Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2023 Volume 51 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 51 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review)

  • Authors:
    • Zufang Liao
    • Rongjiong Zheng
    • Guofeng Shao
  • View Affiliations / Copyright

    Affiliations: Department of Cardiothoracic Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, P.R. China, Department of Respiratory Medicine, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang 315192, P.R. China, Department of Cardiothoracic Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, Zhejiang 315041, P.R. China
    Copyright: © Liao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 7
    |
    Published online on: December 5, 2022
       https://doi.org/10.3892/ijmm.2022.5210
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In the progression of various diseases, inflammation has a critical role. Chronic persistent inflammation is a pivotal trigger of fibrosis. Several microRNAs (miRNAs) participate in inflammation and fibrosis. In recent years, it has been proved that miRNAs are a critical link in physiological and pathological processes. Among them, the miRNA miR‑146a has a pivotal role in the immune system and acquired immunity, making it one of the most studied miRNAs. Due to its essential roles at the molecular and cellular levels, it has broad application prospects in precision medicine. The present comprehensive review focused on the mechanisms of miR‑146a and its application strategies in inflammation and fibrosis, discussing its therapeutic potential. The main signaling pathways through which miR‑146a regulates inflammation and fibrosis and their relationships were covered. Furthermore, the functions and effects of miR‑146a in specific cells, which may join in the process of inflammation and fibrosis, were outlined. Application strategies were also summarized according to recent studies based on these mechanisms.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Wynn TA: Cellular and molecular mechanisms of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar

2 

Mack M: Inflammation and fibrosis. Matrix Biol. 68-69:106–121. 2018. View Article : Google Scholar

3 

Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Kleaveland KR, Moore BB and Kim KK: Paracrine functions of fibrocytes to promote lung fibrosis. Expert Rev Respir Med. 8:163–172. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Gregory RI, Chendrimada TP, Cooch N and Shiekhattar R: Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 123:631–640. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Huang Y, Shen XJ, Zou Q, Wang SP, Tang SM and Zhang GZ: Biological functions of microRNAs: A review. J Physiol Biochem. 67:129–139. 2011. View Article : Google Scholar

7 

Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, Yoshimura A, Baltimore D and Rudensky AY: Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell. 142:914–929. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Wang S, Zhang X, Ju Y, Zhao B, Yan X, Hu J, Shi L, Yang L, Ma Z, Chen L, et al: MicroRNA-146a feedback suppresses T cell immune function by targeting Stat1 in patients with chronic hepatitis B. J Immunol. 191:293–301. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Boldin MP, Taganov KD, Rao DS, Yang L, Zhao JL, Kalwani M, Garcia-Flores Y, Luong M, Devrekanli A, Xu J, et al: miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 208:1189–1201. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Zhao JL, Rao DS, Boldin MP, Taganov KD, O'Connell RM and Baltimore D: NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA. 108:9184–9189. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, Chang YL, Wu CT, Chang LY, Shih SR, et al: Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun. 5:33442014. View Article : Google Scholar : PubMed/NCBI

13 

Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, Seabra MC, Round JL, Ward DM and O'Connell RM: Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 6:73212015. View Article : Google Scholar : PubMed/NCBI

14 

Paterson MR and Kriegel AJ: MiR-146a/b: A family with shared seeds and different roots. Physiol Genomics. 49:243–252. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F and Locati M: Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci USA. 110:11499–11504. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Kutty RK, Nagineni CN, Samuel W, Vijayasarathy C, Jaworski C, Duncan T, Cameron JE, Flemington EK, Hooks JJ and Redmond TM: Differential regulation of microRNA-146a and microRNA-146b-5p in human retinal pigment epithelial cells by interleukin-1β, tumor necrosis factor-α, and interferon-γ. Mol Vis. 19:737–750. 2013.

17 

Liu R, Liu C, Chen D, Yang WH, Liu X, Liu CG, Dugas CM, Tang F, Zheng P, Liu Y and Wang L: FOXP3 controls an miR-146/NF-κB negative feedback loop that inhibits apoptosis in breast cancer cells. Cancer Res. 75:1703–1713. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Taganov KD, Boldin MP, Chang KJ and Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 103:12481–12486. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Ni S, Yang B, Xia L and Zhang H: EZH2 mediates miR-146a-5p/HIF-1 α to alleviate inflammation and glycolysis after acute spinal cord injury. Mediators Inflamm. 2021:55915822021. View Article : Google Scholar

20 

Damodaran M, Paul SFD and Venkatesan V: Genetic polymorphisms in miR-146a, miR-196a2 and miR-125a genes and its association in prostate cancer. Pathol Oncol Res. 26:193–200. 2020. View Article : Google Scholar

21 

Chae YS, Kim JG, Lee SJ, Kang BW, Lee YJ, Park JY, Jeon HS, Park JS and Choi GS: A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Res. 33:3233–3239. 2013.PubMed/NCBI

22 

Luo X, Yang W, Ye DQ, Cui H, Zhang Y, Hirankarn N, Qian X, Tang Y, Lau YL, de Vries N, et al: A functional variant in microRNA-146a promoter modulates its expression and confers disease risk for systemic lupus erythematosus. PLoS Genet. 7:e10021282011. View Article : Google Scholar : PubMed/NCBI

23 

Cui L, Tao H, Wang Y, Liu Z, Xu Z, Zhou H, Cai Y, Yao L, Chen B, Liang W, et al: A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drug-resistant epilepsy and seizures frequency. Seizure. 27:60–65. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Kang JY and Lee JO: Structural biology of the Toll-like receptor family. Annu Rev Biochem. 80:917–941. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ, Yamamoto M, Akira S, O'Neill LA, Fitzgerald KA and Golenbock DT: The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci USA. 103:6299–6304. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Tanimura N, Saitoh S, Matsumoto F, Akashi-Takamura S and Miyake K: Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophys Res Commun. 368:94–99. 2008. View Article : Google Scholar : PubMed/NCBI

27 

De Nardo D: Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine. 74:181–189. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Hayden MS and Ghosh S: Shared principles in NF-kappaB signaling. Cell. 132:344–362. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Chen LF and Greene WC: Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol. 5:392–401. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Hoffmann A, Natoli G and Ghosh G: Transcriptional regulation via the NF-kappaB signaling module. Oncogene. 25:6706–6716. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Karin M: Nuclear factor-kappaB in cancer development and progression. Nature. 441:431–436. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Luo JL, Kamata H and Karin M: IKK/NF-kappaB signaling: Balancing life and death-a new approach to cancer therapy. J Clin Invest. 115:2625–2632. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z and Cao X: MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol. 183:2150–2158. 2006. View Article : Google Scholar

34 

He L, Wang Z, Zhou R, Xiong W, Yang Y, Song N and Qian J: Dexmedetomidine exerts cardioprotective effect through miR-146a-3p targeting IRAK1 and TRAF6 via inhibition of the NF-κB pathway. Biomed Pharmacother. 133:1109932021. View Article : Google Scholar

35 

Zhang Z, Zou X, Zhang R, Xie Y, Feng Z, Li F, Han J, Sun H, Ouyang Q, Hua S, et al: Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke. Aging (Albany NY). 13:3060–3079. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Hou J, Deng Q, Deng X, Zhong W, Liu S and Zhong Z: MicroRNA-146a-5p alleviates lipopolysaccharide-induced NLRP3 inflammasome injury and pro-inflammatory cytokine production via the regulation of TRAF6 and IRAK1 in human umbilical vein endothelial cells (HUVECs). Ann Transl Med. 9:14332021. View Article : Google Scholar : PubMed/NCBI

37 

Li X, Liao J, Su X, Li W, Bi Z, Wang J, Su Q, Huang H, Wei Y, Gao Y, et al: Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics. 10:9561–9578. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Wang XP, Luoreng ZM, Zan LS, Li F and Li N: Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene. J Dairy Sci. 100:7648–7658. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Zhang X, Guo Y, Xu X, Tang T, Sun L, Wang H, Zhou W, Fang L, Li Q and Xie P: miR-146a promotes Borna disease virus 1 replication through IRAK1/TRAF6/NF-κB signaling pathway. Virus Res. 271:1976712019. View Article : Google Scholar

40 

Iori V, Iyer AM, Ravizza T, Beltrame L, Paracchini L, Marchini S, Cerovic M, Hill C, Ferrari M, Zucchetti M, et al: Blockade of the IL-1R1/TLR4 pathway mediates disease-modification therapeutic effects in a model of acquired epilepsy. Neurobiol Dis. 99:12–23. 2017. View Article : Google Scholar

41 

Quinn EM, Wang JH, O'Callaghan G and Redmond HP: MicroRNA-146a is upregulated by and negatively regulates TLR2 signaling. PLoS One. 8:e622322013. View Article : Google Scholar : PubMed/NCBI

42 

Chen Y, Wu Z, Yuan B, Dong Y, Zhang L and Zeng Z: MicroRNA-146a-5p attenuates irradiation-induced and LPS-induced hepatic stellate cell activation and hepatocyte apoptosis through inhibition of TLR4 pathway. Cell Death Dis. 9:222018. View Article : Google Scholar : PubMed/NCBI

43 

Yang L, Boldin MP, Yu Y, Liu CS, Ea CK, Ramakrishnan P, Taganov KD, Zhao JL and Baltimore D: miR-146a controls the resolution of T cell responses in mice. J Exp Med. 209:1655–1670. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Lochhead RB, Ma Y, Zachary JF, Baltimore D, Zhao JL, Weis JH, O'Connell RM and Weis JJ: MicroRNA-146a provides feedback regulation of lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog. 10:e10042122014. View Article : Google Scholar : PubMed/NCBI

45 

Bhatt K, Lanting LL, Jia Y, Yadav S, Reddy MA, Magilnick N, Boldin M and Natarajan R: Anti-inflammatory role of MicroRNA-146a in the pathogenesis of diabetic nephropathy. J Am Soc Nephrol. 27:2277–2288. 2016. View Article : Google Scholar :

46 

Ammari M, Presumey J, Ponsolles C, Roussignol G, Roubert C, Escriou V, Toupet K, Mausset-Bonnefont AL, Cren M, Robin M, et al: Delivery of miR-146a to Ly6Chigh monocytes inhibits pathogenic bone erosion in inflammatory arthritis. Theranostics. 8:5972–5985. 2018. View Article : Google Scholar

47 

Hsu YR, Chang SW, Lin YC and Yang CH: MicroRNA-146a alleviates experimental autoimmune anterior uveitis in the eyes of lewis rats. Mediators Inflamm. 2017:96013492017. View Article : Google Scholar

48 

Lv F, Huang Y, Lv W, Yang L, Li F, Fan J and Sun J: MicroRNA-146a ameliorates inflammation via TRAF6/NF-κB pathway in intervertebral disc cells. Med Sci Monit. 23:659–664. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Bi X, Zhou L, Liu Y, Gu J and Mi QS: MicroRNA-146a deficiency delays wound healing in normal and diabetic mice. Adv Wound Care (New Rochelle). 11:19–27. 2022. View Article : Google Scholar

50 

Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y, Huang X, Zhou H, de Vries N, Tak PP, et al: MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60:1065–1075. 2009. View Article : Google Scholar : PubMed/NCBI

51 

He X, Tang R, Sun Y, Wang YG, Zhen KY, Zhang DM and Pan WQ: MicroR-146 blocks the activation of M1 macrophage by targeting signal transducer and activator of transcription 1 in hepatic schistosomiasis. EBioMedicine. 13:339–347. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Chen Y, Wang JJ, Li J, Hosoya KI, Ratan R, Townes T and Zhang SX: Activating transcription factor 4 mediates hyperglycaemia-induced endothelial inflammation and retinal vascular leakage through activation of STAT3 in a mouse model of type 1 diabetes. Diabetologia. 55:2533–2545. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, Tian L, Harrison DG, Giacomini JC, Assimes TL, et al: The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 213:337–354. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Elsaeidi F, Bemben MA, Zhao XF and Goldman D: Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. J Neurosci. 34:2632–2644. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Fasler-Kan E, Barteneva NS, Ketterer S, Wunderlich K, Reschner A, Nurzhanova A, Flammer J, Huwyler J and Meyer P: Human cytokines activate JAK-STAT signaling pathway in porcine ocular tissue. Xenotransplantation. 20:469–480. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Samardzija M, Wenzel A, Aufenberg S, Thiersch M, Remé C and Grimm C: Differential role of Jak-STAT signaling in retinal degenerations. FASEB J. 20:2411–2413. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Ye EA and Steinle JJ: miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res. 139:15–22. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Guo H, Zhang Y, Liao Z, Zhan W, Wang Y, Peng Y, Yang M, Ma X, Yin G and Ye L: MiR-146a upregulates FOXP3 and suppresses inflammation by targeting HIPK3/STAT3 in allergic conjunctivitis. Ann Transl Med. 10:3442022. View Article : Google Scholar : PubMed/NCBI

59 

Li T, Li M, Xu C, Xu X, Ding J, Cheng L and Ou R: miR-146a regulates the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis through NF-κB signaling by targeting TRAF6. Oncol Rep. 41:2897–2908. 2019.PubMed/NCBI

60 

Ferrer-Marín F, Arroyo AB, Bellosillo B, Cuenca EJ, Zamora L, Hernández-Rivas JM, Hernández-Boluda JC, Fernandez-Rodriguez C, Luño E, García Hernandez C, et al: miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk. Leukemia. 34:2648–2659. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Sun W, Ma J, Zhao H, Xiao C, Zhong H, Ling H, Xie Z, Tian Q, Chen H, Zhang T, et al: Resolvin D1 suppresses pannus formation via decreasing connective tissue growth factor caused by upregulation of miRNA-146a-5p in rheumatoid arthritis. Arthritis Res Ther. 22:612020. View Article : Google Scholar : PubMed/NCBI

62 

Dai X, Mao C, Lan X, Chen H, Li M, Bai J, Deng J, Liang Q, Zhang J, Zhong X, et al: Acute Penicillium marneffei infection stimulates host M1/M2a macrophages polarization in BALB/C mice. BMC Microbiol. 17:1772017. View Article : Google Scholar : PubMed/NCBI

63 

Khan J, Sharma PK and Mukhopadhaya A: Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation. Immunobiology. 220:1199–1209. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Vinuesa E, Hotter G, Jung M, Herrero-Fresneda I, Torras J and Sola A: Macrophage involvement in the kidney repair phase after ischaemia/reperfusion injury. J Pathol. 214:104–113. 2008. View Article : Google Scholar

65 

Huen SC and Cantley LG: Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol. 30:199–209. 2015. View Article : Google Scholar

66 

Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C and Cantley LG: Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 22:317–326. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Alikhan MA, Jones CV, Williams TM, Beckhouse AG, Fletcher AL, Kett MM, Sakkal S, Samuel CS, Ramsay RG, Deane JA, et al: Colony-stimulating factor-1 promotes kidney growth and repair via alteration of macrophage responses. Am J Pathol. 179:1243–1256. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Peng X, He F, Mao Y, Lin Y, Fang J, Chen Y, Sun Z, Zhuo Y and Jiang J: miR-146a promotes M2 macrophage polarization and accelerates diabetic wound healing by inhibiting the TLR4/NF-κB axis. J Mol Endocrinol. 69:315–327. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Liu XS, Fan B, Szalad A, Jia L, Wang L, Wang X, Pan W, Zhang L, Zhang R, Hu J, et al: MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes. 66:3111–3121. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Huang C, Liu XJ, QunZhou, Xie J, Ma TT, Meng XM and Li J: MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages. Int Immunopharmacol. 32:46–54. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Jiang M, Xiang Y, Wang D, Gao J, Liu D, Liu Y, Liu S and Zheng D: Dysregulated expression of miR-146a contributes to age-related dysfunction of macrophages. Aging Cell. 11:29–40. 2012. View Article : Google Scholar

72 

Li Z, Wang S, Zhao W, Sun Z, Yan H and Zhu J: Oxidized low-density lipoprotein upregulates microRNA-146a via JNK and NF-κB signaling. Mol Med Rep. 13:1709–1716. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Yang Y, Huang G, Xu Q, Zhao G, Jiang J, Li Y and Guo Z: miR-146a-5p attenuates allergic airway inflammation by inhibiting the NLRP3 inflammasome activation in macrophages. Int Arch Allergy Immunol. 183:919–930. 2022. View Article : Google Scholar : PubMed/NCBI

74 

Chen X, Su C, Wei Q, Sun H, Xie J and Nong G: Exosomes derived from human umbilical cord mesenchymal stem cells alleviate diffuse alveolar hemorrhage associated with systemic lupus erythematosus in mice by promoting M2 macrophage polarization via the microRNA-146a-5p/NOTCH1 axis. Immunol Invest. 51:1975–1993. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Luo S, Ding X, Zhao S, Mou T, Li R and Cao X: Long non-coding RNA CHRF accelerates LPS-induced acute lung injury through microRNA-146a/Notch1 axis. Ann Transl Med. 9:12992021. View Article : Google Scholar : PubMed/NCBI

76 

Ren W, Xi G, Li X, Zhao L, Yang K, Fan X, Gao L, Xu H and Guo J: Long non-coding RNA HCG18 promotes M1 macrophage polarization through regulating the miR-146a/TRAF6 axis, facilitating the progression of diabetic peripheral neuropathy. Mol Cell Biochem. 476:471–482. 2021. View Article : Google Scholar

77 

Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG and Merkenschlager M: A role for Dicer in immune regulation. J Exp Med. 203:2519–2527. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Smigielska-Czepiel K, van den Berg A, Jellema P, van der Lei RJ, Bijzet J, Kluiver J, Boots AM, Brouwer E and Kroesen BJ: Comprehensive analysis of miRNA expression in T-cell subsets of rheumatoid arthritis patients reveals defined signatures of naive and memory Tregs. Genes Immun. 15:115–125. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Zhang Y, Yang Y, Guo J, Cui L, Yang L, Li Y, Mou Y, Jia C, Zhang L and Song X: miR-146a enhances regulatory T-cell differentiation and function in allergic rhinitis by targeting STAT5b. Allergy. 77:550–558. 2022. View Article : Google Scholar

80 

Li B, Wang X, Choi IY, Wang YC, Liu S, Pham AT, Moon H, Smith DJ, Rao DS, Boldin MP and Yang L: miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest. 127:3702–3716. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Wang J, Yang L, Wang L, Yang Y and Wang Y: Forkhead box p3 controls progression of oral lichen planus by regulating microRNA-146a. J Cell Biochem. 119:8862–8871. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Wang J, Zhai X, Guo J, Li Y, Yang Y, Wang L, Yang L and Liu F: Long non-coding RNA DQ786243 modulates the induction and function of CD4+ Treg cells through Foxp3-miR-146a-NF-κB axis: Implications for alleviating oral lichen planus. Int Immunopharmacol. 75:1057612019. View Article : Google Scholar

83 

Schmidt SV, Nino-Castro AC and Schultze JL: Regulatory dendritic cells: There is more than just immune activation. Front Immunol. 3:2742012. View Article : Google Scholar : PubMed/NCBI

84 

Tang H, Lai Y, Zheng J, Chen K, Jiang H and Xu G: MiR-146a promotes tolerogenic properties of dendritic cells and through targeting notch1 signaling. Immunol Invest. 49:555–570. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Du J, Wang J, Tan G, Cai Z, Zhang L, Tang B and Wang Z: Aberrant elevated microRNA-146a in dendritic cells (DC) induced by human pancreatic cancer cell line BxPC-3-conditioned medium inhibits DC maturation and activation. Med Oncol. 29:2814–2823. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Stickel N, Hanke K, Marschner D, Prinz G, Köhler M, Melchinger W, Pfeifer D, Schmitt-Graeff A, Brummer T, Heine A, et al: MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia. 31:2732–2741. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Jurkin J, Schichl YM, Koeffel R, Bauer T, Richter S, Konradi S, Gesslbauer B and Strobl H: miR-146a is differentially expressed by myeloid dendritic cell subsets and desensitizes cells to TLR2-dependent activation. J Immunol. 184:4955–4965. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Karrich JJ, Jachimowski LC, Libouban M, Iyer A, Brandwijk K, Taanman-Kueter EW, Nagasawa M, de Jong EC, Uittenbogaart CH and Blom B: MicroRNA-146a regulates survival and maturation of human plasmacytoid dendritic cells. Blood. 122:3001–3009. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Park H, Huang X, Lu C, Cairo MS and Zhou X: MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem. 290:2831–2841. 2015. View Article : Google Scholar :

90 

Xu D, Han Q, Hou Z, Zhang C and Zhang J: miR-146a negatively regulates NK cell functions via STAT1 signaling. Cell Mol Immunol. 14:712–720. 2017. View Article : Google Scholar :

91 

Pesce S, Squillario M, Greppi M, Loiacono F, Moretta L, Moretta A, Sivori S, Castagnola P, Barla A, Candiani S and Marcenaro E: New miRNA signature heralds human NK cell subsets at different maturation steps: Involvement of miR-146a-5p in the regulation of KIR expression. Front Immunol. 9:23602018. View Article : Google Scholar : PubMed/NCBI

92 

Wang H, Zhang Y, Wu X, Wang Y, Cui H, Li X, Zhang J, Tun N, Peng Y and Yu J: Regulation of human natural killer cell IFN-γ production by MicroRNA-146a via targeting the NF-κB signaling pathway. Front Immunol. 9:2932018. View Article : Google Scholar

93 

Friedman SL, Sheppard D, Duffield JS and Violette S: Therapy for fibrotic diseases: Nearing the starting line. Sci Transl Med. 5:167sr12013. View Article : Google Scholar : PubMed/NCBI

94 

Rosenbloom J, Mendoza FA and Jimenez SA: Strategies for anti-fibrotic therapies. Biochim Biophys Acta. 1832:1088–1103. 2013. View Article : Google Scholar

95 

Kalluri R and Neilson EG: Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 112:1776–1784. 2003. View Article : Google Scholar : PubMed/NCBI

96 

McAnulty RJ: Fibroblasts and myofibroblasts: Their source, function and role in disease. Int J Biochem Cell Biol. 39:666–671. 2007. View Article : Google Scholar : PubMed/NCBI

97 

Beyer C, Schett G, Gay S, Distler O and Distler JHW: Hypoxia. Hypoxia in the pathogenesis of systemic sclerosis. Arthritis Res Ther. 11:2202009. View Article : Google Scholar : PubMed/NCBI

98 

Lokmic Z, Musyoka J, Hewitson TD and Darby IA: Hypoxia and hypoxia signaling in tissue repair and fibrosis. Int Rev Cell Mol Biol. 296:139–185. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Santos A and Lagares D: Matrix stiffness: The conductor of organ fibrosis. Curr Rheumatol Rep. 20:22018. View Article : Google Scholar : PubMed/NCBI

100 

Parker MW, Rossi D, Peterson M, Smith K, Sikström K, White ES, Connett JE, Henke CA, Larsson O and Bitterman PB: Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest. 124:1622–1635. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, Phelan D, Ledwidge MT, McDonald KM, McCann A, et al: Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 23:2176–2188. 2014. View Article : Google Scholar

102 

Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, Schirmacher P, Rose-John S, zum Büschenfelde KH and Blessing M: TGF-beta1 in liver fibrosis: An inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol. 276:G1059–G1068. 1999.

103 

Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, Zhao H, You Y, Xiao X and Zuo X: MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 32:514–522. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Jia C, Xiong M, Wang P, Cui J, Du X, Yang Q, Wang W, Chen Y and Zhang T: Notoginsenoside R1 attenuates atherosclerotic lesions in ApoE deficient mouse model. PLoS One. 9:e998492014. View Article : Google Scholar : PubMed/NCBI

105 

Morishita Y, Imai T, Yoshizawa H, Watanabe M, Ishibashi K, Muto S and Nagata D: Delivery of microRNA-146a with polyethylenimine nanoparticles inhibits renal fibrosis in vivo. Int J Nanomedicine. 10:3475–3488. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Liu Z, Lu CL, Cui LP, Hu YL, Yu Q, Jiang Y, Ma T, Jiao DK, Wang D and Jia CY: MicroRNA-146a modulates TGF-β1-induced phenotypic differentiation in human dermal fibroblasts by targeting SMAD4. Arch Dermatol Res. 304:195–202. 2012. View Article : Google Scholar

107 

Zou Y, Cai Y, Lu D, Zhou Y, Yao Q and Zhang S: MicroRNA-146a-5p attenuates liver fibrosis by suppressing profibrogenic effects of TGFβ1 and lipopolysaccharide. Cell Signal. 39:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Skhirtladze C, Distler O, Dees C, Akhmetshina A, Busch N, Venalis P, Zwerina J, Spriewald B, Pileckyte M, Schett G and Distler JH: Src kinases in systemic sclerosis: Central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum. 58:1475–1484. 2008. View Article : Google Scholar : PubMed/NCBI

109 

Hu M, Che P, Han X, Cai GQ, Liu G, Antony V, Luckhardt T, Siegal GP, Zhou Y, Liu RM, et al: Therapeutic targeting of SRC kinase in myofibroblast differentiation and pulmonary fibrosis. J Pharmacol Exp Ther. 351:87–95. 2014. View Article : Google Scholar : PubMed/NCBI

110 

Yuan BY, Chen YH, Wu ZF, Zhuang Y, Chen GW, Zhang L, Zhang HG, Cheng JC, Lin Q and Zeng ZC: MicroRNA-146a-5p attenuates fibrosis-related molecules in irradiated and TGF-beta1-treated human hepatic stellate cells by regulating PTPRA-SRC signaling. Radiat Res. 192:621–629. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Sun Y, Li Y, Wang H, Li H, Liu S, Chen J and Ying H: miR-146a-5p acts as a negative regulator of TGF-β signaling in skeletal muscle after acute contusion. Acta Biochim Biophys Sin (Shanghai). 49:628–634. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Liu W, Ma C, Li HY, Chen L, Yuan SS and Li KJ: MicroRNA-146a downregulates the production of hyaluronic acid and collagen I in Graves' ophthalmopathy orbital fibroblasts. Exp Ther Med. 20:382020. View Article : Google Scholar : PubMed/NCBI

113 

Amrouche L, Desbuissons G, Rabant M, Sauvaget V, Nguyen C, Benon A, Barre P, Rabaté C, Lebreton X, Gallazzini M, et al: MicroRNA-146a in human and experimental ischemic AKI: CXCL8-dependent mechanism of action. J Am Soc Nephrol. 28:479–493. 2017. View Article : Google Scholar :

114 

Xiao Y, Qiao W, Wang X, Sun L and Ren W: MiR-146a mediates TLR-4 signaling pathway to affect myocardial fibrosis in rat constrictive pericarditis model. J Thorac Dis. 13:935–945. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Yoshimura A, Wakabayashi Y and Mori T: Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem. 147:781–792. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Sisto M, Lorusso L, Ingravallo G, Tamma R, Ribatti D and Lisi S: The TGF-β1 signaling pathway as an attractive target in the fibrosis pathogenesis of Sjögren's syndrome. Mediators Inflamm. 2018:19659352018. View Article : Google Scholar

117 

Biernacka A, Dobaczewski M and Frangogiannis NG: TGF-β signaling in fibrosis. Growth Factors. 29:196–202. 2011. View Article : Google Scholar : PubMed/NCBI

118 

Meng XM, Nikolic-Paterson DJ and Lan HY: TGF-β: The master regulator of fibrosis. Nat Rev Nephrol. 12:325–338. 2016. View Article : Google Scholar : PubMed/NCBI

119 

He Y, Huang C, Sun X, Long XR, Lv XW and Li J: MicroRNA-146a modulates TGF-beta1-induced hepatic stellate cell proliferation by targeting SMAD4. Cell Signal. 24:1923–1930. 2012. View Article : Google Scholar : PubMed/NCBI

120 

Wrighton KH, Lin X and Feng XH: Phospho-control of TGF-beta superfamily signaling. Cell Res. 19:8–20. 2009. View Article : Google Scholar

121 

Hill CS: Transcriptional control by the SMADs. Cold Spring Harb Perspect Biol. 8:a0220792016. View Article : Google Scholar : PubMed/NCBI

122 

Kaufhold S and Bonavida B: Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. J Exp Clin Cancer Res. 33:622014. View Article : Google Scholar : PubMed/NCBI

123 

Zhang Q, Cai R, Tang G, Zhang W and Pang W: MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intra-muscular preadipocytes. J Anim Sci Biotechnol. 12:122021. View Article : Google Scholar

124 

Milano G, Biemmi V, Lazzarini E, Balbi C, Ciullo A, Bolis S, Ameri P, Di Silvestre D, Mauri P, Barile L and Vassalli G: Intravenous administration of cardiac progenitor cell-derived exosomes protects against doxorubicin/trastuzumab-induced cardiac toxicity. Cardiovasc Res. 116:383–392. 2020.

125 

Sisto M, Ribatti D and Lisi S: Organ fibrosis and autoimmunity: The role of inflammation in TGFβ-dependent EMT. Biomolecules. 11:3102021. View Article : Google Scholar

126 

Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massagué J and Niehrs C: Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature. 401:480–485. 1999. View Article : Google Scholar : PubMed/NCBI

127 

Yan X, Lin Z, Chen F, Zhao X, Chen H, Ning Y and Chen YG: Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J Biol Chem. 284:30097–30104. 2009. View Article : Google Scholar : PubMed/NCBI

128 

Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, Wang J, Ding C, Jin L, He F and Wang H: Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics. 11:361–378. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Liu C, Chen X, Yang L, Kisseleva T, Brenner DA and Seki E: Transcriptional repression of the transforming growth factor β (TGF-β) pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by nuclear factor κB (NF-κB) p50 enhances TGF-β signaling in hepatic stellate cells. J Biol Chem. 289:7082–7091. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007. View Article : Google Scholar : PubMed/NCBI

131 

Wiest R, Lawson M and Geuking M: Pathological bacterial translocation in liver cirrhosis. J Hepatol. 60:197–209. 2014. View Article : Google Scholar

132 

Pradere JP, Troeger JS, Dapito DH, Mencin AA and Schwabe RF: Toll-like receptor 4 and hepatic fibrogenesis. Semin Liver Dis. 30:232–244. 2010. View Article : Google Scholar : PubMed/NCBI

133 

Akira S and Takeda K: Toll-like receptor signalling. Nat Rev Immunol. 4:499–511. 2004. View Article : Google Scholar : PubMed/NCBI

134 

Maubach G, Lim MCC, Chen J, Yang H and Zhuo L: miRNA studies in in vitro and in vivo activated hepatic stellate cells. World J Gastroenterol. 17:2748–2773. 2011. View Article : Google Scholar : PubMed/NCBI

135 

Chen Y, Zeng Z, Shen X, Wu Z, Dong Y and Cheng JC: MicroRNA-146a-5p negatively regulates pro-inflammatory cytokine secretion and cell activation in lipopolysaccharide stimulated human hepatic stellate cells through inhibition of Toll-like receptor 4 signaling pathways. Int J Mol Sci. 17:10762016. View Article : Google Scholar : PubMed/NCBI

136 

Xiao L, Gu Y, Ren G, Chen L, Liu L, Wang X and Gao L: miRNA-146a mimic inhibits NOX4/P38 signalling to ameliorate mouse myocardial ischaemia reperfusion (I/R) injury. Oxid Med Cell Longev. 2021:63662542021. View Article : Google Scholar : PubMed/NCBI

137 

Li J, Jiang ZZ, Li YY, Tang WT, Yin J and Long XP: LncRNA CHRF promotes TGF-β1 induced EMT in alveolar epithelial cells by inhibiting miR-146a up-regulating L1CAM expression. Exp Lung Res. 47:198–209. 2021. View Article : Google Scholar : PubMed/NCBI

138 

Feng B, Chen S, Gordon AD and Chakrabarti S: miR-146a mediates inflammatory changes and fibrosis in the heart in diabetes. J Mol Cell Cardiol. 105:70–76. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Chen Y, Yuan B, Chen G, Zhang L, Zhuang Y, Niu H and Zeng Z: Circular RNA RSF1 promotes inflammatory and fibrotic phenotypes of irradiated hepatic stellate cell by modulating miR-146a-5p. J Cell Physiol. 235:8270–8282. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Du J, Niu X, Wang Y, Kong L, Wang R, Zhang Y, Zhao S and Nan Y: MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a. Sci Rep. 5:161632015. View Article : Google Scholar : PubMed/NCBI

141 

Zhang H, Wen H and Huang Y: MicroRNA-146a attenuates isoproterenol-induced cardiac fibrosis by inhibiting FGF2. Exp Ther Med. 24:5062022. View Article : Google Scholar : PubMed/NCBI

142 

Editorial Office: Erratum to MiR-146a mediates TLR-4 signaling pathway to affect myocardial fibrosis in rat constrictive pericarditis model. J Thorac Dis. 13:4623–4624. 2021. View Article : Google Scholar : PubMed/NCBI

143 

Ma C, Qi X, Wei YF, Li Z, Zhang HL, Li H, Yu FL, Pu YN, Huang YC and Ren YX: Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles. Bioact Mater. 19:139–154. 2022. View Article : Google Scholar : PubMed/NCBI

144 

Saferding V, Puchner A, Goncalves-Alves E, Hofmann M, Bonelli M, Brunner JS, Sahin E, Niederreiter B, Hayer S, Kiener HP, et al: MicroRNA-146a governs fibroblast activation and joint pathology in arthritis. J Autoimmun. 82:74–84. 2017. View Article : Google Scholar : PubMed/NCBI

145 

Jang SY, Park SJ, Chae MK, Lee JH, Lee EJ and Yoon JS: Role of microRNA-146a in regulation of fibrosis in orbital fibroblasts from patients with Graves' orbitopathy. Br J Ophthalmol. 102:407–414. 2018. View Article : Google Scholar

146 

Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W, Assoian RK and Puré E: Fibroblast migration is mediated by CD44-dependent TGF beta activation. J Cell Sci. 121:1393–1402. 2008. View Article : Google Scholar : PubMed/NCBI

147 

Clark RA, McCoy GA, Folkvord JM and McPherson JM: TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: A fibronectin matrix-dependent event. J Cell Physiol. 170:69–80. 1997. View Article : Google Scholar : PubMed/NCBI

148 

Saha B, Kodys K and Szabo G: Hepatitis C virus-induced monocyte differentiation into polarized M2 macrophages promotes stellate cell activation via TGF-β. Cell Mol Gastroenterol Hepatol. 2:302–316.e8. 2016. View Article : Google Scholar

149 

Tang PM, Zhou S, Li CJ, Liao J, Xiao J, Wang QM, Lian GY, Li J, Huang XR, To KF, et al: The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int. 93:173–187. 2018. View Article : Google Scholar

150 

Long H, Wang X, Chen Y, Wang L, Zhao M and Lu Q: Dysregulation of microRNAs in autoimmune diseases: Pathogenesis, biomarkers and potential therapeutic targets. Cancer Lett. 428:90–103. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Shumnalieva R, Kachakova D, Shoumnalieva-Ivanova V, Miteva P, Kaneva R and Monov S: Whole peripheral blood miR-146a and miR-155 expression levels in systemic lupus erythematosus patients. Acta Reumatol Port. 43:217–225. 2018.PubMed/NCBI

152 

Zhu Y, Xue Z and Di L: Regulation of MiR-146a and TRAF6 in the diagnose of lupus nephritis. Med Sci Monit. 23:2550–2557. 2017. View Article : Google Scholar : PubMed/NCBI

153 

Abou-Zeid A, Saad M and Soliman E: MicroRNA 146a expression in rheumatoid arthritis: Association with tumor necrosis factor-alpha and disease activity. Genet Test Mol Biomarkers. 15:807–812. 2011. View Article : Google Scholar : PubMed/NCBI

154 

Li N, Wang J, Yu W, Dong K, You F, Si B, Tang B, Zhang Y, Wang T and Qiao B: MicroRNA-146a inhibits the inflammatory responses induced by interleukin-17A during the infection of Helicobacter pylori. Mol Med Rep. 19:1388–1395. 2019.

155 

Li LJ, Gu YJ, Wang LQ, Wan W, Wang HW, Yang XN, Ma LL, Yang LH and Meng ZH: Serum exosomal microRNA-146a as a novel diagnostic biomarker for acute coronary syndrome. J Thorac Dis. 13:3105–3114. 2021. View Article : Google Scholar : PubMed/NCBI

156 

Yang K, He YS, Wang XQ, Lu L, Chen QJ, Liu J, Sun Z and Shen WF: MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 585:854–860. 2011. View Article : Google Scholar : PubMed/NCBI

157 

Wu W, Xuan Y, Ge Y, Mu S, Hu C and Fan R: Plasma miR-146a and miR-365 expression and inflammatory factors in patients with osteoarthritis. Malays J Pathol. 43:311–317. 2021.PubMed/NCBI

158 

Ghotloo S, Motedayyen H, Amani D, Saffari M and Sattari M: Assessment of microRNA-146a in generalized aggressive periodontitis and its association with disease severity. J Periodontal Res. 54:27–32. 2019. View Article : Google Scholar

159 

Sabbatinelli J, Giuliani A, Matacchione G, Latini S, Laprovitera N, Pomponio G, Ferrarini A, Svegliati Baroni S, Pavani M, Moretti M, et al: Decreased serum levels of the inflammaging marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients. Mech Ageing Dev. 193:1114132021. View Article : Google Scholar

160 

Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU and McManus DP: Serum exosomal miRNAs for grading hepatic fibrosis due to schistosomiasis. Int J Mol Sci. 21:35602020. View Article : Google Scholar : PubMed/NCBI

161 

Cai P, Mu Y, Olveda RM, Ross AG, Olveda DU and McManus DP: Circulating miRNAs as footprints for liver fibrosis grading in schistosomiasis. EBioMedicine. 37:334–343. 2018. View Article : Google Scholar : PubMed/NCBI

162 

Chen J, Chen T, Zhou J, Zhao X, Sheng Q and Lv Z: MiR-146a-5p mimic inhibits NLRP3 inflammasome downstream inflammatory factors and CLIC4 in neonatal necrotizing enterocolitis. Front Cell Dev Biol. 8:5941432021. View Article : Google Scholar : PubMed/NCBI

163 

Wang Y, Zhang S and Benoit DSW: Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery. J Control Release. 287:58–66. 2018. View Article : Google Scholar : PubMed/NCBI

164 

Niemiec SM, Hilton SA, Wallbank A, Azeltine M, Louiselle AE, Elajaili H, Allawzi A, Xu J, Mattson C, Dewberry LC, et al: Cerium oxide nanoparticle delivery of microRNA-146a for local treatment of acute lung injury. Nanomedicine. 34:1023882021. View Article : Google Scholar : PubMed/NCBI

165 

Chen B, Yoo K, Xu W, Pan R, Han XX and Chen P: Characterization and evaluation of a peptide-based siRNA delivery system in vitro. Drug Deliv Transl Res. 7:507–515. 2017. View Article : Google Scholar : PubMed/NCBI

166 

Su Y, Sun B, Gao X, Liu S, Hao R and Han B: Chitosan hydrogel doped with PEG-PLA nanoparticles for the local delivery of miRNA-146a to treat allergic rhinitis. Pharmaceutics. 12:9072020. View Article : Google Scholar : PubMed/NCBI

167 

Chiabotto G, Ceccotti E, Tapparo M, Camussi G and Bruno S: Human liver stem cell-derived extracellular vesicles target hepatic stellate cells and attenuate their pro-fibrotic phenotype. Front Cell Dev Biol. 9:7774622021. View Article : Google Scholar : PubMed/NCBI

168 

Liang YC, Wu YP, Li XD, Chen SH, Ye XJ, Xue XY and Xu N: TNF-α-induced exosomal miR-146a mediates mesenchymal stem cell-dependent suppression of urethral stricture. J Cell Physiol. 234:23243–23255. 2019. View Article : Google Scholar : PubMed/NCBI

169 

Shafei S, Khanmohammadi M, Ghanbari H, Nooshabadi VT, Tafti SHA, Rabbani S, Kasaiyan M, Basiri M and Tavoosidana G: Effectiveness of exosome mediated miR-126 and miR-146a delivery on cardiac tissue regeneration. Cell Tissue Res. 390:71–92. 2022. View Article : Google Scholar : PubMed/NCBI

170 

Carreras-Badosa G, Maslovskaja J, Periyasamy K, Urgard E, Padari K, Vaher H, Tserel L, Gestin M, Kisand K, Arukuusk P, et al: NickFect type of cell-penetrating peptides present enhanced efficiency for microRNA-146a delivery into dendritic cells and during skin inflammation. Biomaterials. 262:1203162020. View Article : Google Scholar : PubMed/NCBI

171 

Wang WX, Prajapati P, Vekaria HJ, Spry M, Cloud AL, Sullivan PG and Springer JE: Temporal changes in inflammatory mitochondria-enriched microRNAs following traumatic brain injury and effects of miR-146a nanoparticle delivery. Neural Regen Res. 16:514–522. 2021. View Article : Google Scholar :

172 

Bobba CM, Fei Q, Shukla V, Lee H, Patel P, Putman RK, Spitzer C, Tsai M, Wewers MD, Lee RJ, et al: Nanoparticle delivery of microRNA-146a regulates mechanotransduction in lung macrophages and mitigates injury during mechanical ventilation. Nat Commun. 12:2892021. View Article : Google Scholar : PubMed/NCBI

173 

Fouad MR, Salama RM, Zaki HF and El-Sahar AE: Vildagliptin attenuates acetic acid-induced colitis in rats via targeting PI3K/Akt/NFκB, Nrf2 and CREB signaling pathways and the expression of lncRNA IFNG-AS1 and miR-146a. Int Immunopharmacol. 92:1073542021. View Article : Google Scholar

174 

Pan Y, Wang J, Xue Y, Zhao J, Li D, Zhang S, Li K, Hou Y and Fan H: GSKJ4 protects mice against early sepsis via reducing proinflammatory factors and up-regulating MiR-146a. Front Immunol. 9:22722018. View Article : Google Scholar : PubMed/NCBI

175 

Sun W, Ma M and Yu H and Yu H: Inhibition of lncRNA X inactivate-specific transcript ameliorates inflammatory pain by suppressing satellite glial cell activation and inflammation by acting as a sponge of miR-146a to inhibit Nav 1.7. J Cell Biochem. 119:9888–9898. 2018. View Article : Google Scholar : PubMed/NCBI

176 

Zhou Z, Zhu Y, Gao G and Zhang Y: Long noncoding RNA SNHG16 targets miR-146a-5p/CCL5 to regulate LPS-induced WI-38 cell apoptosis and inflammation in acute pneumonia. Life Sci. 228:189–197. 2019. View Article : Google Scholar : PubMed/NCBI

177 

Dai L, Zhang G, Cheng Z, Wang X, Jia L, Jing X, Wang H, Zhang R, Liu M, Jiang T, et al: Knockdown of LncRNA MALAT1 contributes to the suppression of inflammatory responses by up-regulating miR-146a in LPS-induced acute lung injury. Connect Tissue Res. 59:581–592. 2018. View Article : Google Scholar : PubMed/NCBI

178 

Zhu D, Hu B, Zhou Y, Sun X, Chen J, Chen L, Ji Z, Zhu J and Duan Y: microRNA-146a is involved in rSjP40-inhibited activation of LX-2 cells by targeting Smad4 expression. J Cell Biochem. 119:9249–9253. 2018. View Article : Google Scholar : PubMed/NCBI

179 

Madhavan D, Cuk K, Burwinkel B and Yang R: Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures. Front Genet. 4:1162013. View Article : Google Scholar : PubMed/NCBI

180 

Li Y, Zhang S, Zhang C and Wang M: LncRNA MEG3 inhibits the inflammatory response of ankylosing spondylitis by targeting miR-146a. Mol Cell Biochem. 466:17–24. 2020. View Article : Google Scholar : PubMed/NCBI

181 

Stenvang J, Petri A, Lindow M, Obad S and Kauppinen S: Inhibition of microRNA function by antimiR oligonucleotides. Silence. 3:12012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liao Z, Zheng R and Shao G: Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review). Int J Mol Med 51: 7, 2023.
APA
Liao, Z., Zheng, R., & Shao, G. (2023). Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review). International Journal of Molecular Medicine, 51, 7. https://doi.org/10.3892/ijmm.2022.5210
MLA
Liao, Z., Zheng, R., Shao, G."Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review)". International Journal of Molecular Medicine 51.1 (2023): 7.
Chicago
Liao, Z., Zheng, R., Shao, G."Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review)". International Journal of Molecular Medicine 51, no. 1 (2023): 7. https://doi.org/10.3892/ijmm.2022.5210
Copy and paste a formatted citation
x
Spandidos Publications style
Liao Z, Zheng R and Shao G: Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review). Int J Mol Med 51: 7, 2023.
APA
Liao, Z., Zheng, R., & Shao, G. (2023). Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review). International Journal of Molecular Medicine, 51, 7. https://doi.org/10.3892/ijmm.2022.5210
MLA
Liao, Z., Zheng, R., Shao, G."Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review)". International Journal of Molecular Medicine 51.1 (2023): 7.
Chicago
Liao, Z., Zheng, R., Shao, G."Mechanisms and application strategies of miRNA‑146a regulating inflammation and fibrosis at molecular and cellular levels (Review)". International Journal of Molecular Medicine 51, no. 1 (2023): 7. https://doi.org/10.3892/ijmm.2022.5210
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team