You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, Ostolaza H and Martín C: Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 21:62752020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Ley SH and Hu FB: Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 14:88–98. 2018. View Article : Google Scholar | |
|
Demir S, Nawroth PP, Herzig S and Ekim Üstünel B: Emerging targets in type 2 diabetes and diabetic complications. Adv Sci (Weinh). 8:21002752021. View Article : Google Scholar : PubMed/NCBI | |
|
Everett E and Mathioudakis N: Update on management of diabetic foot ulcers:. Ann N Y Acad Sci. 1411:153–165. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wolf SJ, Melvin WJ and Gallagher K: Macrophage-mediated inflammation in diabetic wound repair. Semin Cell Dev Biol. 119:111–118. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gomez-Larrauri A, Presa N, Dominguez-Herrera A, Ouro A, Trueba M and Gomez-Muñoz A: Role of bioactive sphingolipids in physiology and pathology. Essays Biochem. 64:579–589. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Castro BM, Prieto M and Silva LC: Ceramide: A simple sphingolipid with unique biophysical properties. Prog Lipid Res. 54:53–67. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Summers SA: Editorial: The role of ceramides in diabetes and cardiovascular disease. Front Endocrinol (Lausanne). 12:6678852021. View Article : Google Scholar : PubMed/NCBI | |
|
Raichur S, Brunner B, Bielohuby M, Hansen G, Pfenninger A, Wang B, Bruning JC, Larsen PJ and Tennagels N: The role of C16:0 ceramide in the development of obesity and type 2 diabetes: CerS6 inhibition as a novel therapeutic approach. Mol Metab. 21:36–50. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Field BC, Gordillo R and Scherer PE: The role of ceramides in diabetes and cardiovascular disease regulation of ceramides by adipokines. Front Endocrinol (Lausanne). 11:5692502020. View Article : Google Scholar : PubMed/NCBI | |
|
Lechner A, Akdeniz M, Tomova-Simitchieva T, Bobbert T, Moga A, Lachmann N, Blume-Peytavi U and Kottner J: Comparing skin characteristics and molecular markers of xerotic foot skin between diabetic and non-diabetic subjects: An exploratory study. J Tissue Viability. 28:200–209. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Summers SA, Chaurasia B and Holland WL: Metabolic messengers: Ceramides. Nat Metab. 1:1051–1058. 2019. View Article : Google Scholar | |
|
Custodia A, Aramburu-Núñez M, Correa-Paz C, Posado-Fernández A, Gómez-Larrauri A, Castillo J, Gómez-Muñoz A, Sobrino T and Ouro A: Ceramide metabolism and Parkinson's disease-therapeutic targets. Biomolecules. 11:9452021. View Article : Google Scholar : PubMed/NCBI | |
|
Alexandropoulou I, Grammatikopoulou MG, Gkouskou KK, Pritsa AA, Vassilakou T, Rigopoulou E, Lindqvist HM and Bogdanos DP: Ceramides in autoimmune rheumatic diseases: Existing evidence and therapeutic considerations for diet as an anticeramide treatment. Nutrients. 15:2292023. View Article : Google Scholar : PubMed/NCBI | |
|
Mandell EW and Savani RC: Ceramides, autophagy, and apoptosis mechanisms of ventilator-induced lung injury and potential therapeutic targets. Am J Respir Crit Care Med. 199:687–689. 2019. View Article : Google Scholar : | |
|
Pal P, Atilla-Gokcumen GE and Frasor J: Emerging roles of ceramides in breast cancer biology and therapy. Int J Mol Sci. 23:111782022. View Article : Google Scholar : PubMed/NCBI | |
|
Wattenberg BW: The long and the short of ceramides. J Biol Chem. 293:9922–9923. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cha HJ, He C, Zhao H, Dong Y, An IS and An S: Intercellular and intracellular functions of ceramides and their metabolites in skin (Review). Int J Mol Med. 38:16–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Magnan C and Le Stunff H: Role of hypothalamic de novo ceramides synthesis in obesity and associated metabolic disorders. Mol Metab. 53:1012982021. View Article : Google Scholar : PubMed/NCBI | |
|
Insausti-Urkia N, Solsona-Vilarrasa E, Garcia-Ruiz C and Fernandez-Checa JC: Sphingomyelinases and liver diseases. Biomolecules. 10:14972020. View Article : Google Scholar : PubMed/NCBI | |
|
Taniguchi M and Okazaki T: Role of ceramide/sphingomyelin (SM) balance regulated through 'SM cycle' in cancer. Cell Signal. 87:1101192021. View Article : Google Scholar | |
|
Hammerschmidt P and Brüning JC: Contribution of specific ceramides to obesity-associated metabolic diseases. Cell Mol Life Sci. 79:3952022. View Article : Google Scholar : PubMed/NCBI | |
|
Bhattacharya N, Sato WJ, Kelly A, Ganguli-Indra G and Indra AK: Epidermal lipids: Key mediators of atopic dermatitis pathogenesis. Trends Mol Med. 25:551–562. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Roszczyc-Owsiejczuk K and Zabielski P: Sphingolipids as a culprit of mitochondrial dysfunction in insulin resistance and type 2 diabetes. Front Endocrinol (Lausanne). 12:6351752021. View Article : Google Scholar : PubMed/NCBI | |
|
Aldoghachi AF, Baharudin A, Ahmad U, Chan SC, Ong TA, Yunus R, Razack AH, Yusoff K and Veerakumarasivam A: Evaluation of CERS2 gene as a potential biomarker for bladder cancer. Dis Markers. 2019:38751472019. View Article : Google Scholar : PubMed/NCBI | |
|
Polubothu S, Glover M, Holder SE and Kinsler VA: Uniparental disomy as a mechanism for CERS3-mutated autosomal recessive congenital ichthyosis. Br J Dermatol. 179:1214–1215. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sheridan M and Ogretmen B: The role of ceramide metabolism and signaling in the regulation of mitophagy and cancer therapy. Cancers (Basel). 13:24752021. View Article : Google Scholar : PubMed/NCBI | |
|
Kurz J, Parnham MJ, Geisslinger G and Schiffmann S: Ceramides as novel disease biomarkers. Trends Mol Med. 25:20–32. 2019. View Article : Google Scholar | |
|
Mullen TD, Hannun YA and Obeid LM: Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J. 441:789–802. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Parveen F, Bender D, Law SH, Mishra VK, Chen CC and Ke LY: Role of ceramidases in sphingolipid metabolism and human diseases. Cells. 8:15732019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Fang H, Dang E and Wang G: The role of ceramides in skin homeostasis and inflammatory skin diseases. J Dermatol Sci. 97:2–8. 2020. View Article : Google Scholar | |
|
Jung K, Kim SH, Joo KM, Lim SH, Shin JH, Roh J, Kim E, Park W and Kim W: Oral intake of enzymatically decomposed AP collagen peptides improves skin moisture and ceramide and natural moisturizing factor contents in the stratum corneum. Nutrients. 13:43722021. View Article : Google Scholar : PubMed/NCBI | |
|
Ramírez-Vélez R, Martínez-Velilla N, Correa-Rodríguez M, Sáez de Asteasu ML, Zambom-Ferraresi F, Palomino-Echeverria S, García-Hermoso A and Izquierdo M: Lipidomic signatures from physically frail and robust older adults at hospital admission. Geroscience. 44:1677–1688. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Coderch L, López O, de la Maza A and Parra JL: Ceramides and skin function. Am J Clin Dermatol. 4:107–129. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Badhe Y, Gupta R and Rai B: Structural and barrier properties of the skin ceramide lipid bilayer: A molecular dynamics simulation study. J Mol Model. 25:1402019. View Article : Google Scholar : PubMed/NCBI | |
|
Vollmer DL, West VA and Lephart ED: Enhancing skin health: By oral administration of natural compounds and minerals with implications to the dermal microbiome. Int J Mol Sci. 19:30592018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim B, Shon JC, Seo HS, Liu KH, Lee JW, Ahn SK and Hong SP: Decrease of ceramides with long-chain fatty acids in psoriasis: Possible inhibitory effect of interferon gamma on chain elongation. Exp Dermatol. 31:122–132. 2022. View Article : Google Scholar | |
|
Wang L, Liu M, Ning D, Zhu H, Shan G, Wang D, Ping B, Yu Y, Yang H, Yan K, et al: Low serum ZAG levels correlate with determinants of the metabolic syndrome in Chinese subjects. Front Endocrinol (Lausanne). 11:1542020. View Article : Google Scholar : PubMed/NCBI | |
|
Fujiwara A, Morifuji M, Kitade M, Kawahata K, Fukasawa T, Yamaji T, Itoh H and Kawashima M: Age-related and seasonal changes in covalently bound ceramide content in forearm stratum corneum of Japanese subjects: Determination of molecular species of ceramides. Arch Dermatol Res. 310:729–735. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Łuczaj W, Jastrząb A, do Rosário Domingues M, Domingues P and Skrzydlewska E: Changes in phospholipid/ceramide profiles and eicosanoid levels in the plasma of rats irradiated with UV rays and treated topically with cannabidiol. Int J Mol Sci. 22:87002021. View Article : Google Scholar : PubMed/NCBI | |
|
Fujii M: The pathogenic and therapeutic implications of ceramide abnormalities in atopic dermatitis. Cells. 10:23862021. View Article : Google Scholar : PubMed/NCBI | |
|
Meckfessel MH and Brandt S: The structure, function, and importance of ceramides in skin and their use as therapeutic agents in skin-care products. J Am Acad Dermatol. 71:177–184. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Draelos ZD: The science behind skin care: Moisturizers. J Cosmet Dermatol. 17:138–144. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wertz PW: Roles of lipids in the permeability barriers of skin and oral mucosa. Int J Mol Sci. 22:52292021. View Article : Google Scholar : PubMed/NCBI | |
|
Bocheńska K and Gabig-Cimińska M: Unbalanced sphingolipid metabolism and its implications for the pathogenesis of psoriasis. Molecules. 25:11302020. View Article : Google Scholar | |
|
Santinha DR, Marques DR, Maciel EA, Simões CS, Rosa S, Neves BM, Macedo B, Domingues P, Cruz MT and Domingues MR: Profiling changes triggered during maturation of dendritic cells: A lipidomic approach. Anal Bioanal Chem. 403:457–471. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Paget C, Deng S, Soulard D, Priestman DA, Speca S, von Gerichten J, Speak AO, Saroha A, Pewzner-Jung Y, Futerman AH, et al: TLR9-mediated dendritic cell activation uncovers mammalian ganglioside species with specific ceramide backbones that activate invariant natural killer T cells. PLoS Biol. 17:e30001692019. View Article : Google Scholar : PubMed/NCBI | |
|
Scheiblich H, Schlütter A, Golenbock DT, Latz E, Martinez-Martinez P and Heneka MT: Activation of the NLRP3 inflammasome in microglia: The role of ceramide. J Neurochem. 143:534–550. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Hunt RL, Villaruz AE, Fisher EL, Liu R, Liu Q, Cheung GYC, Li M and Otto M: Commensal staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe. 30:301–313.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Shao T, Wang J, Huang X, Deng X, Cao Y, Zhou M and Zhao C: An update on potential biomarkers for diagnosing diabetic foot ulcer at early stage. Biomed Pharmacother. 133:1109912021. View Article : Google Scholar | |
|
Abbott CA, Chatwin KE, Foden P, Hasan AN, Sange C, Rajbhandari SM, Reddy PN, Vileikyte L, Bowling FL, Boulton AJM and Reeves ND: Innovative intelligent insole system reduces diabetic foot ulcer recurrence at plantar sites: A prospective, randomised, proof-of-concept study. Lancet Digit Health. 1:e308–e318. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kim EJ and Han K: Factors related to self-care behaviours among patients with diabetic foot ulcers. J Clin Nurs. 29:1712–1722. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bandyk DF: The diabetic foot: Pathophysiology, evaluation, and treatment. Semin Vasc Surg. 31:43–48. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Aldana PC, Cartron AM and Khachemoune A: Reappraising diabetic foot ulcers: A focus on mechanisms of ulceration and clinical evaluation. Int J Low Extrem Wounds. 21:294–302. 2022. View Article : Google Scholar | |
|
Rubitschung K, Sherwood A, Crisologo AP, Bhavan K, Haley RW, Wukich DK, Castellino L, Hwang H, La Fontaine J, Chhabra A, et al: Pathophysiology and molecular imaging of diabetic foot infections. Int J Mol Sci. 22:115522021. View Article : Google Scholar : PubMed/NCBI | |
|
Armstrong DG, Boulton AJM and Bus SA: Diabetic foot ulcers and their recurrence. N Engl J Med. 376:2367–2375. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW and Viswanathan V: Diabetic neuropathy. Nat Rev Dis Primers. 5:422019. View Article : Google Scholar : PubMed/NCBI | |
|
Volpe CMO, Villar-Delfino PH, dos Anjos PMF and Nogueira-Machado JA: Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis. 9:1192018. View Article : Google Scholar : PubMed/NCBI | |
|
Bönhof GJ, Herder C, Strom A, Papanas N, Roden M and Ziegler D: Emerging biomarkers, tools, and treatments for diabetic polyneuropathy. Endocr Rev. 40:153–192. 2019. View Article : Google Scholar | |
|
Hammad SM, Baker NL, El Abiad JM, Spassieva SD, Pierce JS, Rembiesa B, Bielawski J, Lopes-Virella MF and Klein RL; DCCT/EDIC Group of Investigators: Increased plasma levels of select deoxy-ceramide and ceramide species are associated with increased odds of diabetic neuropathy in type 1 diabetes: A pilot study. Neuromolecular Med. 19:46–56. 2017. View Article : Google Scholar : | |
|
Strain WD and Paldánius PM: Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol. 17:572018. View Article : Google Scholar : PubMed/NCBI | |
|
Criqui MH, Matsushita K, Aboyans V, Hess CN, Hicks CW, Kwan TW, McDermott MM, Misra S, Ujueta F; American Heart Association Council on Epidemiology and Prevention; et al: Lower extremity peripheral artery disease: Contemporary epidemiology, management gaps, and future directions: A scientific statement from the american heart association. Circulation. 144. pp. e171–e191. 2021, View Article : Google Scholar | |
|
He X and Schuchman EH: Ceramide and ischemia/reperfusion injury. J Lipids. 2018:36467252018. View Article : Google Scholar : PubMed/NCBI | |
|
Davis FM, Kimball A, Boniakowski A and Gallagher K: Dysfunctional wound healing in diabetic foot ulcers: New crossroads. Curr Diab Rep. 18:22018. View Article : Google Scholar : PubMed/NCBI | |
|
Sloan G, Selvarajah D and Tesfaye S: Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol. 17:400–420. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zweier JL and Ilangovan G: Regulation of nitric oxide metabolism and vascular tone by cytoglobin. Antioxid Redox Signal. 32:1172–1187. 2020. View Article : Google Scholar : | |
|
Sun HJ, Wu ZY, Nie XW and Bian JS: Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front Pharmacol. 10:15682020. View Article : Google Scholar : PubMed/NCBI | |
|
Chabowski DS, Cohen KE, Abu-Hatoum O, Gutterman DD and Freed JK: Crossing signals: Bioactive lipids in the microvasculature. Am J Physiol Heart Circ Physiol. 318:H1185–H1197. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang QJ, Holland WL, Wilson L, Tanner JM, Kearns D, Cahoon JM, Pettey D, Losee J, Duncan B, Gale D, et al: Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 61:1848–1859. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Akawi N, Checa A, Antonopoulos AS, Akoumianakis I, Daskalaki E, Kotanidis CP, Kondo H, Lee K, Yesilyurt D, Badi I, et al: Fat-secreted ceramides regulate vascular redox state and influence outcomes in patients with cardiovascular disease. J Am Coll Cardiol. 77:2494–2513. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Akhiyat N, Vasile V, Ahmad A, Sara JD, Nardi V, Lerman LO, Jaffe A and Lerman A: Plasma ceramide levels are elevated in patients with early coronary atherosclerosis and endothelial dysfunction. J Am Heart Assoc. 11:e0228522022. View Article : Google Scholar : PubMed/NCBI | |
|
Karakashian AA, Giltiay NV, Smith GM and Nikolova-Karakashian MN: Expression of neutral sphingomyelinase-2 (NSMase-2) in primary rat hepatocytes modulates IL-beta-induced JNK activation. FASEB J. 18:968–970. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Parker BA, Walton CM, Carr ST, Andrus JL, Cheung ECK, Duplisea MJ, Wilson EK, Draney C, Lathen DR, Kenner KB, et al: β-Hydroxybutyrate elicits favorable mitochondrial changes in skeletal muscle. Int J Mol Sci. 19:22472018. View Article : Google Scholar | |
|
Cogolludo A, Villamor E, Perez-Vizcaino F and Moreno L: Ceramide and regulation of vascular tone. Int J Mol Sci. 20:4112019. View Article : Google Scholar : PubMed/NCBI | |
|
Sletten AC, Peterson LR and Schaffer JE: Manifestations and mechanisms of myocardial lipotoxicity in obesity. J Intern Med. 284:478–491. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Arsenault EJ, McGill CM and Barth BM: Sphingolipids as regulators of neuro-inflammation and NADPH oxidase 2. Neuromolecular Med. 23:25–46. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Patwardhan GA, Beverly LJ and Siskind LJ: Sphingolipids and mitochondrial apoptosis. J Bioenerg Biomembr. 48:153–168. 2016. View Article : Google Scholar | |
|
Colombini M: Ceramide channels and mitochondrial outer membrane permeability. J Bioenerg Biomembr. 49:57–64. 2017. View Article : Google Scholar | |
|
Cantalupo A, Sasset L, Gargiulo A, Rubinelli L, Del Gaudio I, Benvenuto D, Wadsack C, Jiang XC, Bucci MR and Di Lorenzo A: Endothelial sphingolipid de novo synthesis controls blood pressure by regulating signal transduction and NO via ceramide. Hypertension. 75:1279–1288. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pérez-Villavicencio R, Flores-Estrada J, Franco M, Escalante B, Pérez-Méndez O, Mercado A and Bautista-Pérez R: Effect of empagliflozin on sphingolipid catabolism in diabetic and hypertensive rats. Int J Mol Sci. 23:28832022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin YH, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL and Lee DF: Osteosarcoma: Molecular pathogenesis and iPSC modeling. Trends Mol Med. 23:737–755. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Altura BM, Gebrewold A, Carella A, Shah NC, Shah GJ, Resnick LM and Altura BT: Why vasculitis probably can be ameliorated with magnesium and antagonists of ceramides and platelet-activating factor. MOJ Anat Physiol. 6:120–123. 2019. | |
|
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, Cudnoch-Jedrzejewska A and Czarzasta K: Sphingolipid metabolism and signaling in cardiovascular diseases. Front Cardiovasc Med. 9:9159612022. View Article : Google Scholar | |
|
Zhang Y, Zhao H, Liu B, Shu H, Zhang L, Bao M, Yi W, Tan Y, Ji X, Zhang C, et al: Human serum metabolomic analysis reveals progression for high blood pressure in type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 9:e0023372021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Wang HF, Li XX and Xu M: Contribution of acid sphingomyelinase to angiotensin II-induced vascular adventitial remodeling via membrane rafts/Nox2 signal pathway. Life Sci. 219:303–310. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu A, Chu YJ, Wang X, Yu R, Jiang H, Li Y, Zhou H, Gong LL, Yang WQ and Ju J: Serum metabolomics study based on LC-MS and antihypertensive effect of uncaria on spontaneously hypertensive rats. Evid Based Complement Alternat Med. 2018:92819462018. View Article : Google Scholar : PubMed/NCBI | |
|
Shu H, Peng Y, Hang W, Li N, Zhou N and Wang DW: Emerging roles of ceramide in cardiovascular diseases. Aging Dis. 13:232–245. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Choi SR, Lim JH, Kim MY, Kim EN, Kim Y, Choi BS, Kim YS, Kim HW, Lim KM, Kim MJ and Park CW: Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metabolism. 85:348–360. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yaribeygi H, Bo S, Ruscica M and Sahebkar A: Ceramides and diabetes mellitus: An update on the potential molecular relationships. Diabet Med. 37:11–19. 2020. View Article : Google Scholar | |
|
Kane JP, Pullinger CR, Goldfine ID and Malloy MJ: Dyslipidemia and diabetes mellitus: Role of lipoprotein species and inter-related pathways of lipid metabolism in diabetes mellitus. Curr Opin Pharmacol. 61:21–27. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, Hajduch E and Le Stunff H: Sphingosine-1-phosphate metabolism in the regulation of obesity/type 2 diabetes. Cells. 9:16822020. View Article : Google Scholar : PubMed/NCBI | |
|
Miller LG Jr, Young JA, Ray SK, Wang G, Purohit S, Banik NL and Dasgupta S: Sphingosine toxicity in EAE and MS: Evidence for ceramide generation via serine-palmitoyltransferase activation. Neurochem Res. 42:2755–2768. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Siskind LJ: Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr. 37:143–153. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Mancini A, Imperlini E, Nigro E, Montagnese C, Daniele A, Orrù S and Buono P: Biological and nutritional properties of palm oil and palmitic acid: Effects on health. Molecules. 20:17339–17361. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Park IB, Kim MH, Han JS and Park WJ: Gryllus bimaculatus extract protects against palmitate-induced β-cell death by inhibiting ceramide synthesis. Appl Biol Chem. 65:722022. View Article : Google Scholar | |
|
Tong X, Chaudhry Z, Lee CC, Bone RN, Kanojia S, Maddatu J, Sohn P, Weaver SA, Robertson MA, Petrache I, et al: Cigarette smoke exposure impairs β-cell function through activation of oxidative stress and ceramide accumulation. Mol Metab. 37:1009752020. View Article : Google Scholar | |
|
Xu YN, Wang Z, Zhang SK, Xu JR, Pan ZX, Wei X, Wen HH, Luo YS, Guo MJ and Zhu Q: Low-grade elevation of palmitate and lipopolysaccharide synergistically induced β-cell damage via inhibition of neutral ceramidase. Mol Cell Endocrinol. 539:1114732022. View Article : Google Scholar | |
|
Šrámek J, Němcová-Fürstová V and Kovář J: Molecular mechanisms of apoptosis induction and its regulation by fatty acids in pancreatic β-cells. Int J Mol Sci. 22:42852021. View Article : Google Scholar | |
|
Canals D, Salamone S and Hannun YA: Visualizing bioactive ceramides. Chem Phys Lipids. 216:142–151. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Marra F and Svegliati-Baroni G: Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol. 68:280–295. 2018. View Article : Google Scholar | |
|
Meikle PJ and Summers SA: Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol. 13:79–91. 2017. View Article : Google Scholar | |
|
Bandet CL, Tan-Chen S, Bourron O, Stunff HL and Hajduch E: Sphingolipid metabolism: New insight into ceramide-induced lipotoxicity in muscle cells. Int J Mol Sci. 20:4792019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Z, Pyne S and Pyne NJ: Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res. 74:145–159. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bekhite M, González-Delgado A, Hübner S, Haxhikadrija P, Kretzschmar T, Müller T, Wu JMF, Bekfani T, Franz M, Wartenberg M, et al: The role of ceramide accumulation in human induced pluripotent stem cell-derived cardiomyocytes on mitochondrial oxidative stress and mitophagy. Free Radic Biol Med. 167:66–80. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL and Summers SA: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 278:10297–10303. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Zalewska A, Maciejczyk M, Szulimowska J, Imierska M and Błachnio-Zabielska A: High-fat diet affects ceramide content, disturbs mitochondrial redox balance, and induces apoptosis in the submandibular glands of mice. Biomolecules. 9:8772019. View Article : Google Scholar : PubMed/NCBI | |
|
Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, et al: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5:167–179. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Petersen MC and Shulman GI: Mechanisms of insulin action and insulin resistance. Physiol Rev. 98:2133–2223. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gasparini SJ, Swarbrick MM, Kim S, Thai LJ, Henneicke H, Cavanagh LL, Tu J, Weber MC, Zhou H and Seibel MJ: Androgens sensitise mice to glucocorticoid-induced insulin resistance and fat accumulation. Diabetologia. 62:1463–1477. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Linn SC, Kim HS, Keane EM, Andras LM, Wang E and Merrill AH Jr: Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans. 29:831–835. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Choi KM, Lee YS, Choi MH, Sin DM, Lee S, Ji SY, Lee MK, Lee YM, Yun YP, Hong JT and Yoo HS: Inverse relationship between adipocyte differentiation and ceramide level in 3T3-L1 cells. Biol Pharm Bull. 34:912–916. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Talbot CL, Chandravanshi B, Ksiazek A, Sood A, Chowdhury KH, Maschek JA, Cox J, Babu AKS, Paz HA, et al: Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis. Sci Rep. 12:72732022. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar DP, Caffrey R, Marioneaux J, Santhekadur PK, Bhat M, Alonso C, Koduru SV, Philip B, Jain MR, Giri SR, et al: The PPAR α/γ agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease. Sci Rep. 10:93302020. View Article : Google Scholar | |
|
Kucuk S, Niven J, Caamano J, Jones SW, Camacho-Muñoz D, Nicolaou A and Mauro C: Unwrapping the mechanisms of ceramide and fatty acid-initiated signals leading to immune-inflammatory responses in obesity. Int J Biochem Cell Biol. 135:1059722021. View Article : Google Scholar : PubMed/NCBI | |
|
Gilbert M: Role of skeletal muscle lipids in the pathogenesis of insulin resistance of obesity and type 2 diabetes. J Diabetes Investig. 12:1934–1941. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Reidy PT, Mahmassani ZS, McKenzie AI, Petrocelli JJ, Summers SA and Drummond MJ: Influence of exercise training on skeletal muscle insulin resistance in aging: Spotlight on muscle ceramides. Int J Mol Sci. 21:15142020. View Article : Google Scholar : PubMed/NCBI | |
|
Coen PM and Goodpaster BH: Role of intramyocelluar lipids in human health. Trends Endocrinol Metab. 23:391–398. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Galadari S, Rahman A, Pallichankandy S, Galadari A and Thayyullathil F: Role of ceramide in diabetes mellitus: Evidence and mechanisms. Lipids Health Dis. 12:982013. View Article : Google Scholar : PubMed/NCBI | |
|
Choi RH, Tatum SM, Symons JD, Summers SA and Holland WL: Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol. 18:701–711. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Edsfeldt A, Dunér P, Ståhlman M, Mollet IG, Asciutto G, Grufman AHM, Nitulescu M, Persson AF, Fisher RM, Melander O, et al: Proinflammatory role of sphingolipids and glycosphingolipids in the human atherosclerotic plaque. Arterioscler Thromb Vasc Biol. 36:1132–1140. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Zeng G, Yan Y, Zhang SY, Dong Y, Zhang Y, Zhang X, Liu H, Zhang Z, Jiang C and Pang Y: Disruption of adipocyte HIF-1 α improves atherosclerosis through the inhibition of ceramide generation. Acta Pharm Sin B. 12:1899–1912. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang RX, Pan Q, Liu XL, Zhou D, Xin FZ, Zhao ZH, Zhang RN, Zeng J, Qiao L, Hu CX, et al: Therapeutic effect and autophagy regulation of myriocin in nonalcoholic steatohepatitis. Lipids Health Dis. 18:1792019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Zhang Y, Wang P, Zhang SY, Dong Y, Zeng G, Yan Y, Sun L, Wu Q, Liu H, et al: Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism. Cell Metab. 30:937–951.e5. 2019. View Article : Google Scholar | |
|
Dany M, Gencer S, Nganga R, Thomas RJ, Oleinik N, Baron KD, Szulc ZM, Ruvolo P, Kornblau S, Andreeff M and Ogretmen B: Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood. 128:1944–1958. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Huang NQ, Yan F, Jin H, Zhou SY, Shi JS and Jin F: Diabetes mellitus and Alzheimer's disease: GSK-3β as a potential link. Behav Brain Res. 339:57–65. 2018. View Article : Google Scholar | |
|
Yang Y, Xu G, Xu Y, Cheng X, Xu S, Chen S and Wu L: Ceramide mediates radiation-induced germ cell apoptosis via regulating mitochondria function and MAPK factors in caenorhabditis elegans. Ecotoxicol Environ Saf. 208:1115792021. View Article : Google Scholar : PubMed/NCBI | |
|
Ganesan V, Perera MN, Colombini D, Datskovskiy D, Chadha K and Colombini M: Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane. Apoptosis. 15:553–562. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
James BN, Oyeniran C, Sturgill JL, Newton J, Martin RK, Bieberich E, Weigel C, Maczis MA, Palladino END, Lownik JC, et al: Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma. J Allergy Clin Immunol. 147:1936–1948.e9. 2021. View Article : Google Scholar : | |
|
Römer A, Linn T and Petry SF: Lipotoxic impairment of mitochondrial function in β-cells: A review. Antioxidants (Basel). 10:2932021. View Article : Google Scholar | |
|
Onyango AN: Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid Med Cell Longev. 2018:43217142018. View Article : Google Scholar : PubMed/NCBI | |
|
Ueda N: A rheostat of ceramide and sphingosine-1-phosphate as a determinant of oxidative stress-mediated kidney injury. Int J Mol Sci. 23:40102022. View Article : Google Scholar : PubMed/NCBI | |
|
Poole LP and Macleod KF: Mitophagy in tumorigenesis and metastasis. Cell Mol Life Sci. 78:3817–3851. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Srivastava S and Chan C: Hydrogen peroxide and hydroxyl radicals mediate palmitate-induced cytotoxicity to hepatoma cells: Relation to mitochondrial permeability transition. Free Radic Res. 41:38–49. 2007. View Article : Google Scholar | |
|
Law BA, Liao X, Moore KS, Southard A, Roddy P, Ji R, Szulc Z, Bielawska A, Schulze PC and Cowart LA: Lipotoxic very-long-chain ceramides cause mitochondrial dysfunction, oxidative stress, and cell death in cardiomyocytes. FASEB J. 32:1403–1416. 2018. View Article : Google Scholar : | |
|
Botta A, Elizbaryan K, Tashakorinia P, Lam NH and Sweeney G: An adiponectin-S1P autocrine axis protects skeletal muscle cells from palmitate-induced cell death. Lipids Health Dis. 19:1562020. View Article : Google Scholar : PubMed/NCBI | |
|
Simon JN, Chowdhury SAK, Warren CM, Sadayappan S, Wieczorek DF, Solaro RJ and Wolska BM: Ceramide-mediated depression in cardiomyocyte contractility through PKC activation and modulation of myofilament protein phosphorylation. Basic Res Cardiol. 109:4452014. View Article : Google Scholar : PubMed/NCBI | |
|
Kim C and Kim B: Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients. 10:10212018. View Article : Google Scholar : PubMed/NCBI | |
|
Hu H, Tian M, Ding C and Yu S: The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol. 9:30832019. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang C, Wang Y, Zhang H and Han F: The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis. 22:1–26. 2017. View Article : Google Scholar | |
|
Szpigel A, Hainault I, Carlier A, Venteclef N, Batto AF, Hajduch E, Bernard C, Ktorza A, Gautier JF, Ferré P, et al: Lipid environment induces ER stress, TXNIP expression and inflammation in immune cells of individuals with type 2 diabetes. Diabetologia. 61:399–412. 2018. View Article : Google Scholar | |
|
Xu G, Chen J, Jing G, Grayson TB and Shalev A: miR-204 targets PERK and regulates UPR signaling and β-cell apoptosis. Mol Endocrinol. 30:917–924. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ojo OA, Grant S, Amanze JC, Oni AI, Ojo AB, Elebiyo TC, Obafemi TO, Ayokunle DI and Ogunlakin AD: Annona muricata L. peel extract inhibits carbohydrate metabolizing enzymes and reduces pancreatic β-cells, inflammation, and apoptosis via upregulation of PI3K/AKT genes. PLoS One. 17:e02769842022. View Article : Google Scholar | |
|
Wang Y, Liu J, Akatsu C, Zhang R, Zhang H, Zhu H, Liu K, Zhu HY, Min Q, Meng X, et al: LAPTM5 mediates immature B cell apoptosis and B cell tolerance by regulating the WWP2-PTEN-AKT pathway. Proc Natl Acad Sci USA. 119:e22056291192022. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu CM, Lin JJ, Su JH and Liu CI: 13-Acetoxysarcocrassolide induces apoptosis in human hepatocellular carcinoma cells through mitochondrial dysfunction and suppression of the PI3K/AKT/mTOR/p70S6K signalling pathway. Pharm Biol. 60:2276–2285. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cui F and He X: IGF-1 ameliorates streptozotocin-induced pancreatic β cell dysfunction and apoptosis via activating IRS1/PI3K/Akt/FOXO1 pathway. Inflamm Res. 71:669–680. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Denhez B, Rousseau M, Spino C, Dancosst DA, Dumas MÈ, Guay A, Lizotte F and Geraldes P: Saturated fatty acids induce insulin resistance in podocytes through inhibition of IRS1 via activation of both IKKβ and mTORC1. Sci Rep. 10:216282020. View Article : Google Scholar | |
|
Jennemann R, Kaden S, Volz M, Nordström V, Herzer S, Sandhoff R and Gröne HJ: Gangliosides modulate insulin secretion by pancreatic beta cells under glucose stress. Glycobiology. 30:722–734. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Benito-Vicente A, Jebari-Benslaiman S, Galicia-Garcia U, Larrea-Sebal A, Uribe KB and Martin C: Molecular mechanisms of lipotoxicity-induced pancreatic β-cell dysfunction. Int Rev Cell Mol Biol. 359:357–402. 2021. View Article : Google Scholar | |
|
Huang X, Liu G, Guo J and Su Z: The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 14:1483–1496. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Obanda DN, Ribnicky D, Yu Y, Stephens J and Cefalu WT: An extract of Urtica dioica L. mitigates obesity induced insulin resistance in mice skeletal muscle via protein phosphatase 2A (PP2A). Sci Rep. 6:222222016. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Huang J, Lu J, Guo Z, Li Z, Gao H, Wang P, Luo W, Cai S, Hu Y, et al: Sirtuin 1 represses PKC-ζ activity through regulating interplay of acetylation and phosphorylation in cardiac hypertrophy. Br J Pharmacol. 176:416–435. 2019. | |
|
Ivey RA, Sajan MP and Farese RV: Requirements for pseudosubstrate arginine residues during autoinhibition and phosphatidylinositol 3,4,5-(PO4)3-dependent activation of atypical PKC. J Biol Chem. 289:25021–25030. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Campana M, Bellini L, Rouch C, Rachdi L, Coant N, Butin N, Bandet CL, Philippe E, Meneyrol K, Kassis N, et al: Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats. Mol Metab. 8:23–36. 2018. View Article : Google Scholar | |
|
Wali JA, Jarzebska N, Raubenheimer D, Simpson SJ, Rodionov RN and O'Sullivan JF: Cardio-metabolic effects of high-fat diets and their underlying mechanisms-a narrative review. Nutrients. 12:15052020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Aminian A, Hassan M, Dan O, Axelrod CL, Schauer PR, Brethauer SA and Kirwan JP: Gastric bypass surgery improves the skeletal muscle ceramide/S1P ratio and upregulates the AMPK/SIRT1/PGC-1α pathway in Zucker diabetic fatty rats. Obes Surg. 29:2158–2165. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Matsuzaka T, Kuba M, Koyasu S, Yamamoto Y, Motomura K, Arulmozhiraja S, Ohno H, Sharma R, Shimura T, Okajima Y, et al: Hepatocyte ELOVL fatty acid elongase 6 determines ceramide Acyl-chain length and hepatic insulin sensitivity in mice. Hepatology. 71:1609–1625. 2020. View Article : Google Scholar | |
|
Yazıcı D and Sezer H: Insulin resistance, obesity and lipotoxicity. Engin AB and Engin A: Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology. 960. Springer International Publishing; pp. 277–304. 2017, View Article : Google Scholar | |
|
Xia QS, Lu FE, Wu F, Huang ZY, Dong H, Xu LJ and Gong J: New role for ceramide in hypoxia and insulin resistance. World J Gastroenterol. 26:2177–2186. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Obata Y, Kita S, Koyama Y, Fukuda S, Takeda H, Takahashi M, Fujishima Y, Nagao H, Masuda S, Tanaka Y, et al: Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight. 3:e996802018. View Article : Google Scholar : PubMed/NCBI | |
|
Santovito D, De Nardis V, Marcantonio P, Mandolini C, Paganelli C, Vitale E, Buttitta F, Bucci M, Mezzetti A, Consoli A and Cipollone F: Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: Effect of glycemic control. J Clin Endocrinol Metab. 99:E1681–E1685. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, et al: Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 171:372–384.e12. 2017. View Article : Google Scholar | |
|
Tian F, Tang P, Sun Z, Zhang R, Zhu D, He J, Liao J, Wan Q and Shen J: miR-210 in exosomes derived from macrophages under high glucose promotes mouse diabetic obesity pathogenesis by suppressing NDUFA4 expression. J Diabetes Res. 2020:68946842020. View Article : Google Scholar : PubMed/NCBI | |
|
Ruiz-León AM, Lapuente M, Estruch R and Casas R: Clinical advances in immunonutrition and atherosclerosis: A review. Front Immunol. 10:8372019. View Article : Google Scholar : PubMed/NCBI | |
|
Geovanini GR and Libby P: Atherosclerosis and inflammation: Overview and updates. Clin Sci (Lond). 132:1243–1252. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ho QWC, Zheng X and Ali Y: Ceramide Acyl chain length and its relevance to intracellular lipid regulation. Int J Mol Sci. 23:96972022. View Article : Google Scholar : PubMed/NCBI | |
|
Sindhu S, Leung YH, Arefanian H, Madiraju SRM, Al-Mulla F, Ahmad R and Prentki M: Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes Rev. 22:e132482021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Guo X, Ge Q, Zhao Y, Mu H and Zhang J: ER stress activates the NLRP3 inflammasome: A novel mechanism of atherosclerosis. Oxid Med Cell Longev. 2019:34625302019. View Article : Google Scholar : PubMed/NCBI | |
|
Alaaeldin R, Abdel-Rahman IAM, Hassan HA, Youssef N, Allam AE, Abdelwahab SF, Zhao QL and Fathy M: Carpachromene ameliorates insulin resistance in HepG2 cells via modulating IR/IRS1/PI3k/Akt/GSK3/FoxO1 pathway. Molecules. 26:76292021. View Article : Google Scholar : PubMed/NCBI | |
|
Gündüz D, Troidl C, Tanislav C, Rohrbach S, Hamm C and Aslam M: Role of PI3K/Akt and MEK/ERK signalling in cAMP/Epac-mediated endothelial barrier stabilisation. Front Physiol. 10:13872019. View Article : Google Scholar : PubMed/NCBI | |
|
Prasad M, Gatasheh MK, Alshuniaber MA, Krishnamoorthy R, Rajagopal P, K rishnamoor thy K, Periyasamy V, Veeraraghavan VP and Jayaraman S: Impact of glyphosate on the development of insulin resistance in experimental diabetic rats: Role of NFκB signalling pathways. Antioxidants (Basel). 11:24362022. View Article : Google Scholar | |
|
Wright CJ, McKenna S, De Dios R, Boehmer BH, Nguyen L, Ghosh S, Sandoval J and Rozance PJ: Lower threshold to NFκB activity sensitizes murine β-cells to streptozotocin. J Endocrinol. 249:163–175. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Z, Ge J, Wang Z, Ren J, Wang X, Xiong H, Gao J, Zhang Y and Zhang Q: Let-7e modulates the inflammatory response in vascular endothelial cells through ceRNA crosstalk. Sci Rep. 7:424982017. View Article : Google Scholar : PubMed/NCBI | |
|
Olona A, Hateley C, Muralidharan S, Wenk MR, Torta F and Behmoaras J: Sphingolipid metabolism during Toll-like receptor 4 (TLR4)-mediated macrophage activation. Br J Pharmacol. 178:4575–4587. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Engin A: The pathogenesis of obesity-associated adipose tissue inflammation. Obesity and Lipotoxicity. Advances in Experimental Medicine and Biology. Engin AB and Engin A: 960. Springer International Publishing; pp. 221–245. 2017, View Article : Google Scholar | |
|
Berg M, Polyzos KA, Agardh H, Baumgartner R, Forteza MJ, Kareinen I, Gisterå A, Bottcher G, Hurt-Camejo E, Hansson GK and Ketelhuth DFJ: 3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlr-/- mice. Cardiovasc Res. 116:1948–1957. 2020. View Article : Google Scholar | |
|
Hornemann T and Worgall TS: Sphingolipids and atherosclerosis. Atherosclerosis. 226:16–28. 2013. View Article : Google Scholar | |
|
Dekker MJ, Baker C, Naples M, Samsoondar J, Zhang R, Qiu W, Sacco J and Adeli K: Inhibition of sphingolipid synthesis improves dyslipidemia in the diet-induced hamster model of insulin resistance: Evidence for the role of sphingosine and sphinganine in hepatic VLDL-apoB100 overproduction. Atherosclerosis. 228:98–109. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J and Liu Z: Mechanistic pathogenesis of endothelial dysfunction in diabetic nephropathy and retinopathy. Front Endocrinol (Lausanne). 13:8164002022. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma S, Schaper N and Rayman G: Microangiopathy: Is it relevant to wound healing in diabetic foot disease? Diabetes Metab Res Rev. 36(Suppl 1): e32442020. View Article : Google Scholar | |
|
Wang S, Lei B, Zhang E, Gong P, Gu J, He L, Han L and Yuan Z: Targeted therapy for inflammatory diseases with mesenchymal stem cells and their derived exosomes: From basic to clinics. Int J Nanomedicine. 17:1757–1781. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gil CL, Hooker E and Larrivée B: Diabetic kidney disease, endothelial damage, and podocyte-endothelial crosstalk. Kidney Med. 3:105–115. 2020. View Article : Google Scholar | |
|
Zhao WN, Xu SQ, Liang JF, Peng L, Liu HL, Wang Z, Fang Q, Wang M, Yin WQ, Zhang WJ and Lou JN: Endothelial progenitor cells from human fetal aorta cure diabetic foot in a rat model. Metabolism. 65:1755–1767. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Basra R, Papanas N, Farrow F, Karalliedde J and Vas P: Diabetic foot ulcers and cardiac autonomic neuropathy. Clin Ther. 44:323–330. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
King RJ, Harrison L, Gilbey SG, Santhakumar A, Wyatt J, Jones R and Bodansky HJ: Diabetic hepatosclerosis: Another diabetes microvascular complication? Diabet Med. 33:e5–e7. 2016. View Article : Google Scholar |