Role of the Notch1 signaling pathway in ischemic heart disease (Review)
- Authors:
- Xiafeng Peng
- Shixin Wang
- Hongwu Chen
- Minglong Chen
-
Affiliations: Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China - Published online on: February 9, 2023 https://doi.org/10.3892/ijmm.2023.5230
- Article Number: 27
This article is mentioned in:
Abstract
![]() |
Barquera S, Pedroza-Tobias A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R and Moran AE: Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 46:328–338. 2015. View Article : Google Scholar : PubMed/NCBI | |
Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47:C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sun Y: Myocardial repair/remodelling following infarction: Roles of local factors. Cardiovasc Res. 81:482–490. 2009. View Article : Google Scholar : PubMed/NCBI | |
Schwanbeck R, Martini S, Bernoth K and Just U: The Notch signaling pathway: Molecular basis of cell context dependency. Eur J Cell Biol. 90:572–581. 2011. View Article : Google Scholar : PubMed/NCBI | |
de la Pompa JL and Epstein JA: Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell. 22:244–254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Briot A, Civelek M, Seki A, Hoi K, Mack JJ, Lee SD, Kim J, Hong C, Yu J, Fishbein GA, et al: Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. J Exp Med. 212:2147–2163. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sweeney C, Morrow D, Birney YA, Coyle S, Hennessy C, Scheller A, Cummins PM, Walls D, Redmond EM and Cahill PA: Notch 1 and 3 receptor signaling modulates vascular smooth muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk dependent pathway. FASEB J. 18:1421–1423. 2004. View Article : Google Scholar : PubMed/NCBI | |
Binesh A, Devaraj SN and Halagowder D: Molecular interaction of NFκB and NICD in monocyte-macrophage differentiation is a target for intervention in atherosclerosis. J Cell Physiol. 234:7040–7050. 2019. View Article : Google Scholar : PubMed/NCBI | |
Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C and Madeddu P: Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res. 107:283–293. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nemir M, Metrich M, Plaisance I, Lepore M, Cruchet S, Berthonneche C, Sarre A, Radtke F and Pedrazzini T: The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J. 35:2174–2185. 2014. View Article : Google Scholar : PubMed/NCBI | |
Nus M, Martinez-Poveda B, MacGrogan D, Chevre R, D'Amato G, Sbroggio M, Rodríguez C, Martínez-González J, Andrés V, Hidalgo A and de la Pompa JL: Endothelial Jag1-RBPJ signalling promotes inflammatory leucocyte recruitment and atherosclerosis. Cardiovasc Res. 112:568–580. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qin WD, Zhang F, Qin XJ, Wang J, Meng X, Wang H, Guo HP, Wu QZ, Wu DW and Zhang MX: Notch1 inhibition reduces low shear stress-induced plaque formation. Int J Biochem Cell Biol. 72:63–72. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin QQ, Zhao J, Zheng CG and Chun J: Roles of notch signaling pathway and endothelial-mesenchymal transition in vascular endothelial dysfunction and atherosclerosis. Eur Rev Med Pharmacol Sci. 22:6485–6491. 2018.PubMed/NCBI | |
Tian D, Zeng X, Wang W, Wang Z, Zhang Y and Wang Y: Protective effect of rapamycin on endothelial-to-mesenchymal transition in HUVECs through the Notch signaling pathway. Vascul Pharmacol. 113:20–26. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zou J, Li B, Wang Y, Wang D, Hao Y, Ke X and Li X: RUNX3 modulates hypoxia-induced endothelial-to-mesenchymal transition of human cardiac microvascular endothelial cells. Int J Mol Med. 40:65–74. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu ZJ, Tan Y, Beecham GW, Seo DM, Tian R, Li Y, Vazquez-Padron RI, Pericak-Vance M, Vance JM, Goldschmidt-Clermont PJ, et al: Notch activation induces endothelial cell senescence and pro-inflammatory response: Implication of Notch signaling in atherosclerosis. Atherosclerosis. 225:296–303. 2012. View Article : Google Scholar : PubMed/NCBI | |
Venkatesh D, Fredette N, Rostama B, Tang Y, Vary CP, Liaw L and Urs S: RhoA-mediated signaling in Notch-induced senescence-like growth arrest and endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol. 31:876–882. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qin XF, Shan YG, Dou M, Li FX and Guo YX: Notch1 signaling activation alleviates coronary microvascular dysfunction through histone modification of Nrg-1 via the interaction between NICD and GCN5. Apoptosis. Oct 14–2022.doi: 10.1007/s10495-022-01777-2 (Epub ahead of print). View Article : Google Scholar | |
Yu GH and Fang Y: Resveratrol attenuates atherosclerotic endothelial injury through the Pin1/Notch1 pathway. Toxicol Appl Pharmacol. 446:1160472022. View Article : Google Scholar : PubMed/NCBI | |
Vieceli Dalla Sega F, Mastrocola R, Aquila G, Fortini F, Fornelli C, Zotta A, Cento AS, Perrelli A, Boda E, Pannuti A, et al: KRIT1 deficiency promotes aortic endothelial dysfunction. Int J Mol Sci. 20:49302019. View Article : Google Scholar : PubMed/NCBI | |
Li S, Dong J, Ta G, Liu Y, Cui J, Li X, Song J, Liu A and Cheng G: Xuan Bi Tong Yu Fang Promotes Angiogenesis via VEGF-Notch1/Dll4 pathway in myocardial ischemic rats. Evid Based Complement Alternat Med. 2020:50416292020.PubMed/NCBI | |
Niderla-Bielinska J, Bartkowiak K, Ciszek B, Jankowska-Steifer E, Krejner A and Ratajska A: Sulodexide inhibits angiogenesis via decreasing Dll4 and Notch1 expression in mouse proepicardial explant cultures. Fundam Clin Pharmacol. 33:159–169. 2019. View Article : Google Scholar : PubMed/NCBI | |
Niderla-Bielinska J, Bartkowiak K, Ciszek B, Czajkowski E, Jankowska-Steifer E, Krejner A and Ratajska A: Pentoxifylline inhibits angiogenesis via decreasing Dll4 and Notch1 expression in mouse proepicardial explant cultures. Eur J Pharmacol. 827:80–87. 2018. View Article : Google Scholar : PubMed/NCBI | |
Si Y, Zhang Y, Zhao J, Guo S, Zhai L, Yao S, Sang H, Yang N, Song G, Gu J and Qin S: Niacin inhibits vascular inflammation via downregulating nuclear transcription factor-κBB signaling pathway. Mediators Inflamm. 2014:2637862014. View Article : Google Scholar : PubMed/NCBI | |
Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM and Cahill PA: Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol. 289:C1188–C1196. 2005. View Article : Google Scholar : PubMed/NCBI | |
Noseda M, Fu Y, Niessen K, Wong F, Chang L, McLean G and Karsan A: Smooth Muscle alpha-actin is a direct target of Notch/CSL. Circ Res. 98:1468–1470. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Urs S and Liaw L: Hairy-related transcription factors inhibit Notch-induced smooth muscle alpha-actin expression by interfering with Notch intracellular domain/CBF-1 complex interaction with the CBF-1-binding site. Circ Res. 102:661–668. 2008. View Article : Google Scholar : PubMed/NCBI | |
Proweller A, Pear WS and Parmacek MS: Notch signaling represses myocardin-induced smooth muscle cell differentiation. J Biol Chem. 280:8994–9004. 2005. View Article : Google Scholar : PubMed/NCBI | |
Doi H, Iso T, Yamazaki M, Akiyama H, Kanai H, Sato H, Kawai-Kowase K, Tanaka T, Maeno T, Okamoto E, et al: HERP1 inhibits myocardin-induced vascular smooth muscle cell differentiation by interfering with SRF binding to CArG box. Arterioscler Thromb Vasc Biol. 25:2328–2334. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Prince CZ, Hu X and Pollman MJ: HRT1 modulates vascular smooth muscle cell proliferation and apoptosis. Biochem Biophys Res Commun. 308:596–601. 2003. View Article : Google Scholar : PubMed/NCBI | |
Havrda MC, Johnson MJ, O'Neill CF and Liaw L: A novel mechanism of transcriptional repression of p27kip1 through Notch/HRT2 signaling in vascular smooth muscle cells. Thromb Haemost. 96:361–370. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sakata Y, Xiang F, Chen Z, Kiriyama Y, Kamei CN, Simon DI and Chin MT: Transcription factor CHF1/Hey2 regulates neointimal formation in vivo and vascular smooth muscle proliferation and migration in vitro. Arterioscler Thromb Vasc Biol. 24:2069–2074. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lindner V, Booth C, Prudovsky I, Small D, Maciag T and Liaw L: Members of the Jagged/Notch gene families are expressed in injured arteries and regulate cell phenotype via alterations in cell matrix and cell-cell interaction. Am J Pathol. 159:875–883. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Li F, Jiang Q, Zhang W, Li Z and Tang W: Role of miR-181b/Notch1 Axis in circ_TNPO1 promotion of proliferation and migration of atherosclerotic vascular smooth muscle cells. J Healthc Eng. 2022:40869352022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Lu Z, Zhou F, Jin W, Yang Y, Chen S, Xie Z and Zhao Y: Indoxyl sulfate promotes the atherosclerosis through up-regulating the miR-34a expression in endothelial cells and vascular smooth muscle cells in vitro. Vascul Pharmacol. 131:1067632020. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Chen J, Xu C, Yang J, Guo Q, Hu Q and Jiang H: Resveratrol inhibits phenotypic switching of neointimal vascular smooth muscle cells after balloon injury through blockade of Notch pathway. J Cardiovasc Pharmacol. 63:233–239. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Chen J, Yang J, Xu C, Ding J, Yang J, Guo Q, Hu Q and Jiang H: Sodium ferulate inhibits neointimal hyperplasia in rat balloon injury model. PLoS One. 9:e875612014. View Article : Google Scholar : PubMed/NCBI | |
Sun SW, Tong WJ, Guo ZF, Tuo QH, Lei XY, Zhang CP, Liao DF and Chen JX: Curcumin enhances vascular contractility via induction of myocardin in mouse smooth muscle cells. Acta Pharmacol Sin. 38:1329–1339. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ren BC, Zhang W, Zhang W, Ma JX, Pei F and Li BY: Melatonin attenuates aortic oxidative stress injury and apoptosis in STZ-diabetes rats by Notch1/Hes1 pathway. J Steroid Biochem Mol Biol. 212:1059482021. View Article : Google Scholar : PubMed/NCBI | |
Hatch E, Morrow D, Liu W, Cahill PA and Redmond EM: Differential effects of alcohol and its metabolite acetaldehyde on vascular smooth muscle cell Notch signaling and growth. Am J Physiol Heart Circ Physiol. 314:H131–H137. 2018. View Article : Google Scholar : PubMed/NCBI | |
Singla RD, Wang J and Singla DK: Regulation of Notch 1 signaling in THP-1 cells enhances M2 macrophage differentiation. Am J Physiol Heart Circ Physiol. 307:H1634–H1642. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wolfs IM, Donners MM and de Winther MP: Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost. 106:763–771. 2011. View Article : Google Scholar : PubMed/NCBI | |
Monsalve E, Perez MA, Rubio A, Ruiz-Hidalgo MJ, Baladrón V, García-Ramírez JJ, Gómez JC, Laborda J and Díaz-Guerra MJ: Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. J Immunol. 176:5362–5373. 2006. View Article : Google Scholar : PubMed/NCBI | |
Singla DK, Wang J and Singla R: Primary human monocytes differentiate into M2 macrophages and involve Notch-1 pathway. Can J Physiol Pharmacol. 95:288–294. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fukuda D, Aikawa E, Swirski FK, Novobrantseva TI, Kotelianski V, Gorgun CZ, Chudnovskiy A, Yamazaki H, Croce K, Weissleder R, et al: Notch ligand delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci USA. 109:E1868–E1877. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C, Weber S, et al: Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol. 13:642–650. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ruan ZB, Fu XL, Li W, Ye J, Wang RZ and Zhu L: Effect of notch1,2,3 genes silicing on NF-kappaB signaling pathway of macrophages in patients with atherosclerosis. Biomed Pharmacother. 84:666–673. 2016. View Article : Google Scholar : PubMed/NCBI | |
Monsalve E, Ruiz-Garcia A, Baladron V, Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ, Rubio A, Laborda J and Díaz-Guerra MJ: Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity. Eur J Immunol. 39:2556–2570. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Chen Q, Yang M, Maguire EM, Yu X, He S, Xiao R, Wang CS, An W, Wu W, et al: Macrophage-derived MMP-8 determines smooth muscle cell differentiation from adventitia stem/progenitor cells and promotes neointima hyperplasia. Cardiovasc Res. 11:211–225. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Tang J, Gao H, Xu Y, Han Y, Shang H, Lu Y and Qin C: Ganoderma lucidum triterpenoids and polysaccharides attenuate atherosclerotic plaque in high-fat diet rabbits. Nutr Metab Cardiovasc Dis. 31:1929–1938. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang T and Lu H: Ganoderic acid A inhibits ox-LDL-induced THP-1-derived macrophage inflammation and lipid deposition via Notch1/PPARγ/CD36 signaling. Adv Clin Exp Med. 30:1031–1041. 2021. View Article : Google Scholar : PubMed/NCBI | |
Si Y, Guo S, Fang Y, Qin S, Li F, Zhang Y, Jiao P, Zhang C and Gao L: Celery seed extract blocks peroxide injury in macrophages via notch1/NF-κB pathway. Am J Chin Med. 43:443–455. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ii M, Takeshita K, Ibusuki K, Luedemann C, Wecker A, Eaton E, Thorne T, Asahara T, Liao JK and Losordo DW: Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice. Circulation. 121:1104–1112. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miyagawa K, Shi M, Chen PI, Hennigs JK, Zhao Z, Wang M, Li CG, Saito T, Taylor S, Sa S, et al: Smooth muscle contact drives endothelial regeneration by BMPR2-Notch1-mediated metabolic and epigenetic changes. Circ Res. 124:211–224. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Du H, Zhou CC, Song J, Liu X, Cao X, Mehta JL, Shi Y, Su DF and Miao CY: Intracellular NAMPT-NAD+-SIRT1 cascade improves post-ischaemic vascular repair by modulating Notch signalling in endothelial progenitors. Cardiovasc Res. 104:477–488. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sukmawati D, Tanaka R, Ito-Hirano R, Fujimura S, Hayashi A, Itoh S, Mizuno H and Daida H: The role of Notch signaling in diabetic endothelial progenitor cells dysfunction. J Diabetes Complications. 30:12–20. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Cheng XW, Shi GP, Hu L, Inoue A, Yamamura Y, Wu H, Takeshita K, Li X, Huang Z, et al: Cathepsin K-mediated Notch1 activation contributes to neovascularization in response to hypoxia. Nat Commun. 5:38382014. View Article : Google Scholar : PubMed/NCBI | |
Sharma B and Albig AR: Matrix Gla protein reinforces angiogenic resolution. Microvasc Res. 85:24–33. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A and Asahara T: Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation. 118:157–165. 2008. View Article : Google Scholar : PubMed/NCBI | |
Watson O, Novodvorsky P, Gray C, Rothman AM, Lawrie A, Crossman DC, Haase A, McMahon K, Gering M, Van Eeden FJ and Chico TJ: Blood flow suppresses vascular Notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling. Cardiovasc Res. 100:252–261. 2013. View Article : Google Scholar : PubMed/NCBI | |
Harjes U, Bridges E, McIntyre A, Fielding BA and Harris AL: Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J Biol Chem. 289:23168–23176. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Liu X, Chen J, Zacharek A, Cui X, Savant-Bhonsale S, Liu Z and Chopp M: Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway. Am J Physiol Cell Physiol. 296:C535–C543. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liang T, Zhu L, Gao W, Gong M, Ren J, Yao H, Wang K and Shi D: Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling. FEBS Open Bio. 7:1722–1736. 2017. View Article : Google Scholar : PubMed/NCBI | |
Talman V and Ruskoaho H: Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 365:563–581. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhou XL, Fang YH, Wan L, Xu QR, Huang H, Zhu RR, Wu QC and Liu JC: Notch signaling inhibits cardiac fibroblast to myofibroblast transformation by antagonizing TGF-β1/Smad3 signaling. J Cell Physiol. 234:8834–8845. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Su J, Feng J, Cheng L, Li Q, Qiu C and Zheng Q: TRIM72 contributes to cardiac fibrosis via regulating STAT3/Notch-1 signaling. J Cell Physiol. 234:17749–17756. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Chen X, Cai JJ, Chen LZ, Gong YS, Wang LX, Gao Z, Zhang HQ, Huang WJ and Zhou H: Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. Drug Des Devel Ther. 9:4599–4611. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sassoli C, Chellini F, Pini A, Tani A, Nistri S, Nosi D, Zecchi-Orlandini S, Bani D and Formigli L: Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One. 8:e638962013. View Article : Google Scholar : PubMed/NCBI | |
Boopathy AV, Martinez MD, Smith AW, Brown ME, Garcia AJ and Davis ME: Intramyocardial Delivery of Notch Ligand-Containing Hydrogels Improves Cardiac Function and Angiogenesis Following Infarction. Tissue Eng Part A. 21:2315–2322. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Xu Y, Tao L, Yang Y, Shen X, Li L and Luo P: Oxymatrine inhibits transforming growth factor β1 (TGF-β1)-induced cardiac Fibroblast-to-Myofibroblast transformation (FMT) by mediating the notch signaling pathway in vitro. Med Sci Monit. 24:6280–6288. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Hu B, Choi YY, Chung M, Ullenbruch M, Yu H, Lowe JB and Phan SH: Notch1 signaling in FIZZ1 induction of myofibroblast differentiation. Am J Pathol. 174:1745–1755. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kida Y, Zullo JA and Goligorsky MS: Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation. Biochem Biophys Res Commun. 478:1074–1079. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Zhang J, Peng X, Dong Y, Jia L, Li H and Du J: The Notch γ-secretase inhibitor ameliorates kidney fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway activation. Int J Biochem Cell Biol. 55:65–71. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y and Tao L: Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol. 108:3732013. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Chuang CC and Zuo L: Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed Res Int. 2015:8649462015. View Article : Google Scholar : PubMed/NCBI | |
Boccalini G, Sassoli C, Formigli L, Bani D and Nistri S: Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: Involvement of the Notch-1 pathway. FASEB J. 29:239–249. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Zhao XC, Jiao B, Yue ZJ and Yu ZB: Simulated microgravity hampers Notch signaling in the fight against myocardial ischemiareperfusion injury. Mol Med Rep. 17:5150–5158. 2018.PubMed/NCBI | |
Yu L, Li Z, Dong X, Xue X, Liu Y, Xu S, Zhang J, Han J, Yang Y and Wang H: Polydatin protects diabetic heart against ischemia-reperfusion injury via Notch1/Hes1-Mediated activation of Pten/Akt signaling. Oxid Med Cell Longev. 2018:27506952018. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Fan C, Li Z, Zhang J, Xue X, Xu Y, Zhao G, Yang Y and Wang H: Melatonin rescues cardiac thioredoxin system during ischemia-reperfusion injury in acute hyperglycemic state by restoring Notch1/Hes1/Akt signaling in a membrane receptor-dependent manner. J Pineal Res. 622017.doi: 10.1111/jpi.12375. | |
Cai W, Yang X, Han S, Guo H, Zheng Z, Wang H, Guan H, Jia Y, Gao J, Yang T, et al: Notch1 pathway protects against burn-induced myocardial injury by repressing reactive oxygen species production through JAK2/STAT3 signaling. Oxid Med Cell Longev. 2016:56389432016. View Article : Google Scholar : PubMed/NCBI | |
Pei H, Du J, Song X, He L, Zhang Y, Li X, Qiu C, Zhang Y, Hou J, Feng J, et al: Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic Biol Med. 97:408–417. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Wan XD, Zhu RR, Liu JL, Liu JC and Zhou XL: Keap-NRF2 signaling contributes to the Notch1 protected heart against ischemic reperfusion injury via regulating mitochondrial ROS generation and bioenergetics. Int J Biol Sci. 18:1651–1662. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou XL, Wu X, Xu QR, Zhu RR, Xu H, Li YY, Liu S, Huang H, Xu X, Wan L, et al: Notch1 provides myocardial protection by improving mitochondrial quality control. J Cell Physiol. 234:11835–11841. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Yu LM, Zhao H, Zhou XX, Yang Q, Song F, Yan L, Zhai ME, Li BY, Zhang B, et al: 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside protects murine hearts against ischemia/reperfusion injury by activating Notch1/Hes1 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin. 38:317–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu P, Yang M, He H, Kuang Z, Liang M, Lin A, Liang S, Wen Q, Cheng Z and Sun C: Curcumin attenuates hypoxia/reoxygenationinduced cardiomyocyte injury by downregulating Notch signaling. Mol Med Rep. 20:1541–1550. 2019.PubMed/NCBI | |
Cheng J, Wu Q, Lv R, Huang L, Xu B, Wang X, Chen A and He F: MicroRNA-449a inhibition protects H9C2 cells against hypoxia/reoxygenation-induced injury by targeting the Notch-1 signaling pathway. Cell Physiol Biochem. 46:2587–2600. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Su X, Shen Y, Jin Y, Luo T, Kim IM, Weintraub NL and Tang Y: MiR322 mediates cardioprotection against ischemia/reperfusion injury via FBXW7/notch pathway. J Mol Cell Cardiol. 133:67–74. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhang R, Wu F and Li X: MicroRNA-208a regulates H9c2 cells simulated ischemia-reperfusion myocardial injury via targeting CHD9 through Notch/NF-kappa B signal pathways. Int Heart J. 59:580–588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W and Yang JG: Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol. 234:10726–10740. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li M, Jiao L, Shao Y, Li H, Sun L, Yu Q, Gong M, Liu D, Wang Y, Xuan L, et al: LncRNA-ZFAS1 promotes myocardial ischemia-reperfusion injury through DNA Methylation-Mediated notch1 down-regulation in mice. JACC Basic Transl Sci. 7:880–895. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu B and Song B: Notch 1 signalling inhibits cardiomyocyte apoptosis in ischaemic postconditioning. Heart Lung Circ. 23:152–158. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou XL, Wan L and Liu JC: Activated Notch1 reduces myocardial ischemia reperfusion injury in vitro during ischemic postconditioning by crosstalk with the RISK signaling pathway. Chin Med J (Engl). 126:4545–4551. 2013.PubMed/NCBI | |
Zhou XL, Zhao Y, Fang YH, Xu QR and Liu JC: Hes1 is upregulated by ischemic postconditioning and contributes to cardioprotection. Cell Biochem Funct. 32:730–736. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou XL, Wan L, Xu QR, Zhao Y and Liu JC: Notch signaling activation contributes to cardioprotection provided by ischemic preconditioning and postconditioning. J Transl Med. 11:2512013. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Lai S, Zou H, Zhou X, Wan Q, Luo Y, Wu Q, Wan L, Liu J and Huang H: Ischemic preconditioning/ischemic postconditioning alleviates anoxia/reoxygenation injury via the Notch1/Hes1/VDAC1 axis. J Biochem Mol Toxicol. 36:e231992022. View Article : Google Scholar : PubMed/NCBI | |
Laflamme MA and Murry CE: Heart regeneration. Nature. 473:326–335. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rippon HJ and Bishop AE: Embryonic stem cells. Cell Prolif. 37:23–34. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wu JM, Hsueh YC, Ch'ang HJ, Luo CY, Wu LW, Nakauchi H and Hsieh PC: Circulating cells contribute to cardiomyocyte regeneration after injury. Circ Res. 116:633–641. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li H, Yu B, Zhang Y, Pan Z, Xu W and Li H: Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun. 341:320–325. 2006. View Article : Google Scholar : PubMed/NCBI | |
Koyanagi M, Bushoven P, Iwasaki M, Urbich C, Zeiher AM and Dimmeler S: Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res. 101:1139–1145. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Yan Q, Yan Y, Ma M, He Y, Shui X, Yang Z, Lan X, Tang Y and Lei W: MicroRNA-1 regulates the differentiation of adipose-derived stem cells into cardiomyocyte-like cells. Stem Cells Int. 2018:74945302018. View Article : Google Scholar : PubMed/NCBI | |
Nemir M, Croquelois A, Pedrazzini T and Radtke F: Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ Res. 98:1471–1478. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tung JC, Paige SL, Ratner BD, Murry CE and Giachelli CM: Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation. Stem Cell Reports. 2:271–281. 2014. View Article : Google Scholar : PubMed/NCBI | |
Merino H and Singla DK: Notch-1 mediated cardiac protection following embryonic and induced pluripotent stem cell transplantation in doxorubicin-induced heart failure. PLoS One. 9:e1010242014. View Article : Google Scholar : PubMed/NCBI | |
Tsang KM, Hyun JS, Cheng KT, Vargas M, Mehta D, Ushio-Fukai M, Zou L, Pajcini KV, Rehman J and Malik AB: Embryonic stem cell differentiation to functional arterial endothelial cells through sequential activation of ETV2 and NOTCH1 signaling by HIF1α. Stem Cell Reports. 9:796–806. 2017. View Article : Google Scholar : PubMed/NCBI | |
Boopathy AV, Pendergrass KD, Che PL, Yoon YS and Davis ME: Oxidative stress-induced Notch1 signaling promotes cardiogenic gene expression in mesenchymal stem cells. Stem Cell Res Ther. 4:432013. View Article : Google Scholar : PubMed/NCBI | |
Ding R, Jiang X, Ha Y, Wang Z, Guo J, Jiang H, Zheng S, Shen Z and Jie W: Activation of Notch1 signalling promotes multi-lineage differentiation of c-Kit(POS)/NKX2.5(POS) bone marrow stem cells: Implication in stem cell translational medicine. Stem Cell Res Ther. 6:912015. View Article : Google Scholar : PubMed/NCBI | |
Ciria M, Garcia NA, Ontoria-Oviedo I, González-King H, Carrero R, De La Pompa JL, Montero JA and Sepúlveda P: Mesenchymal stem cell migration and proliferation are mediated by hypoxia-inducible factor-1α Upstream of Notch and SUMO pathways. Stem Cells Dev. 26:973–985. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K, Wang CY, Wang HW, Zhou Q, Radtke F, Liao R and Liao JK: Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction. Circulation. 123:866–876. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mazini L, Rochette L, Amine M and Malka G: Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci. 20:25232019. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Mei S, Zhang S, Qin Q, Li H, Liao Y, Fan H, Liu Z and Zhu H: Cardio-renal exosomes in myocardial infarction serum regulate proangiogenic paracrine signaling in adipose mesenchymal stem cells. Theranostics. 10:1060–1073. 2020. View Article : Google Scholar : PubMed/NCBI | |
Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP and Lee RT: Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 493:433–436. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E and Sussman MA: Activation of Notch-mediated protective signaling in the myocardium. Circ Res. 102:1025–1035. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kratsios P, Catela C, Salimova E, Huth M, Berno V, Rosenthal N and Mourkioti F: Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart. Circ Res. 106:559–572. 2010. View Article : Google Scholar : PubMed/NCBI | |
Felician G, Collesi C, Lusic M, Martinelli V, Ferro MD, Zentilin L, Zacchigna S and Giacca M: Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res. 115:636–649. 2014. View Article : Google Scholar : PubMed/NCBI | |
Raya A, Koth CM, Buscher D, Kawakami Y, Itoh T, Raya RM, Sternik G, Tsai HJ, Rodríguez-Esteban C and Izpisúa-Belmonte JC: Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA. 100 (Suppl 1):S11889–S11895. 2003. View Article : Google Scholar | |
Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, Lee RT, Burns CG and Burns CE: Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci USA. 111:1403–1408. 2014. View Article : Google Scholar : PubMed/NCBI | |
Munch J, Grivas D, Gonzalez-Rajal A, Torregrosa-Carrion R and de la Pompa JL: Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development. 144:1425–1440. 2017.PubMed/NCBI | |
Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, et al: In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 498:497–501. 2013. View Article : Google Scholar : PubMed/NCBI |