JJ: MicroRNA-146a provides feedback regulation of lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog. 10:e10042122014. View Article : Google Scholar : PubMed/NCBI | |
|
Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M and Natarajan R: Anti-inflammatory role of MicroRNA-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol. 27:2277–2288. 2016. View Article : Google Scholar : | |
|
Ammari M, Presumey J, Ponsolles C, Roussignol G, Roubert C, Escriou V, Toupet K, Mausset-Bonnefont AL, Cren M, Robin M, et al: Delivery of miR-146a to Ly6Chigh monocytes inhibits pathogenic bone erosion in inflammatory arthritis. Theranostics. 8:5972–5985. 2018. View Article : Google Scholar | |
|
Hsu YR, Chang SW, Lin YC and Yang CH: MicroRNA-146a alleviates experimental autoimmune anterior uveitis in the eyes of lewis rats. Mediators Inflamm. 2017:96013492017. View Article : Google Scholar | |
|
Lv F, Huang Y, Lv W, Yang L, Li F, Fan J and Sun J: MicroRNA-146a ameliorates inflammation via TRAF6/NF-κB pathway in intervertebral disc cells. Med Sci Monit. 23:659–664. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bi X, Zhou L, Liu Y, Gu J and Mi QS: MicroRNA-146a deficiency delays wound healing in normal and diabetic mice. Adv Wound Care (New Rochelle). 11:19–27. 2022. View Article : Google Scholar | |
|
Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, et al: MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60:1065–1075. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
He X, Tang R, Sun Y, Wang YG, Zhen KY, Zhang DM and Pan WQ: MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis. EBioMedicine. 13:339–347. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Wang JJ, Li J, Hosoya KI, Ratan R, Townes T and Zhang SX: Activating transcription factor 4 mediates hyperglycaemia-induced endothelial inflammation and retinal vascular leakage through activation of STAT3 in a mouse model of type 1 diabetes. Diabetologia. 55:2533–2545. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, et al: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 213:337–354. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Elsaeidi F, Bemben MA, Zhao XF and Goldman D: Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. J Neurosci. 34:2632–2644. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Fasler-Kan E, Barteneva NS, Ketterer S, Wunderlich K, Reschner A, Nurzhanova A, Flammer J, Huwyler J and Meyer P: Human cytokines activate JAK-STAT signaling pathway in porcine ocular tissue. Xenotransplantation. 20:469–480. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Samardzija M, Wenzel A, Aufenberg S, Thiersch M, Remé C and Grimm C: Differential role of Jak-STAT signaling in retinal degenerations. FASEB J. 20:2411–2413. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Ye EA and Steinle JJ: miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res. 139:15–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Guo H, Zhang Y, Liao Z, Zhan W, Wang Y, Peng Y, Yang M, Ma X, Yin G and Ye L: MiR-146a upregulates FOXP3 and suppresses inflammation by targeting HIPK3/STAT3 in allergic conjunctivitis. Ann Transl Med. 10:3442022. View Article : Google Scholar : PubMed/NCBI | |
|
Li T, Li M, Xu C, Xu X, Ding J, Cheng L and Ou R: miR-146a regulates the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis through NF-κB signaling by targeting TRAF6. Oncol Rep. 41:2897–2908. 2019.PubMed/NCBI | |
|
Ferrer-Marín F, Arroyo AB, Bellosillo B, Cuenca EJ, Zamora L, Hernández-Rivas JM, Hernández-Boluda JC, Fernandez-Rodriguez C, Luño E, García Hernandez C, et al: miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk. Leukemia. 34:2648–2659. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Ma J, Zhao H, Xiao C, Zhong H, Ling H, Xie Z, Tian Q, Chen H, Zhang T, et al: Resolvin D1 suppresses pannus formation via decreasing connective tissue growth factor caused by upregulation of miRNA-146a-5p in rheumatoid arthritis. Arthritis Res Ther. 22:612020. View Article : Google Scholar : PubMed/NCBI | |
|
Dai X, Mao C, Lan X, Chen H, Li M, Bai J, Deng J, Liang Q, Zhang J, Zhong X, et al: Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice. BMC Microbiol. 17:1772017. View Article : Google Scholar : PubMed/NCBI | |
|
Khan J, Sharma PK and Mukhopadhaya A: Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation. Immunobiology. 220:1199–1209. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J and Sola A: Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J Pathol. 214:104–113. 2008. View Article : Google Scholar | |
|
Huen SC and Cantley LG: Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol. 30:199–209. 2015. View Article : Google Scholar | |
|
Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C and Cantley LG: Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 22:317–326. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Alikhan MA, Jones CV, Williams TM, Beckhouse AG, Fletcher AL, Kett MM, Sakkal S, Samuel CS, Ramsay RG, Deane JA, et al: Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am J Pathol. 179:1243–1256. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Peng X, He F, Mao Y, Lin Y, Fang J, Chen Y, Sun Z, Zhuo Y and Jiang J: miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis. J Mol Endocrinol. 69:315–327. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu XS, Fan B, Szalad A, Jia L, Wang L, Wang X, Pan W, Zhang L, Zhang R, Hu J, et al: MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes. 66:3111–3121. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Huang C, Liu XJ, QunZhou, Xie J, Ma TT, Meng XM and Li J: MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages. Int Immunopharmacol. 32:46–54. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang M, Xiang Y, Wang D, Gao J, Liu D, Liu Y, Liu S and Zheng D: Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell. 11:29–40. 2012. View Article : Google Scholar | |
|
Li Z, Wang S, Zhao W, Sun Z, Yan H and Zhu J: Oxidized low-density lipoprotein upregulates microRNA-146a via JNK and NF-κB signaling. Mol Med Rep. 13:1709–1716. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Huang G, Xu Q, Zhao G, Jiang J, Li Y and Guo Z: miR-146a-5p attenuates allergic airway inflammation by inhibiting the NLRP3 inflammasome activation in macrophages. Int Arch Allergy Immunol. 183:919–930. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Su C, Wei Q, Sun H, Xie J and Nong G: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate diffuse alveolar hemorrhage associated with systemic lupus erythematosus in mice by promoting M2 macrophage polarization via the microRNA-146a-5p/NOTCH1 axis. Immunol Invest. 51:1975–1993. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Luo S, Ding X, Zhao S, Mou T, Li R and Cao X: Long non-coding RNA CHRF accelerates LPS-induced acute lung injury through microRNA-146a/Notch1 axis. Ann Transl Med. 9:12992021. View Article : Google Scholar : PubMed/NCBI | |
|
Ren W, Xi G, Li X, Zhao L, Yang K, Fan X, Gao L, Xu H and Guo J: Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem. 476:471–482. 2021. View Article : Google Scholar | |
|
Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG and Merkenschlager M: A role for Dicer in immune regulation. J Exp Med. 203:2519–2527. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Smigielska-Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J, Boots AM, Brouwer E and Kroesen BJ: Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun. 15:115–125. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yang Y, Guo J, Cui L, Yang L, Li Y, Mou Y, Jia C, Zhang L and Song X: miR-146a enhances regulatory T-cell differentiation and function in allergic rhinitis by targeting STAT5b. Allergy. 77:550–558. 2022. View Article : Google Scholar | |
|
Li B, Wang X, Choi IY, Wang YC, Liu S, Pham AT, Moon H, Smith DJ, Rao DS, Boldin MP and Yang L: miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest. 127:3702–3716. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Yang L, Wang L, Yang Y and Wang Y: Forkhead box p3 controls progression of oral lichen planus by regulating microRNA-146a. J Cell Biochem. 119:8862–8871. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhai X, Guo J, Li Y, Yang Y, Wang L, Yang L and Liu F: Long non-coding RNA DQ786243 modulates the induction and function of CD4+ Treg cells through Foxp3-miR-146a-NF-κB axis: Implications for alleviating oral lichen planus. Int Immunopharmacol. 75:1057612019. View Article : Google Scholar | |
|
Schmidt SV, Nino-Castro AC and Schultze JL: Regulatory dendritic cells: There is more than just immune activation. Front Immunol. 3:2742012. View Article : Google Scholar : PubMed/NCBI | |
|
Tang H, Lai Y, Zheng J, Chen K, Jiang H and Xu G: MiR-146a promotes tolerogenic properties of dendritic cells and through targeting notch1 signaling. Immunol Invest. 49:555–570. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Du J, Wang J, Tan G, Cai Z, Zhang L, Tang B and Wang Z: Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol. 29:2814–2823. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Stickel N, Hanke K, Marschner D, Prinz G, Köhler M, Melchinger W, Pfeifer D, Schmitt-Graeff A, Brummer T, Heine A, et al: MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia. 31:2732–2741. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, Gesslbauer B and Strobl H: miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 184:4955–4965. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Karrich JJ, Jachimowski LC, Libouban M, Iyer A, Brandwijk K, Taanman-Kueter EW, Nagasawa M, de Jong EC, Uittenbogaart CH and Blom B: MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood. 122:3001–3009. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Park H, Huang X, Lu C, Cairo MS and Zhou X: MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem. 290:2831–2841. 2015. View Article : Google Scholar : | |
|
Xu D, Han Q, Hou Z, Zhang C and Zhang J: miR-146a negatively regulates NK cell functions via STAT1 signaling. Cell Mol Immunol. 14:712–720. 2017. View Article : Google Scholar : | |
|
Pesce S, Squillario M, Greppi M, Loiacono F, Moretta L, Moretta A, Sivori S, Castagnola P, Barla A, Candiani S and Marcenaro E: New miRNA signature heralds human NK cell subsets at different maturation steps: Involvement of miR-146a-5p in the regulation of KIR expression. Front Immunol. 9:23602018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Zhang Y, Wu X, Wang Y, Cui H, Li X, Zhang J, Tun N, Peng Y and Yu J: Regulation of human natural killer cell IFN-γ production by MicroRNA-146a via targeting the NF-κB signaling pathway. Front Immunol. 9:2932018. View Article : Google Scholar | |
|
Friedman SL, Sheppard D, Duffield JS and Violette S: Therapy for fibrotic diseases: Nearing the starting line. Sci Transl Med. 5:167sr12013. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenbloom J, Mendoza FA and Jimenez SA: Strategies for anti-fibrotic therapies. Biochim Biophys Acta. 1832:1088–1103. 2013. View Article : Google Scholar | |
|
Kalluri R and Neilson EG: Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 112:1776–1784. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
McAnulty RJ: Fibroblasts and myofibroblasts: Their source, function and role in disease. Int J Biochem Cell Biol. 39:666–671. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Beyer C, Schett G, Gay S, Distler O and Distler JHW: Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Res Ther. 11:2202009. View Article : Google Scholar : PubMed/NCBI | |
|
Lokmic Z, Musyoka J, Hewitson TD and Darby IA: Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 296:139–185. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Santos A and Lagares D: Matrix stiffness: The conductor of organ fibrosis. Curr Rheumatol Rep. 20:22018. View Article : Google Scholar : PubMed/NCBI | |
|
Parker MW, Rossi D, Peterson M, Smith K, Sikström K, White ES, Connett JE, Henke CA, Larsson O and Bitterman PB: Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest. 124:1622–1635. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, Phelan D, Ledwidge MT, McDonald KM, McCann A, et al: Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 23:2176–2188. 2014. View Article : Google Scholar | |
|
Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, Schirmacher P, Rose-John S, zum Büschenfelde KH and Blessing M: TGF-beta1 in liver fibrosis: An inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol. 276:G1059–G1068. 1999. | |
|
Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, Zhao H, You Y, Xiao X and Zuo X: MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 32:514–522. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jia C, Xiong M, Wang P, Cui J, Du X, Yang Q, Wang W, Chen Y and Zhang T: Notoginsenoside R1 attenuates atherosclerotic lesions in ApoE deficient mouse model. PLoS One. 9:e998492014. View Article : Google Scholar : PubMed/NCBI | |
|
Morishita Y, Imai T, Yoshizawa H, Watanabe M, Ishibashi K, Muto S and Nagata D: Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo. Int J Nanomedicine. 10:3475–3488. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Lu CL, Cui LP, Hu YL, Yu Q, Jiang Y, Ma T, Jiao DK, Wang D and Jia CY: MicroRNA-146a modulates TGF-β1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res. 304:195–202. 2012. View Article : Google Scholar | |
|
Zou Y, Cai Y, Lu D, Zhou Y, Yao Q and Zhang S: MicroRNA-146a-5p attenuates liver fibrosis by suppressing profibrogenic effects of TGFβ1 and lipopolysaccharide. Cell Signal. 39:1–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Skhirtladze C, Distler O, Dees C, Akhmetshina A, Busch N, Venalis P, Zwerina J, Spriewald B, Pileckyte M, Schett G and Distler JH: Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum. 58:1475–1484. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Hu M, Che P, Han X, Cai GQ, Liu G, Antony V, Luckhardt T, Siegal GP, Zhou Y, Liu RM, et al: Therapeutic targeting of SRC kinase in myofibroblast differentiation and pulmonary fibrosis. J Pharmacol Exp Ther. 351:87–95. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan BY, Chen YH, Wu ZF, Zhuang Y, Chen GW, Zhang L, Zhang HG, Cheng JC, Lin Q and Zeng ZC: MicroRNA-146a-5p attenuates fibrosis-related molecules in irradiated and TGF-beta1-treated human hepatic stellate cells by regulating PTPRA-SRC signaling. Radiat Res. 192:621–629. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Li Y, Wang H, Li H, Liu S, Chen J and Ying H: miR-146a-5p acts as a negative regulator of TGF-β signaling in skeletal muscle after acute contusion. Acta Biochim Biophys Sin (Shanghai). 49:628–634. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Ma C, Li HY, Chen L, Yuan SS and Li KJ: MicroRNA-146a downregulates the production of hyaluronic acid and collagen I in Graves' ophthalmopathy orbital fibroblasts. Exp Ther Med. 20:382020. View Article : Google Scholar : PubMed/NCBI | |
|
Amrouche L, Desbuissons G, Rabant M, Sauvaget V, Nguyen C, Benon A, Barre P, Rabaté C, Lebreton X, Gallazzini M, et al: MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J Am Soc Nephrol. 28:479–493. 2017. View Article : Google Scholar : | |
|
Xiao Y, Qiao W, Wang X, Sun L and Ren W: MiR-146a mediates TLR-4 signaling pathway to affect myocardial fibrosis in rat constrictive pericarditis model. J Thorac Dis. 13:935–945. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshimura A, Wakabayashi Y and Mori T: Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem. 147:781–792. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Sisto M, Lorusso L, Ingravallo G, Tamma R, Ribatti D and Lisi S: The TGF-β1 signaling pathway as an attractive target in the fibrosis pathogenesis of Sjögren's syndrome. Mediators Inflamm. 2018:19659352018. View Article : Google Scholar | |
|
Biernacka A, Dobaczewski M and Frangogiannis NG: TGF-β signaling in fibrosis. Growth Factors. 29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Meng XM, Nikolic-Paterson DJ and Lan HY: TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Huang C, Sun X, Long XR, Lv XW and Li J: MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal. 24:1923–1930. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wrighton KH, Lin X and Feng XH: Phospho-control of TGF-beta superfamily signaling. Cell Res. 19:8–20. 2009. View Article : Google Scholar | |
|
Hill CS: Transcriptional control by the SMADs. Cold Spring Harb Perspect Biol. 8:a0220792016. View Article : Google Scholar : PubMed/NCBI | |
|
Kaufhold S and Bonavida B: Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J Exp Clin Cancer Res. 33:622014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Cai R, Tang G, Zhang W and Pang W: MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intra-muscular preadipocytes. J Anim Sci Biotechnol. 12:122021. View Article : Google Scholar | |
|
Milano G, Biemmi V, Lazzarini E, Balbi C, Ciullo A, Bolis S, Ameri P, Di Silvestre D, Mauri P, Barile L and Vassalli G: Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res. 116:383–392. 2020. | |
|
Sisto M, Ribatti D and Lisi S: Organ fibrosis and autoimmunity: The role of inflammation in TGFβ-dependent EMT. Biomolecules. 11:3102021. View Article : Google Scholar | |
|
Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massagué J and Niehrs C: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature. 401:480–485. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Yan X, Lin Z, Chen F, Zhao X, Chen H, Ning Y and Chen YG: Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J Biol Chem. 284:30097–30104. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, Wang J, Ding C, Jin L, He F and Wang H: Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics. 11:361–378. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Chen X, Yang L, Kisseleva T, Brenner DA and Seki E: Transcriptional repression of the transforming growth factor β (TGF-β) pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by nuclear factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J Biol Chem. 289:7082–7091. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wiest R, Lawson M and Geuking M: Pathological bacterial translocation in liver cirrhosis. J Hepatol. 60:197–209. 2014. View Article : Google Scholar | |
|
Pradere JP, Troeger JS, Dapito DH, Mencin AA and Schwabe RF: Toll-like receptor 4 and hepatic fibrogenesis. Semin Liver Dis. 30:232–244. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Akira S and Takeda K: Toll-like receptor signalling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Maubach G, Lim MCC, Chen J, Yang H and Zhuo L: miRNA studies in in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol. 17:2748–2773. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Zeng Z, Shen X, Wu Z, Dong Y and Cheng JC: MicroRNA-146a-5p negatively regulates pro-inflammatory cytokine secretion and cell activation in lipopolysaccharide stimulated human hepatic stellate cells through inhibition of Toll-like receptor 4 signaling pathways. Int J Mol Sci. 17:10762016. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao L, Gu Y, Ren G, Chen L, Liu L, Wang X and Gao L: miRNA-146a mimic inhibits NOX4/P38 signalling to ameliorate mouse myocardial ischaemia reperfusion (I/R) injury. Oxid Med Cell Longev. 2021:63662542021. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Jiang ZZ, Li YY, Tang WT, Yin J and Long XP: LncRNA CHRF promotes TGF-β1 induced EMT in alveolar epithelial cells by inhibiting miR-146a up-regulating L1CAM expression. Exp Lung Res. 47:198–209. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Feng B, Chen S, Gordon AD and Chakrabarti S: miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol. 105:70–76. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Yuan B, Chen G, Zhang L, Zhuang Y, Niu H and Zeng Z: Circular RNA RSF1 promotes inflammatory and fibrotic phenotypes of irradiated hepatic stellate cell by modulating miR-146a-5p. J Cell Physiol. 235:8270–8282. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Du J, Niu X, Wang Y, Kong L, Wang R, Zhang Y, Zhao S and Nan Y: MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep. 5:161632015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Wen H and Huang Y: MicroRNA-146a attenuates isoproterenol-induced cardiac fibrosis by inhibiting FGF2. Exp Ther Med. 24:5062022. View Article : Google Scholar : PubMed/NCBI | |
|
Editorial Office: Erratum to MiR-146a mediates TLR-4 signaling pathway to affect myocardial fibrosis in rat constrictive pericarditis model. J Thorac Dis. 13:4623–4624. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma C, Qi X, Wei YF, Li Z, Zhang HL, Li H, Yu FL, Pu YN, Huang YC and Ren YX: Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles. Bioact Mater. 19:139–154. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Saferding V, Puchner A, Goncalves-Alves E, Hofmann M, Bonelli M, Brunner JS, Sahin E, Niederreiter B, Hayer S, Kiener HP, et al: MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. J Autoimmun. 82:74–84. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jang SY, Park SJ, Chae MK, Lee JH, Lee EJ and Yoon JS: Role of microRNA-146a in regulation of fibrosis in orbital fibroblasts from patients with Graves' orbitopathy. Br J Ophthalmol. 102:407–414. 2018. View Article : Google Scholar | |
|
Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W, Assoian RK and Puré E: Fibroblast migration is mediated by CD44-dependent TGF beta activation. J Cell Sci. 121:1393–1402. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Clark RA, McCoy GA, Folkvord JM and McPherson JM: TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: A fibronectin matrix-dependent event. J Cell Physiol. 170:69–80. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Saha B, Kodys K and Szabo G: Hepatitis C virus-induced monocyte differentiation into polarized M2 macrophages promotes stellate cell activation via TGF-β. Cell Mol Gastroenterol Hepatol. 2:302–316.e8. 2016. View Article : Google Scholar | |
|
Tang PM, Zhou S, Li CJ, Liao J, Xiao J, Wang QM, Lian GY, Li J, Huang XR, To KF, et al: The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int. 93:173–187. 2018. View Article : Google Scholar | |
|
Long H, Wang X, Chen Y, Wang L, Zhao M and Lu Q: Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett. 428:90–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Shumnalieva R, Kachakova D, Shoumnalieva-Ivanova V, Miteva P, Kaneva R and Monov S: Whole peripheral blood miR-146a and miR-155 expression levels in systemic lupus erythematosus patients. Acta Reumatol Port. 43:217–225. 2018.PubMed/NCBI | |
|
Zhu Y, Xue Z and Di L: Regulation of MiR-146a and TRAF6 in the diagnose of lupus nephritis. Med Sci Monit. 23:2550–2557. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Abou-Zeid A, Saad M and Soliman E: MicroRNA 146a expression in rheumatoid arthritis: Association with tumor necrosis factor-alpha and disease activity. Genet Test Mol Biomarkers. 15:807–812. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Wang J, Yu W, Dong K, You F, Si B, Tang B, Zhang Y, Wang T and Qiao B: MicroRNA-146a inhibits the inflammatory responses induced by interleukin-17A during the infection of Helicobacter pylori. Mol Med Rep. 19:1388–1395. 2019. | |
|
Li LJ, Gu YJ, Wang LQ, Wan W, Wang HW, Yang XN, Ma LL, Yang LH and Meng ZH: Serum exosomal microRNA-146a as a novel diagnostic biomarker for acute coronary syndrome. J Thorac Dis. 13:3105–3114. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang K, He YS, Wang XQ, Lu L, Chen QJ, Liu J, Sun Z and Shen WF: MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 585:854–860. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wu W, Xuan Y, Ge Y, Mu S, Hu C and Fan R: Plasma miR-146a and miR-365 expression and inflammatory factors in patients with osteoarthritis. Malays J Pathol. 43:311–317. 2021.PubMed/NCBI | |
|
Ghotloo S, Motedayyen H, Amani D, Saffari M and Sattari M: Assessment of microRNA-146a in generalized aggressive periodontitis and its association with disease severity. J Periodontal Res. 54:27–32. 2019. View Article : Google Scholar | |
|
Sabbatinelli J, Giuliani A, Matacchione G, Latini S, Laprovitera N, Pomponio G, Ferrarini A, Svegliati Baroni S, Pavani M, Moretti M, et al: Decreased serum levels of the inflammaging marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients. Mech Ageing Dev. 193:1114132021. View Article : Google Scholar | |
|
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU and McManus DP: Serum exosomal miRNAs for grading hepatic fibrosis due to schistosomiasis. Int J Mol Sci. 21:35602020. View Article : Google Scholar : PubMed/NCBI | |
|
Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU and McManus DP: Circulating miRNAs as footprints for liver fibrosis grading in schistosomiasis. EBioMedicine. 37:334–343. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Chen T, Zhou J, Zhao X, Sheng Q and Lv Z: MiR-146a-5p mimic inhibits NLRP3 inflammasome downstream inflammatory factors and CLIC4 in neonatal necrotizing enterocolitis. Front Cell Dev Biol. 8:5941432021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang S and Benoit DSW: Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery. J Control Release. 287:58–66. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Niemiec SM, Hilton SA, Wallbank A, Azeltine M, Louiselle AE, Elajaili H, Allawzi A, Xu J, Mattson C, Dewberry LC, et al: Cerium oxide nanoparticle delivery of microRNA-146a for local treatment of acute lung injury. Nanomedicine. 34:1023882021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen B, Yoo K, Xu W, Pan R, Han XX and Chen P: Characterization and evaluation of a peptide-based siRNA delivery system in vitro. Drug Deliv Transl Res. 7:507–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Su Y, Sun B, Gao X, Liu S, Hao R and Han B: Chitosan hydrogel doped with PEG-PLA nanoparticles for the local delivery of miRNA-146a to treat allergic rhinitis. Pharmaceutics. 12:9072020. View Article : Google Scholar : PubMed/NCBI | |
|
Chiabotto G, Ceccotti E, Tapparo M, Camussi G and Bruno S: Human liver stem cell-derived extracellular vesicles target hepatic stellate cells and attenuate their pro-fibrotic phenotype. Front Cell Dev Biol. 9:7774622021. View Article : Google Scholar : PubMed/NCBI | |
|
Liang YC, Wu YP, Li XD, Chen SH, Ye XJ, Xue XY and Xu N: TNF-α-induced exosomal miR-146a mediates mesenchymal stem cell-dependent suppression of urethral stricture. J Cell Physiol. 234:23243–23255. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shafei S, Khanmohammadi M, Ghanbari H, Nooshabadi VT, Tafti SHA, Rabbani S, Kasaiyan M, Basiri M and Tavoosidana G: Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration. Cell Tissue Res. 390:71–92. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Carreras-Badosa G, Maslovskaja J, Periyasamy K, Urgard E, Padari K, Vaher H, Tserel L, Gestin M, Kisand K, Arukuusk P, et al: NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation. Biomaterials. 262:1203162020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang WX, Prajapati P, Vekaria HJ, Spry M, Cloud AL, Sullivan PG and Springer JE: Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery. Neural Regen Res. 16:514–522. 2021. View Article : Google Scholar : | |
|
Bobba CM, Fei Q, Shukla V, Lee H, Patel P, Putman RK, Spitzer C, Tsai M, Wewers MD, Lee RJ, et al: Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat Commun. 12:2892021. View Article : Google Scholar : PubMed/NCBI | |
|
Fouad MR, Salama RM, Zaki HF and El-Sahar AE: Vildagliptin attenuates acetic acid-induced colitis in rats via targeting PI3K/Akt/NFκB, Nrf2 and CREB signaling pathways and the expression of lncRNA IFNG-AS1 and miR-146a. Int Immunopharmacol. 92:1073542021. View Article : Google Scholar | |
|
Pan Y, Wang J, Xue Y, Zhao J, Li D, Zhang S, Li K, Hou Y and Fan H: GSKJ4 protects mice against early sepsis via reducing proinflammatory factors and up-regulating MiR-146a. Front Immunol. 9:22722018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun W, Ma M and Yu H and Yu H: Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Nav 1.7. J Cell Biochem. 119:9888–9898. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Zhu Y, Gao G and Zhang Y: Long noncoding RNA SNHG16 targets miR-146a-5p/CCL5 to regulate LPS-induced WI-38 cell apoptosis and inflammation in acute pneumonia. Life Sci. 228:189–197. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dai L, Zhang G, Cheng Z, Wang X, Jia L, Jing X, Wang H, Zhang R, Liu M, Jiang T, et al: Knockdown of LncRNA MALAT1 contributes to the suppression of inflammatory responses by up-regulating miR-146a in LPS-induced acute lung injury. Connect Tissue Res. 59:581–592. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu D, Hu B, Zhou Y, Sun X, Chen J, Chen L, Ji Z, Zhu J and Duan Y: microRNA-146a is involved in rSjP40-inhibited activation of LX-2 cells by targeting Smad4 expression. J Cell Biochem. 119:9249–9253. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Madhavan D, Cuk K, Burwinkel B and Yang R: Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet. 4:1162013. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhang S, Zhang C and Wang M: LncRNA MEG3 inhibits the inflammatory response of ankylosing spondylitis by targeting miR-146a. Mol Cell Biochem. 466:17–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Stenvang J, Petri A, Lindow M, Obad S and Kauppinen S: Inhibition of microRNA function by antimiR oligonucleotides. Silence. 3:12012. View Article : Google Scholar : PubMed/NCBI |