|
1
|
McIntire JJ, Umetsu SE, Akbari O, Potter
M, Kuchroo VK, Barsh GS, Freeman GJ, Umetsu DT and DeKruyff RH:
Identification of Tapr (an airway hyperreactivity regulatory locus)
and the linked Tim gene family. Nat Immunol. 2:1109–1116. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lee J, Phong B, Egloff AM and Kane LP: TIM
polymorphisms-genetics and function. Genes Immun. 12:595–604. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Santiago C, Ballesteros A, Tami C,
Martínez-Muñoz L, Kaplan GG and Casasnovas JM: Structures of T Cell
immunoglobulin mucin receptors 1 and 2 reveal mechanisms for
regulation of immune responses by the TIM receptor family.
Immunity. 26:299–310. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rodriguez-Manzanet R, DeKruyff R, Kuchroo
VK and Umetsu DT: The costimulatory role of TIM molecules. Immunol
Rev. 229:259–270. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kuchroo VK, Umetsu DT, DeKruyff RH and
Freeman GJ: The TIM gene family: Emerging roles in immunity and
disease. Nat Rev Immunol. 3:454–462. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kuchroo VK, Dardalhon V, Xiao S and
Anderson AC: New roles for TIM family members in immune regulation.
Nat Rev Immunol. 8:577–580. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shakhov AN, Rybtsov S, Tumanov AV,
Shulenin S, Dean M, Kuprash DV and Nedospasov SA: SMUCKLER/TIM4 is
a distinct member of TIM family expressed by stromal cells of
secondary lymphoid tissues and associated with lymphotoxin
signaling. Eur J Immunol. 34:494–503. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Fang XY, Xu WD, Pan HF, Leng RX and Ye DQ:
Novel insights into Tim-4 function in autoimmune diseases.
Autoimmunity. 48:189–195. 2015. View Article : Google Scholar
|
|
9
|
Liu W, Xu L, Liang X, Liu X, Zhao Y, Ma C
and Gao L: Tim-4 in health and disease: Friend or Foe. Front
Immunol. 11:5372020. View Article : Google Scholar
|
|
10
|
Park D, Hochreiter-Hufford A and
Ravichandran KS: The phosphatidylserine receptor TIM-4 does not
mediate direct signaling. Curr Biol. 19:346–351. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yeung MY, McGrath M and Najafian N: The
emerging role of the TIM molecules in transplantation. Am J
Transplant. 11:2012–2019. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Meyers JH, Chakravarti S, Schlesinger D,
Illes Z, Waldner H, Umetsu SE, Kenny J, Zheng XX, Umetsu DT,
DeKruyff RH, et al: TIM-4 is the ligand for TIM-1, and the
TIM-1-TIM-4 interaction regulates T cell proliferation. Nat
Immunol. 6:455–464. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wong K, Valdez PA, Tan C, Yeh S, Hongo JA
and Ouyang W: Phosphatidylserine receptor Tim-4 is essential for
the maintenance of the homeostatic state of resident peritoneal
macrophages. Proc Natl Acad Sci USA. 107:8712–8717. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kobayashi N, Karisola P, Peña-Cruz V,
Dorfman DM, Jinushi M, Umetsu SE, Butte MJ, Nagumo H, Chernova I,
Zhu B, et al: TIM-1 and TIM-4 glycoproteins bind phosphatidylserine
and mediate uptake of apoptotic cells. Immunity. 27:927–940. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang X, Gu J, Zhou L and Mi QS: TIM-4 is
expressed on invariant NKT cells but dispensable for their
development and function. Oncotarget. 7:71099–71111. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li L, Mo L, Hao H, Yang W, Zhou Q, Xue F,
Shi Z, Liu Z, Yang PC and Feng B: Flagellin modulates TIM4
expression in mast cells. Cell Biol Int. 38:1330–1336. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yano H, Motoshima T, Ma C, Pan C, Yamada
S, Nakayama T, Kitada S, Fujimoto N, Kamba T, Takeya M and Komohara
Y: The significance of TIMD4 expression in clear cell renal cell
carcinoma. Med Mol Morphol. 50:220–226. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu W, Wang H, Bai F, Ding L, Huang Y, Lu
C, Chen S, Li C, Yue X, Liang X, et al: IL-6 promotes metastasis of
non-small-cell lung cancer by up-regulating TIM-4 via NF-κB. Cell
Prolif. 53:e127762020. View Article : Google Scholar
|
|
19
|
Tan X, Zhang Z, Yao H and Shen L: Tim-4
promotes the growth of colorectal cancer by activating angiogenesis
and recruiting tumor-associated macrophages via the PI3K/AKT/mTOR
signaling pathway. Cancer Lett. 436:119–128. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li W, Li X, Xu S, Ma X and Zhang Q:
Expression of Tim4 in glioma and its regulatory role in LN-18
Glioma cells. Med Sci Monit. 22:77–82. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Savill J and Gregory C: Apoptotic PS to
phagocyte TIM-4: Eat me. Immunity. 27:830–832. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Feng BS, Chen X, He SH, Zheng PY, Foster
J, Xing Z, Bienenstock J and Yang PC: Disruption of T-cell
immunoglobulin and mucin domain molecule (TIM)-1/TIM4 interaction
as a therapeutic strategy in a dendritic cell-induced peanut
allergy model. J Allergy Clin Immunol. 122:55–61. 61.e1–7. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Baghdadi M, Yoneda A, Yamashina T, Nagao
H, Komohara Y, Nagai S, Akiba H, Foretz M, Yoshiyama H, Kinoshita
I, et al: TIM-4 glycoprotein-mediated degradation of dying tumor
cells by autophagy leads to reduced antigen presentation and
increased immune tolerance. Immunity. 39:1070–1081. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Yang B, Luo Y, Liu Z, Yang P and Gui Y:
Probiotics SOD inhibited food allergy via downregulation of
STAT6-TIM4 signaling on DCs. Mol Immunol. 103:71–77. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kerr D, Tietjen GT, Gong Z, Tajkhorshid E,
Adams EJ and Lee K: Sensitivity of peripheral membrane proteins to
the membrane context: A case study of phosphatidylserine and the
TIM proteins. Biochim Biophys Acta Biomembr. 1860:2126–2133. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Park B, Lee J, Moon H, Lee G, Lee DH, Cho
JH and Park D: Co-receptors are dispensable for tethering
receptor-mediated phagocytosis of apoptotic cells. Cell Death Dis.
6:e17722015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Savill J and Fadok V: Corpse clearance
defines the meaning of cell death. Nature. 407:784–788. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Morioka S, Maueröder C and Ravichandran
KS: Living on the Edge: Efferocytosis at the interface of
homeostasis and pathology. Immunity. 50:1149–1162. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Miyanishi M, Tada K, Koike M, Uchiyama Y,
Kitamura T and Nagata S: Identification of Tim4 as a
phosphatidylserine receptor. Nature. 450:435–439. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Devitt A, Moffatt OD, Raykundalia C, Capra
JD, Simmons DL and Gregory CD: Human CD14 mediates recognition and
phagocytosis of apoptotic cells. Nature. 392:505–509. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Nishi C, Toda S, Segawa K and Nagata S:
Tim4- and MerTK-mediated engulfment of apoptotic cells by mouse
resident peritoneal macrophages. Mol Cell Biol. 34:1512–1520. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Toda S, Hanayama R and Nagata S: Two-step
engulfment of apoptotic cells. Mol Cell Biol. 32:118–125. 2012.
View Article : Google Scholar :
|
|
33
|
Yanagihashi Y, Segawa K, Maeda R,
Nabeshima YI and Nagata S: Mouse macrophages show different
requirements for phosphatidylserine receptor Tim4 in efferocytosis.
Proc Natl Acad Sci USA. 114:8800–8805. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Freeman GJ, Casasnovas JM, Umetsu DT and
DeKruyff RH: TIM genes: A family of cell surface phosphatidylserine
receptors that regulate innate and adaptive immunity. Immunol Rev.
235:172–189. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lee J, Park B, Moon B, Park J, Moon H, Kim
K, Lee SA, Kim D, Min C, Lee DH, et al: A scaffold for signaling of
Tim-4-mediated efferocytosis is formed by fibronectin. Cell Death
Differ. 26:1646–1655. 2019. View Article : Google Scholar :
|
|
36
|
Flannagan RS, Canton J, Furuya W, Glogauer
M and Grinstein S: The phosphatidylserine receptor TIM4 utilizes
integrins as coreceptors to effect phagocytosis. Mol Biol Cell.
25:1511–1522. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pankov R and Yamada KM: Fibronectin at a
glance. J Cell Sci. 115(Pt 20): 3861–3863. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wierzbicka-Patynowski I and Schwarzbauer
JE: The ins and outs of fibronectin matrix assembly. J Cell Sci.
116(Pt 16): 3269–3276. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Moon B, Lee J, Lee SA, Min C, Moon H, Kim
D, Yang S, Moon H, Jeon J, Joo YE and Park D: Mertk Interacts with
Tim-4 to Enhance Tim-4-Mediated Efferocytosis. Cells. 9:16252020.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hoffmann PR, deCathelineau AM, Ogden CA,
Leverrier Y, Bratton DL, Daleke DL, Ridley AJ, Fadok VA and Henson
PM: Phosphatidylserine (PS) induces PS receptor-mediated
macropinocytosis and promotes clearance of apoptotic cells. J Cell
Biol. 155:649–659. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mazaheri F, Breus O, Durdu S, Haas P,
Wittbrodt J, Gilmour D and Peri F: Distinct roles for BAI1 and
TIM-4 in the engulfment of dying neurons by microglia. Nat Commun.
5:40462014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Shim JA, Lee ES, Choi B and Sohn S: The
role of T cell immunoglobulin mucin domains 1 and 4 in a herpes
simplex virus-induced Behçet's disease mouse model. Mediators
Inflamm. 2013:9039482013. View Article : Google Scholar
|
|
43
|
Jemielity S, Wang JJ, Chan YK, Ahmed AA,
Li W, Monahan S, Bu X, Farzan M, Freeman GJ, Umetsu DT, et al:
TIM-family proteins promote infection of multiple enveloped viruses
through virion-associated phosphatidylserine. PLoS Pathog.
9:e10032322013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Czuczman MA, Fattouh R, van Rijn JM,
Canadien V, Osborne S, Muise AM, Kuchroo VK, Higgins DE and Brumell
JH: Listeria monocytogenes exploits efferocytosis to promote
cell-to-cell spread. Nature. 509:230–234. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hirose M, Ueno T, Nagumo H, Sato Y and
Sakai-Kato K: Enhancing the endocytosis of
phosphatidylserine-containing liposomes through Tim4 by modulation
of membrane fluidity. Mol Pharm. 19:91–99. 2022. View Article : Google Scholar
|
|
46
|
Hashimoto D, Chow A, Noizat C, Teo P,
Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, et al:
Tissue-resident macrophages self-maintain locally throughout adult
life with minimal contribution from circulating monocytes.
Immunity. 38:792–804. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Albacker LA, Yu S, Bedoret D, Lee WL,
Umetsu SE, Monahan S, Freeman GJ, Umetsu DT and DeKruyff RH: TIM-4,
expressed by medullary macrophages, regulates respiratory tolerance
by mediating phagocytosis of antigen-specific T cells. Mucosal
Immunol. 6:580–590. 2013. View Article : Google Scholar
|
|
48
|
del Rio ML, Rodriguez-Barbosa JI, Kremmer
E and Förster R: CD103- and CD103+ bronchial lymph node dendritic
cells are specialized in presenting and cross-presenting innocuous
antigen to CD4+ and CD8+ T cells. J Immunol. 178:6861–6866. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tsitoura DC, DeKruyff RH, Lamb JR and
Umetsu DT: Intranasal exposure to protein antigen induces
immunological tolerance mediated by functionally disabled CD4+ T
cells. J Immunol. 163:2592–2600. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Fischer K, Voelkl S, Berger J, Andreesen
R, Pomorski T and Mackensen A: Antigen recognition induces
phosphatidylserine exposure on the cell surface of human CD8+ T
cells. Blood. 108:4094–4101. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Elliott JI, Surprenant A, Marelli-Berg FM,
Cooper JC, Cassady-Cain RL, Wooding C, Linton K, Alexander DR and
Higgins CF: Membrane phosphatidylserine distribution as a
non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol.
7:808–816. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hilligan KL, Connor LM, Schmidt AJ and
Ronchese F: Activation-Induced TIM-4 expression identifies
differential responsiveness of intestinal CD103+ CD11b+ dendritic
cells to a mucosal adjuvant. PLoS One. 11:e01587752016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ge RT, Zeng L, Mo LH, Xu LZ, Zhang HP, Yu
HQ, Zhang M, Liu ZG, Liu ZJ and Yang PC: Interaction of TIM4 and
TIM3 induces T helper 1 cell apoptosis. Immunol Res. 64:470–475.
2016. View Article : Google Scholar
|
|
54
|
Gilliet M, Boonstra A, Paturel C,
Antonenko S, Xu XL, Trinchieri G, O'Garra A and Liu YJ: The
development of murine plasmacytoid dendritic cell precursors is
differentially regulated by FLT3-ligand and granulocyte/macrophage
colony-stimulating factor. J Exp Med. 195:953–958. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rodriguez-Manzanet R, Meyers JH,
Balasubramanian S, Slavik J, Kassam N, Dardalhon V, Greenfield EA,
Anderson AC, Sobel RA, Hafler DA, et al: TIM-4 expressed on APCs
induces T cell expansion and survival. J Immunol. 180:4706–4713.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Mizui M, Shikina T, Arase H, Suzuki K,
Yasui T, Rennert PD, Kumanogoh A and Kikutani H: Bimodal regulation
of T cell-mediated immune responses by TIM-4. Int Immunol.
20:695–708. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bain CC, Bravo-Blas A, Scott CL,
Perdiguero EG, Geissmann F, Henri S, Malissen B, Osborne LC, Artis
D and Mowat AM: Constant replenishment from circulating monocytes
maintains the macrophage pool in the intestine of adult mice. Nat
Immunol. 15:929–937. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Thornley TB, Fang Z, Balasubramanian S,
Larocca RA, Gong W, Gupta S, Csizmadia E, Degauque N, Kim BS,
Koulmanda M, et al: Fragile TIM-4-expressing tissue resident
macrophages are migratory and immunoregulatory. J Clin Invest.
124:3443–3454. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Osorio JC, Arbour KC, Le DT, Durham JN,
Plodkowski AJ, Halpenny DF, Ginsberg MS, Sawan P, Crompton JG, Yu
HA, et al: Lesion-Level Response dynamics to programmed cell death
protein (PD-1) Blockade. J Clin Oncol. 37:3546–3555. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ouimet M, Barrett TJ and Fisher EA: HDL
and reverse cholesterol transport. Circ Res. 124:1505–1518. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Magalhaes MS, Smith P, Portman JR,
Jackson-Jones LH, Bain CC, Ramachandran P, Michailidou Z, Stimson
RH, Dweck MR, Denby L, et al: Role of Tim4 in the regulation of
ABCA1(+) adipose tissue macrophages and post-prandial cholesterol
levels. Nat Commun. 12:44342021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yeung MY, McGrath MM, Nakayama M, Shimizu
T, Boenisch O, Magee CN, Abdoli R, Akiba H, Ueno T, Turka LA and
Najafian N: Interruption of dendritic cell-mediated TIM-4 signaling
induces regulatory T cells and promotes skin allograft survival. J
Immunol. 191:4447–4455. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Bouwens L, Baekeland M, De Zanger R and
Wisse E: Quantitation, tissue distribution and proliferation
kinetics of Kupffer cells in normal rat liver. Hepatology.
6:718–722. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tosello-Trampont AC, Landes SG, Nguyen V,
Novobrantseva TI and Hahn YS: Kuppfer cells trigger nonalcoholic
steatohepatitis development in diet-induced mouse model through
tumor necrosis factor-α production. J Biol Chem. 287:40161–40172.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Qin D, Liu P, Zhou H, Jin J, Gong W, Liu
K, Chen S, Huang J, Fan W, Tao Z and Xu Y: TIM-4 in macrophages
contributes to nasal polyp formation through the TGF-β1-mediated
epithelial to mesenchymal transition in nasal epithelial cells.
Front Immunol. 13:9416082022. View Article : Google Scholar
|
|
66
|
Xu L, Zhao P, Xu Y and Gao L, Wang H, Jia
X, Ma H, Liang X, Ma C and Gao L: Tim-4 protects mice against
lipopolysaccharide-induced endotoxic shock by suppressing the NF-κB
signaling pathway. Lab Invest. 96:1189–1197. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Liu Z, Tan K, Bu L, Bo L, Ni W, Fei M,
Chen F, Deng X and Li J: Tim4 regulates NALP3 inflammasome
expression and activity during monocyte/macrophage dysfunction in
septic shock patients. Burns. 46:652–662. 2020. View Article : Google Scholar
|
|
68
|
Rossaint J and Zarbock A: Pathogenesis of
multiple organ failure in sepsis. Crit Rev Immunol. 35:277–291.
2015. View Article : Google Scholar
|
|
69
|
Boomer JS, To K, Chang KC, Takasu O,
Osborne DF, Walton AH, Bricker TL, Jarman SD II, Kreisel D,
Krupnick AS, et al: Immunosuppression in patients who die of sepsis
and multiple organ failure. JAMA. 306:2594–2605. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu T, He SH, Zheng PY, Zhang TY, Wang BQ
and Yang PC: Staphylococcal enterotoxin B increases TIM4 expression
in human dendritic cells that drives naïve CD4 T cells to
differentiate into Th2 cells. Mol Immunol. 44:3580–3587. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yang PC, Xing Z, Berin CM, Soderholm JD,
Feng BS, Wu L and Yeh C: TIM-4 expressed by mucosal dendritic cells
plays a critical role in food antigen-specific Th2 differentiation
and intestinal allergy. Gastroenterology. 133:1522–1533. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jiang R, Jiang Y, Xia P, Luo G, Huang W,
Hu Z, Cheng G, Xiong Y, Wang Y and Cui T: Cigarette Smoke Extract
Promotes TIM4 Expression in Murine Dendritic Cells Leading to Th2
Polarization through ERK-Dependent Pathways. Int Arch Allergy
Immunol. 178:219–228. 2019. View Article : Google Scholar
|
|
73
|
Caronni N, Piperno GM, Simoncello F,
Romano O, Vodret S, Yanagihashi Y, Dress R, Dutertre CA, Bugatti M,
Bourdeley P, et al: TIM4 expression by dendritic cells mediates
uptake of tumor-associated antigens and anti-tumor responses. Nat
Commun. 12:22372021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Feng BS, Zheng PY, Chen X, Liao XQ and
Yang PC: Investigation of the role of cholera toxin in assisting
the initiation of the antigen-specific Th2 response. Immunol
Invest. 37:782–797. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Siracusa MC, Kim BS, Spergel JM and Artis
D: Basophils and allergic inflammation. J Allergy Clin Immunol.
132:789–801; quiz 788. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ding Q, Mohib K, Kuchroo VK and Rothstein
DM: TIM-4 Identifies IFN-γ-expressing proinflammatory B Effector 1
cells that promote tumor and allograft rejection. J Immunol.
199:2585–2595. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang Q, Wang H, Wu X, Liu B, Liu W, Wang
R, Liang X, Ma C and Gao L: TIM-4 promotes the growth of
non-small-cell lung cancer in a RGD motif-dependent manner. Br J
Cancer. 113:1484–1492. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li J, Cao D, Guo G, Wu Y and Chen Y:
Expression and anatomical distribution of TIM-containing molecules
in Langerhans cell sarcoma. J Mol Histol. 44:213–220. 2013.
View Article : Google Scholar
|
|
79
|
Xu L, Xiao H, Xu M, Zhou C, Yi L and Liang
H: Glioma-derived T cell immunoglobulin- and mucin
domain-containing molecule-4 (TIM4) contributes to tumor tolerance.
J Biol Chem. 286:36694–36699. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ramaekers F, Broers J, Rot MK, Oostendorp
T, Wagenaar S and Vooijs P: Detection of epithelial- and neural
type of intermediate filament proteins in human lung tumors. Acta
Histochem Suppl. 34:45–56. 1987.PubMed/NCBI
|
|
81
|
Zhao P, Xu L, Wang P, Liang X, Qi J, Liu
P, Guo C, Zhang L, Ma C and Gao L: Increased expression of human
T-cell immunoglobulin- and mucin-domain-containing molecule-4 in
peripheral blood mononuclear cells from patients with system lupus
erythematosus. Cell Mol Immunol. 7:152–156. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li Y, Zhang PY, Yang ZW, Ma F and Li FX:
TIMD4 exhibits regulatory capability on the proliferation and
apoptosis of diffuse large B-cell lymphoma cells via the
Wnt/β-catenin pathway. J Gene Med. 22:e31862020. View Article : Google Scholar
|
|
83
|
Li Z, Wang H, Dong R, Man J, Sun L, Qian
X, Zhu X, Cao P, Yu Y, Le J, et al: Single-Cell RNA-seq reveals
characteristics of malignant cells and immune microenvironment in
subcutaneous panniculitis-like T-Cell lymphoma. Front Oncol.
11:6115802021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Akl H, Vervloessem T, Kiviluoto S,
Bittremieux M, Parys JB, De Smedt H and Bultynck G: A dual role for
the anti-apoptotic Bcl-2 protein in cancer: Mitochondria versus
endoplasmic reticulum. Biochim Biophys Acta. 1843:2240–2252. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gajate C and Mollinedo F: Lipid rafts,
endoplasmic reticulum and mitochondria in the antitumor action of
the alkylphospholipid analog edelfosine. Anticancer Agents Med
Chem. 14:509–527. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Koehler BC, Jäger D and Schulze-Bergkamen
H: Targeting cell death signaling in colorectal cancer: Current
strategies and future perspectives. World J Gastroenterol.
20:1923–1934. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen S, Wang Y, Liu W, Liang Y, Wang Y, Wu
Z, Xu L, Liang X, Ma C and Gao L: N-Glycosylation at Asn291
Stabilizes TIM-4 and Promotes the Metastasis of NSCLC. Front Oncol.
12:7305302022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ruoslahti E: RGD and other recognition
sequences for integrins. Annu Rev Cell Dev Biol. 12:697–715. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Danhier F, Le Breton A and Préat V:
RGD-based strategies to target alpha(v) beta(3) integrin in cancer
therapy and diagnosis. Mol Pharm. 9:2961–2973. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Baghdadi M, Nagao H, Yoshiyama H, Akiba H,
Yagita H, Dosaka-Akita H and Jinushi M: Combined blockade of TIM-3
and TIM-4 augments cancer vaccine efficacy against established
melanomas. Cancer Immunol Immunother. 62:629–637. 2013. View Article : Google Scholar
|
|
91
|
Martines RB, Ng DL, Greer PW, Rollin PE
and Zaki SR: Tissue and cellular tropism, pathology and
pathogenesis of Ebola and Marburg viruses. J Pathol. 235:153–174.
2015. View Article : Google Scholar
|
|
92
|
Amara A and Mercer J: Viral apoptotic
mimicry. Nat Rev Microbiol. 13:461–469. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Dragovich MA, Fortoul N, Jagota A, Zhang
W, Schutt K, Xu Y, Sanabria M, Moyer DM Jr, Moller-Tank S, Maury W
and Zhang XF: Biomechanical characterization of TIM
protein-mediated Ebola virus-host cell adhesion. Sci Rep.
9:2672019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
MacPherson JI, Dickerson JE, Pinney JW and
Robertson DL: Patterns of HIV-1 protein interaction identify
perturbed host-cellular subsystems. PLoS Comput Biol.
6:e10008632010. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Franzosa EA and Xia Y: Structural
principles within the human-virus protein-protein interaction
network. Proc Natl Acad Sci USA. 108:10538–10543. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chan EY, Korth MJ and Katze MG: Decoding
the multifaceted HIV-1 virus-host interactome. J Biol. 8:842009.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Sarmady M, Dampier W and Tozeren A: HIV
protein sequence hotspots for crosstalk with host hub proteins.
PLoS One. 6:e232932011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Aloia RC, Tian H and Jensen FC: Lipid
composition and fluidity of the human immunodeficiency virus
envelope and host cell plasma membranes. Proc Natl Acad Sci USA.
90:5181–5185. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sims B, Farrow AL, Williams SD, Bansal A,
Krendelchtchikov A, Gu L and Matthews QL: Role of TIM-4 in
exosome-dependent entry of HIV-1 into human immune cells. Int J
Nanomedicine. 12:4823–4833. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kassu A, Marcus RA, D'Souza MB,
Kelly-McKnight EA and Palmer BE: Suppression of HIV replication by
antiretroviral therapy reduces TIM-3 expression on HIV-specific
CD8(+) T cells. AIDS Res Hum Retroviruses. 27:1–3. 2011. View Article : Google Scholar
|
|
101
|
Kobayashi T, Siegmund B, Le Berre C, Wei
SC, Ferrante M, Shen B, Bernstein CN, Danese S, Peyrin-Biroulet L
and Hibi T: Ulcerative colitis. Nat Rev Dis Primers. 6:742020.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Xue G, Hua L, Liu D, Zhong M, Chen Y, Zhou
B, Xie Y and Li J: Tim-4 expressing monocytes as a novel indicator
to assess disease activity and severity of ulcerative colitis. Life
Sci. 269:1190772021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chen D, He J, Lu C, Zhou J, Fang K, Liu X
and Xu L: Increased expression of T cell immunoglobulin and mucin
domain 4 is positively associated with the disease severity of
patients with ankylosing spondylitis. Inflammation. 38:935–940.
2015. View Article : Google Scholar
|
|
104
|
Qiu S, Du Y, Duan X, Geng X, Xie J, Gao H
and Yang PC: B cell immunity in allergic nasal mucosa induces T
helper 2 cell differentiation. J Clin Immunol. 32:886–895. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Finckh A, Gilbert B, Hodkinson B, Bae SC,
Thomas R, Deane KD, Alpizar-Rodriguez D and Lauper K: Global
epidemiology of rheumatoid arthritis. Nat Rev Rheumatol.
18:591–602. 2022.PubMed/NCBI
|
|
106
|
Abe Y, Kamachi F, Kawamoto T, Makino F,
Ito J, Kojima Y, Moustapha Ael D, Usui Y, Yagita H, Takasaki Y, et
al: TIM-4 has dual function in the induction and effector phases of
murine arthritis. J Immunol. 191:4562–4572. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Dambach DM, Watson LM, Gray KR, Durham SK
and Laskin DL: Role of CCR2 in macrophage migration into the liver
during acetaminophen-induced hepatotoxicity in the mouse.
Hepatology. 35:1093–1103. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Baeck C, Wei X, Bartneck M, Fech V,
Heymann F, Gassler N, Hittatiya K, Eulberg D, Luedde T, Trautwein C
and Tacke F: Pharmacological inhibition of the chemokine C-C motif
chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates
liver fibrosis regression by suppressing Ly-6C(+) macrophage
infiltration in mice. Hepatology. 59:1060–1072. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Li J, Zhao X, Liu X and Liu H: Disruption
of TIM-4 in dendritic cell ameliorates hepatic warm IR injury
through the induction of regulatory T cells. Mol Immunol.
66:117–125. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ji H, Liu Y, Zhang Y, Shen XD, Gao F,
Busuttil RW, Kuchroo VK and Kupiec-Weglinski JW: T-cell
immunoglobulin and mucin domain 4 (TIM-4) signaling in innate
immune-mediated liver ischemia-reperfusion injury. Hepatology.
60:2052–2064. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Scott CL, Zheng F, De Baetselier P,
Martens L, Saeys Y, De Prijck S, Lippens S, Abels C, Schoonooghe S,
Raes G, et al: Bone marrow-derived monocytes give rise to
self-renewing and fully differentiated Kupffer cells. Nat Commun.
7:103212016. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Endres M, Moro MA, Nolte CH, Dames C,
Buckwalter MS and Meisel A: Immune pathways in etiology, acute
phase, and chronic sequelae of ischemic stroke. Circ Res.
130:1167–1186. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang Y, Shen Q, Liu Y, Chen H, Zheng X,
Xie S, Ji H and Zheng S: Hepatic ischemic preconditioning
alleviates ischemia-reperfusion injury by decreasing TIM4
Expression. Int J Biol Sci. 14:1186–1195. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lambertsen KL, Biber K and Finsen B:
Inflammatory cytokines in experimental and human stroke. J Cereb
Blood Flow Metab. 32:1677–1698. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Fang H, Yuan C, Gu X, Chen Q, Huang D, Li
H and Sun M: Association between TIM-3 polymorphisms and cancer
risk: A meta-analysis. Ann Transl Med. 7:5502019. View Article : Google Scholar
|
|
116
|
Ye Z, Jin Y, Li H, Xu H, He Y and Chen Y:
Association of Tim-4 expression in monocyte subtypes with clinical
course and prognosis in acute ischemic stroke patients. Int J
Neurosci. 130:906–916. 2020. View Article : Google Scholar
|
|
117
|
Zheng L, Huang Y, Wang X, Wang X, Chen W,
Cheng W and Pan C: Inhibition of TIM-4 protects against cerebral
ischaemia-reperfusion injury. J Cell Mol Med. 24:1276–1285. 2020.
View Article : Google Scholar
|
|
118
|
Hansson GK, Robertson AK and
Söderberg-Nauclér C: Inflammation and atherosclerosis. Annu Rev
Pathol. 1:297–329. 2006. View Article : Google Scholar
|
|
119
|
Liu Y, Chen H, Chen Z, Qiu J, Pang H and
Zhou Z: Novel roles of the tim family in immune regulation and
autoimmune diseases. Front Immunol. 12:7487872021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Kim D, Lee SA, Moon H, Kim K and Park D:
The Tim gene family in efferocytosis. Genes Genomics. 42:979–986.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
McGrath MM: Diverse roles of TIM4 in
immune activation: Implications for alloimmunity. Curr Opin Organ
Transplant. 23:44–50. 2018. View Article : Google Scholar
|
|
122
|
Evans JP and Liu SL: Multifaceted Roles of
TIM-Family proteins in virus-host interactions. Trends Microbiol.
28:224–235. 2020. View Article : Google Scholar :
|