|
1
|
Barquera S, Pedroza-Tobias A, Medina C,
Hernández-Barrera L, Bibbins-Domingo K, Lozano R and Moran AE:
Global overview of the epidemiology of atherosclerotic
cardiovascular disease. Arch Med Res. 46:328–338. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Falk E: Pathogenesis of atherosclerosis. J
Am Coll Cardiol. 47:C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sun Y: Myocardial repair/remodelling
following infarction: Roles of local factors. Cardiovasc Res.
81:482–490. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Schwanbeck R, Martini S, Bernoth K and
Just U: The Notch signaling pathway: Molecular basis of cell
context dependency. Eur J Cell Biol. 90:572–581. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
de la Pompa JL and Epstein JA:
Coordinating tissue interactions: Notch signaling in cardiac
development and disease. Dev Cell. 22:244–254. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Briot A, Civelek M, Seki A, Hoi K, Mack
JJ, Lee SD, Kim J, Hong C, Yu J, Fishbein GA, et al: Endothelial
NOTCH1 is suppressed by circulating lipids and antagonizes
inflammation during atherosclerosis. J Exp Med. 212:2147–2163.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sweeney C, Morrow D, Birney YA, Coyle S,
Hennessy C, Scheller A, Cummins PM, Walls D, Redmond EM and Cahill
PA: Notch 1 and 3 receptor signaling modulates vascular smooth
muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk
dependent pathway. FASEB J. 18:1421–1423. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Binesh A, Devaraj SN and Halagowder D:
Molecular interaction of NFκB and NICD in monocyte-macrophage
differentiation is a target for intervention in atherosclerosis. J
Cell Physiol. 234:7040–7050. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Al Haj Zen A, Oikawa A, Bazan-Peregrino M,
Meloni M, Emanueli C and Madeddu P: Inhibition of
delta-like-4-mediated signaling impairs reparative angiogenesis
after ischemia. Circ Res. 107:283–293. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Nemir M, Metrich M, Plaisance I, Lepore M,
Cruchet S, Berthonneche C, Sarre A, Radtke F and Pedrazzini T: The
Notch pathway controls fibrotic and regenerative repair in the
adult heart. Eur Heart J. 35:2174–2185. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nus M, Martinez-Poveda B, MacGrogan D,
Chevre R, D'Amato G, Sbroggio M, Rodríguez C, Martínez-González J,
Andrés V, Hidalgo A and de la Pompa JL: Endothelial Jag1-RBPJ
signalling promotes inflammatory leucocyte recruitment and
atherosclerosis. Cardiovasc Res. 112:568–580. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Qin WD, Zhang F, Qin XJ, Wang J, Meng X,
Wang H, Guo HP, Wu QZ, Wu DW and Zhang MX: Notch1 inhibition
reduces low shear stress-induced plaque formation. Int J Biochem
Cell Biol. 72:63–72. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lin QQ, Zhao J, Zheng CG and Chun J: Roles
of notch signaling pathway and endothelial-mesenchymal transition
in vascular endothelial dysfunction and atherosclerosis. Eur Rev
Med Pharmacol Sci. 22:6485–6491. 2018.PubMed/NCBI
|
|
14
|
Tian D, Zeng X, Wang W, Wang Z, Zhang Y
and Wang Y: Protective effect of rapamycin on
endothelial-to-mesenchymal transition in HUVECs through the Notch
signaling pathway. Vascul Pharmacol. 113:20–26. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liu Y, Zou J, Li B, Wang Y, Wang D, Hao Y,
Ke X and Li X: RUNX3 modulates hypoxia-induced
endothelial-to-mesenchymal transition of human cardiac
microvascular endothelial cells. Int J Mol Med. 40:65–74. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Liu ZJ, Tan Y, Beecham GW, Seo DM, Tian R,
Li Y, Vazquez-Padron RI, Pericak-Vance M, Vance JM,
Goldschmidt-Clermont PJ, et al: Notch activation induces
endothelial cell senescence and pro-inflammatory response:
Implication of Notch signaling in atherosclerosis. Atherosclerosis.
225:296–303. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Venkatesh D, Fredette N, Rostama B, Tang
Y, Vary CP, Liaw L and Urs S: RhoA-mediated signaling in
Notch-induced senescence-like growth arrest and endothelial barrier
dysfunction. Arterioscler Thromb Vasc Biol. 31:876–882. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Qin XF, Shan YG, Dou M, Li FX and Guo YX:
Notch1 signaling activation alleviates coronary microvascular
dysfunction through histone modification of Nrg-1 via the
interaction between NICD and GCN5. Apoptosis. Oct 14–2022.doi:
10.1007/s10495-022-01777-2 (Epub ahead of print). View Article : Google Scholar
|
|
19
|
Yu GH and Fang Y: Resveratrol attenuates
atherosclerotic endothelial injury through the Pin1/Notch1 pathway.
Toxicol Appl Pharmacol. 446:1160472022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Vieceli Dalla Sega F, Mastrocola R, Aquila
G, Fortini F, Fornelli C, Zotta A, Cento AS, Perrelli A, Boda E,
Pannuti A, et al: KRIT1 deficiency promotes aortic endothelial
dysfunction. Int J Mol Sci. 20:49302019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li S, Dong J, Ta G, Liu Y, Cui J, Li X,
Song J, Liu A and Cheng G: Xuan Bi Tong Yu Fang Promotes
Angiogenesis via VEGF-Notch1/Dll4 pathway in myocardial ischemic
rats. Evid Based Complement Alternat Med.
2020:50416292020.PubMed/NCBI
|
|
22
|
Niderla-Bielinska J, Bartkowiak K, Ciszek
B, Jankowska-Steifer E, Krejner A and Ratajska A: Sulodexide
inhibits angiogenesis via decreasing Dll4 and Notch1 expression in
mouse proepicardial explant cultures. Fundam Clin Pharmacol.
33:159–169. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Niderla-Bielinska J, Bartkowiak K, Ciszek
B, Czajkowski E, Jankowska-Steifer E, Krejner A and Ratajska A:
Pentoxifylline inhibits angiogenesis via decreasing Dll4 and Notch1
expression in mouse proepicardial explant cultures. Eur J
Pharmacol. 827:80–87. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Si Y, Zhang Y, Zhao J, Guo S, Zhai L, Yao
S, Sang H, Yang N, Song G, Gu J and Qin S: Niacin inhibits vascular
inflammation via downregulating nuclear transcription factor-κBB
signaling pathway. Mediators Inflamm. 2014:2637862014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Morrow D, Scheller A, Birney YA, Sweeney
C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM and Cahill PA:
Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human
vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell
Physiol. 289:C1188–C1196. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Noseda M, Fu Y, Niessen K, Wong F, Chang
L, McLean G and Karsan A: Smooth Muscle alpha-actin is a direct
target of Notch/CSL. Circ Res. 98:1468–1470. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tang Y, Urs S and Liaw L: Hairy-related
transcription factors inhibit Notch-induced smooth muscle
alpha-actin expression by interfering with Notch intracellular
domain/CBF-1 complex interaction with the CBF-1-binding site. Circ
Res. 102:661–668. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Proweller A, Pear WS and Parmacek MS:
Notch signaling represses myocardin-induced smooth muscle cell
differentiation. J Biol Chem. 280:8994–9004. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Doi H, Iso T, Yamazaki M, Akiyama H, Kanai
H, Sato H, Kawai-Kowase K, Tanaka T, Maeno T, Okamoto E, et al:
HERP1 inhibits myocardin-induced vascular smooth muscle cell
differentiation by interfering with SRF binding to CArG box.
Arterioscler Thromb Vasc Biol. 25:2328–2334. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang W, Prince CZ, Hu X and Pollman MJ:
HRT1 modulates vascular smooth muscle cell proliferation and
apoptosis. Biochem Biophys Res Commun. 308:596–601. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Havrda MC, Johnson MJ, O'Neill CF and Liaw
L: A novel mechanism of transcriptional repression of p27kip1
through Notch/HRT2 signaling in vascular smooth muscle cells.
Thromb Haemost. 96:361–370. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sakata Y, Xiang F, Chen Z, Kiriyama Y,
Kamei CN, Simon DI and Chin MT: Transcription factor CHF1/Hey2
regulates neointimal formation in vivo and vascular smooth muscle
proliferation and migration in vitro. Arterioscler Thromb Vasc
Biol. 24:2069–2074. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lindner V, Booth C, Prudovsky I, Small D,
Maciag T and Liaw L: Members of the Jagged/Notch gene families are
expressed in injured arteries and regulate cell phenotype via
alterations in cell matrix and cell-cell interaction. Am J Pathol.
159:875–883. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen M, Li F, Jiang Q, Zhang W, Li Z and
Tang W: Role of miR-181b/Notch1 Axis in circ_TNPO1 promotion of
proliferation and migration of atherosclerotic vascular smooth
muscle cells. J Healthc Eng. 2022:40869352022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li X, Lu Z, Zhou F, Jin W, Yang Y, Chen S,
Xie Z and Zhao Y: Indoxyl sulfate promotes the atherosclerosis
through up-regulating the miR-34a expression in endothelial cells
and vascular smooth muscle cells in vitro. Vascul Pharmacol.
131:1067632020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang J, Chen J, Xu C, Yang J, Guo Q, Hu Q
and Jiang H: Resveratrol inhibits phenotypic switching of
neointimal vascular smooth muscle cells after balloon injury
through blockade of Notch pathway. J Cardiovasc Pharmacol.
63:233–239. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang J, Chen J, Yang J, Xu C, Ding J,
Yang J, Guo Q, Hu Q and Jiang H: Sodium ferulate inhibits
neointimal hyperplasia in rat balloon injury model. PLoS One.
9:e875612014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sun SW, Tong WJ, Guo ZF, Tuo QH, Lei XY,
Zhang CP, Liao DF and Chen JX: Curcumin enhances vascular
contractility via induction of myocardin in mouse smooth muscle
cells. Acta Pharmacol Sin. 38:1329–1339. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ren BC, Zhang W, Zhang W, Ma JX, Pei F and
Li BY: Melatonin attenuates aortic oxidative stress injury and
apoptosis in STZ-diabetes rats by Notch1/Hes1 pathway. J Steroid
Biochem Mol Biol. 212:1059482021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hatch E, Morrow D, Liu W, Cahill PA and
Redmond EM: Differential effects of alcohol and its metabolite
acetaldehyde on vascular smooth muscle cell Notch signaling and
growth. Am J Physiol Heart Circ Physiol. 314:H131–H137. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Singla RD, Wang J and Singla DK:
Regulation of Notch 1 signaling in THP-1 cells enhances M2
macrophage differentiation. Am J Physiol Heart Circ Physiol.
307:H1634–H1642. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wolfs IM, Donners MM and de Winther MP:
Differentiation factors and cytokines in the atherosclerotic plaque
micro-environment as a trigger for macrophage polarisation. Thromb
Haemost. 106:763–771. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Monsalve E, Perez MA, Rubio A,
Ruiz-Hidalgo MJ, Baladrón V, García-Ramírez JJ, Gómez JC, Laborda J
and Díaz-Guerra MJ: Notch-1 up-regulation and signaling following
macrophage activation modulates gene expression patterns known to
affect antigen-presenting capacity and cytotoxic activity. J
Immunol. 176:5362–5373. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Singla DK, Wang J and Singla R: Primary
human monocytes differentiate into M2 macrophages and involve
Notch-1 pathway. Can J Physiol Pharmacol. 95:288–294. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fukuda D, Aikawa E, Swirski FK,
Novobrantseva TI, Kotelianski V, Gorgun CZ, Chudnovskiy A, Yamazaki
H, Croce K, Weissleder R, et al: Notch ligand delta-like 4 blockade
attenuates atherosclerosis and metabolic disorders. Proc Natl Acad
Sci USA. 109:E1868–E1877. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xu H, Zhu J, Smith S, Foldi J, Zhao B,
Chung AY, Outtz H, Kitajewski J, Shi C, Weber S, et al: Notch-RBP-J
signaling regulates the transcription factor IRF8 to promote
inflammatory macrophage polarization. Nat Immunol. 13:642–650.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ruan ZB, Fu XL, Li W, Ye J, Wang RZ and
Zhu L: Effect of notch1,2,3 genes silicing on NF-kappaB signaling
pathway of macrophages in patients with atherosclerosis. Biomed
Pharmacother. 84:666–673. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Monsalve E, Ruiz-Garcia A, Baladron V,
Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ,
Rubio A, Laborda J and Díaz-Guerra MJ: Notch1 upregulates
LPS-induced macrophage activation by increasing NF-kappaB activity.
Eur J Immunol. 39:2556–2570. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yang F, Chen Q, Yang M, Maguire EM, Yu X,
He S, Xiao R, Wang CS, An W, Wu W, et al: Macrophage-derived MMP-8
determines smooth muscle cell differentiation from adventitia
stem/progenitor cells and promotes neointima hyperplasia.
Cardiovasc Res. 11:211–225. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li Y, Tang J, Gao H, Xu Y, Han Y, Shang H,
Lu Y and Qin C: Ganoderma lucidum triterpenoids and polysaccharides
attenuate atherosclerotic plaque in high-fat diet rabbits. Nutr
Metab Cardiovasc Dis. 31:1929–1938. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang T and Lu H: Ganoderic acid A inhibits
ox-LDL-induced THP-1-derived macrophage inflammation and lipid
deposition via Notch1/PPARγ/CD36 signaling. Adv Clin Exp Med.
30:1031–1041. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Si Y, Guo S, Fang Y, Qin S, Li F, Zhang Y,
Jiao P, Zhang C and Gao L: Celery seed extract blocks peroxide
injury in macrophages via notch1/NF-κB pathway. Am J Chin Med.
43:443–455. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ii M, Takeshita K, Ibusuki K, Luedemann C,
Wecker A, Eaton E, Thorne T, Asahara T, Liao JK and Losordo DW:
Notch signaling regulates endothelial progenitor cell activity
during recovery from arterial injury in hypercholesterolemic mice.
Circulation. 121:1104–1112. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Miyagawa K, Shi M, Chen PI, Hennigs JK,
Zhao Z, Wang M, Li CG, Saito T, Taylor S, Sa S, et al: Smooth
muscle contact drives endothelial regeneration by
BMPR2-Notch1-mediated metabolic and epigenetic changes. Circ Res.
124:211–224. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang P, Du H, Zhou CC, Song J, Liu X, Cao
X, Mehta JL, Shi Y, Su DF and Miao CY: Intracellular
NAMPT-NAD+-SIRT1 cascade improves post-ischaemic vascular repair by
modulating Notch signalling in endothelial progenitors. Cardiovasc
Res. 104:477–488. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sukmawati D, Tanaka R, Ito-Hirano R,
Fujimura S, Hayashi A, Itoh S, Mizuno H and Daida H: The role of
Notch signaling in diabetic endothelial progenitor cells
dysfunction. J Diabetes Complications. 30:12–20. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Jiang H, Cheng XW, Shi GP, Hu L, Inoue A,
Yamamura Y, Wu H, Takeshita K, Li X, Huang Z, et al: Cathepsin
K-mediated Notch1 activation contributes to neovascularization in
response to hypoxia. Nat Commun. 5:38382014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sharma B and Albig AR: Matrix Gla protein
reinforces angiogenic resolution. Microvasc Res. 85:24–33. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi
K, Iwaguro H, Masuda H, Kawamoto A and Asahara T: Specific Jagged-1
signal from bone marrow microenvironment is required for
endothelial progenitor cell development for neovascularization.
Circulation. 118:157–165. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Watson O, Novodvorsky P, Gray C, Rothman
AM, Lawrie A, Crossman DC, Haase A, McMahon K, Gering M, Van Eeden
FJ and Chico TJ: Blood flow suppresses vascular Notch signalling
via dll4 and is required for angiogenesis in response to hypoxic
signalling. Cardiovasc Res. 100:252–261. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Harjes U, Bridges E, McIntyre A, Fielding
BA and Harris AL: Fatty acid-binding protein 4, a point of
convergence for angiogenic and metabolic signaling pathways in
endothelial cells. J Biol Chem. 289:23168–23176. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Xu J, Liu X, Chen J, Zacharek A, Cui X,
Savant-Bhonsale S, Liu Z and Chopp M: Simvastatin enhances bone
marrow stromal cell differentiation into endothelial cells via
notch signaling pathway. Am J Physiol Cell Physiol. 296:C535–C543.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liang T, Zhu L, Gao W, Gong M, Ren J, Yao
H, Wang K and Shi D: Coculture of endothelial progenitor cells and
mesenchymal stem cells enhanced their proliferation and
angiogenesis through PDGF and Notch signaling. FEBS Open Bio.
7:1722–1736. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Talman V and Ruskoaho H: Cardiac fibrosis
in myocardial infarction-from repair and remodeling to
regeneration. Cell Tissue Res. 365:563–581. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhou XL, Fang YH, Wan L, Xu QR, Huang H,
Zhu RR, Wu QC and Liu JC: Notch signaling inhibits cardiac
fibroblast to myofibroblast transformation by antagonizing
TGF-β1/Smad3 signaling. J Cell Physiol. 234:8834–8845. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chen X, Su J, Feng J, Cheng L, Li Q, Qiu C
and Zheng Q: TRIM72 contributes to cardiac fibrosis via regulating
STAT3/Notch-1 signaling. J Cell Physiol. 234:17749–17756. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhou X, Chen X, Cai JJ, Chen LZ, Gong YS,
Wang LX, Gao Z, Zhang HQ, Huang WJ and Zhou H: Relaxin inhibits
cardiac fibrosis and endothelial-mesenchymal transition via the
Notch pathway. Drug Des Devel Ther. 9:4599–4611. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sassoli C, Chellini F, Pini A, Tani A,
Nistri S, Nosi D, Zecchi-Orlandini S, Bani D and Formigli L:
Relaxin prevents cardiac fibroblast-myofibroblast transition via
notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One.
8:e638962013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Boopathy AV, Martinez MD, Smith AW, Brown
ME, Garcia AJ and Davis ME: Intramyocardial Delivery of Notch
Ligand-Containing Hydrogels Improves Cardiac Function and
Angiogenesis Following Infarction. Tissue Eng Part A. 21:2315–2322.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhao L, Xu Y, Tao L, Yang Y, Shen X, Li L
and Luo P: Oxymatrine inhibits transforming growth factor β1
(TGF-β1)-induced cardiac Fibroblast-to-Myofibroblast transformation
(FMT) by mediating the notch signaling pathway in vitro. Med Sci
Monit. 24:6280–6288. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu T, Hu B, Choi YY, Chung M, Ullenbruch
M, Yu H, Lowe JB and Phan SH: Notch1 signaling in FIZZ1 induction
of myofibroblast differentiation. Am J Pathol. 174:1745–1755. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kida Y, Zullo JA and Goligorsky MS:
Endothelial sirtuin 1 inactivation enhances capillary rarefaction
and fibrosis following kidney injury through Notch activation.
Biochem Biophys Res Commun. 478:1074–1079. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xiao Z, Zhang J, Peng X, Dong Y, Jia L, Li
H and Du J: The Notch γ-secretase inhibitor ameliorates kidney
fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway
activation. Int J Biochem Cell Biol. 55:65–71. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z,
Han H, Gao E, Qu Y and Tao L: Notch1 cardioprotection in myocardial
ischemia/reperfusion involves reduction of oxidative/nitrative
stress. Basic Res Cardiol. 108:3732013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhou T, Chuang CC and Zuo L: Molecular
characterization of reactive oxygen species in myocardial
ischemia-reperfusion injury. Biomed Res Int. 2015:8649462015.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Boccalini G, Sassoli C, Formigli L, Bani D
and Nistri S: Relaxin protects cardiac muscle cells from
hypoxia/reoxygenation injury: Involvement of the Notch-1 pathway.
FASEB J. 29:239–249. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jiang S, Zhao XC, Jiao B, Yue ZJ and Yu
ZB: Simulated microgravity hampers Notch signaling in the fight
against myocardial ischemiareperfusion injury. Mol Med Rep.
17:5150–5158. 2018.PubMed/NCBI
|
|
78
|
Yu L, Li Z, Dong X, Xue X, Liu Y, Xu S,
Zhang J, Han J, Yang Y and Wang H: Polydatin protects diabetic
heart against ischemia-reperfusion injury via Notch1/Hes1-Mediated
activation of Pten/Akt signaling. Oxid Med Cell Longev.
2018:27506952018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yu L, Fan C, Li Z, Zhang J, Xue X, Xu Y,
Zhao G, Yang Y and Wang H: Melatonin rescues cardiac thioredoxin
system during ischemia-reperfusion injury in acute hyperglycemic
state by restoring Notch1/Hes1/Akt signaling in a membrane
receptor-dependent manner. J Pineal Res. 622017.doi:
10.1111/jpi.12375.
|
|
80
|
Cai W, Yang X, Han S, Guo H, Zheng Z, Wang
H, Guan H, Jia Y, Gao J, Yang T, et al: Notch1 pathway protects
against burn-induced myocardial injury by repressing reactive
oxygen species production through JAK2/STAT3 signaling. Oxid Med
Cell Longev. 2016:56389432016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Pei H, Du J, Song X, He L, Zhang Y, Li X,
Qiu C, Zhang Y, Hou J, Feng J, et al: Melatonin prevents adverse
myocardial infarction remodeling via Notch1/Mfn2 pathway. Free
Radic Biol Med. 97:408–417. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Xu H, Wan XD, Zhu RR, Liu JL, Liu JC and
Zhou XL: Keap-NRF2 signaling contributes to the Notch1 protected
heart against ischemic reperfusion injury via regulating
mitochondrial ROS generation and bioenergetics. Int J Biol Sci.
18:1651–1662. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhou XL, Wu X, Xu QR, Zhu RR, Xu H, Li YY,
Liu S, Huang H, Xu X, Wan L, et al: Notch1 provides myocardial
protection by improving mitochondrial quality control. J Cell
Physiol. 234:11835–11841. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang M, Yu LM, Zhao H, Zhou XX, Yang Q,
Song F, Yan L, Zhai ME, Li BY, Zhang B, et al:
2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside protects murine
hearts against ischemia/reperfusion injury by activating
Notch1/Hes1 signaling and attenuating endoplasmic reticulum stress.
Acta Pharmacol Sin. 38:317–330. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhu P, Yang M, He H, Kuang Z, Liang M, Lin
A, Liang S, Wen Q, Cheng Z and Sun C: Curcumin attenuates
hypoxia/reoxygenationinduced cardiomyocyte injury by downregulating
Notch signaling. Mol Med Rep. 20:1541–1550. 2019.PubMed/NCBI
|
|
86
|
Cheng J, Wu Q, Lv R, Huang L, Xu B, Wang
X, Chen A and He F: MicroRNA-449a inhibition protects H9C2 cells
against hypoxia/reoxygenation-induced injury by targeting the
Notch-1 signaling pathway. Cell Physiol Biochem. 46:2587–2600.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Chen Z, Su X, Shen Y, Jin Y, Luo T, Kim
IM, Weintraub NL and Tang Y: MiR322 mediates cardioprotection
against ischemia/reperfusion injury via FBXW7/notch pathway. J Mol
Cell Cardiol. 133:67–74. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang S, Zhang R, Wu F and Li X:
MicroRNA-208a regulates H9c2 cells simulated ischemia-reperfusion
myocardial injury via targeting CHD9 through Notch/NF-kappa B
signal pathways. Int Heart J. 59:580–588. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang
W and Yang JG: Protective role of microRNA-374 against myocardial
ischemia-reperfusion injury in mice following thoracic epidural
anesthesia by downregulating dystrobrevin alpha-mediated Notch1
axis. J Cell Physiol. 234:10726–10740. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li M, Jiao L, Shao Y, Li H, Sun L, Yu Q,
Gong M, Liu D, Wang Y, Xuan L, et al: LncRNA-ZFAS1 promotes
myocardial ischemia-reperfusion injury through DNA
Methylation-Mediated notch1 down-regulation in mice. JACC Basic
Transl Sci. 7:880–895. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yu B and Song B: Notch 1 signalling
inhibits cardiomyocyte apoptosis in ischaemic postconditioning.
Heart Lung Circ. 23:152–158. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhou XL, Wan L and Liu JC: Activated
Notch1 reduces myocardial ischemia reperfusion injury in vitro
during ischemic postconditioning by crosstalk with the RISK
signaling pathway. Chin Med J (Engl). 126:4545–4551.
2013.PubMed/NCBI
|
|
93
|
Zhou XL, Zhao Y, Fang YH, Xu QR and Liu
JC: Hes1 is upregulated by ischemic postconditioning and
contributes to cardioprotection. Cell Biochem Funct. 32:730–736.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhou XL, Wan L, Xu QR, Zhao Y and Liu JC:
Notch signaling activation contributes to cardioprotection provided
by ischemic preconditioning and postconditioning. J Transl Med.
11:2512013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang L, Lai S, Zou H, Zhou X, Wan Q, Luo
Y, Wu Q, Wan L, Liu J and Huang H: Ischemic
preconditioning/ischemic postconditioning alleviates
anoxia/reoxygenation injury via the Notch1/Hes1/VDAC1 axis. J
Biochem Mol Toxicol. 36:e231992022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Laflamme MA and Murry CE: Heart
regeneration. Nature. 473:326–335. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Rippon HJ and Bishop AE: Embryonic stem
cells. Cell Prolif. 37:23–34. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wu JM, Hsueh YC, Ch'ang HJ, Luo CY, Wu LW,
Nakauchi H and Hsieh PC: Circulating cells contribute to
cardiomyocyte regeneration after injury. Circ Res. 116:633–641.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Li H, Yu B, Zhang Y, Pan Z, Xu W and Li H:
Jagged1 protein enhances the differentiation of mesenchymal stem
cells into cardiomyocytes. Biochem Biophys Res Commun. 341:320–325.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Koyanagi M, Bushoven P, Iwasaki M, Urbich
C, Zeiher AM and Dimmeler S: Notch signaling contributes to the
expression of cardiac markers in human circulating progenitor
cells. Circ Res. 101:1139–1145. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Chen C, Yan Q, Yan Y, Ma M, He Y, Shui X,
Yang Z, Lan X, Tang Y and Lei W: MicroRNA-1 regulates the
differentiation of adipose-derived stem cells into
cardiomyocyte-like cells. Stem Cells Int. 2018:74945302018.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Nemir M, Croquelois A, Pedrazzini T and
Radtke F: Induction of cardiogenesis in embryonic stem cells via
downregulation of Notch1 signaling. Circ Res. 98:1471–1478. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Tung JC, Paige SL, Ratner BD, Murry CE and
Giachelli CM: Engineered biomaterials control differentiation and
proliferation of human-embryonic-stem-cell-derived cardiomyocytes
via timed Notch activation. Stem Cell Reports. 2:271–281. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Merino H and Singla DK: Notch-1 mediated
cardiac protection following embryonic and induced pluripotent stem
cell transplantation in doxorubicin-induced heart failure. PLoS
One. 9:e1010242014. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Tsang KM, Hyun JS, Cheng KT, Vargas M,
Mehta D, Ushio-Fukai M, Zou L, Pajcini KV, Rehman J and Malik AB:
Embryonic stem cell differentiation to functional arterial
endothelial cells through sequential activation of ETV2 and NOTCH1
signaling by HIF1α. Stem Cell Reports. 9:796–806. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Boopathy AV, Pendergrass KD, Che PL, Yoon
YS and Davis ME: Oxidative stress-induced Notch1 signaling promotes
cardiogenic gene expression in mesenchymal stem cells. Stem Cell
Res Ther. 4:432013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ding R, Jiang X, Ha Y, Wang Z, Guo J,
Jiang H, Zheng S, Shen Z and Jie W: Activation of Notch1 signalling
promotes multi-lineage differentiation of c-Kit(POS)/NKX2.5(POS)
bone marrow stem cells: Implication in stem cell translational
medicine. Stem Cell Res Ther. 6:912015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ciria M, Garcia NA, Ontoria-Oviedo I,
González-King H, Carrero R, De La Pompa JL, Montero JA and
Sepúlveda P: Mesenchymal stem cell migration and proliferation are
mediated by hypoxia-inducible factor-1α Upstream of Notch and SUMO
pathways. Stem Cells Dev. 26:973–985. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K,
Wang CY, Wang HW, Zhou Q, Radtke F, Liao R and Liao JK: Notch1 in
bone marrow-derived cells mediates cardiac repair after myocardial
infarction. Circulation. 123:866–876. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Mazini L, Rochette L, Amine M and Malka G:
Regenerative capacity of adipose derived stem cells (ADSCs),
comparison with mesenchymal stem cells (MSCs). Int J Mol Sci.
20:25232019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Gao L, Mei S, Zhang S, Qin Q, Li H, Liao
Y, Fan H, Liu Z and Zhu H: Cardio-renal exosomes in myocardial
infarction serum regulate proangiogenic paracrine signaling in
adipose mesenchymal stem cells. Theranostics. 10:1060–1073. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Senyo SE, Steinhauser ML, Pizzimenti CL,
Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP and Lee
RT: Mammalian heart renewal by pre-existing cardiomyocytes. Nature.
493:433–436. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Gude NA, Emmanuel G, Wu W, Cottage CT,
Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E
and Sussman MA: Activation of Notch-mediated protective signaling
in the myocardium. Circ Res. 102:1025–1035. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kratsios P, Catela C, Salimova E, Huth M,
Berno V, Rosenthal N and Mourkioti F: Distinct roles for
cell-autonomous Notch signaling in cardiomyocytes of the embryonic
and adult heart. Circ Res. 106:559–572. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Felician G, Collesi C, Lusic M, Martinelli
V, Ferro MD, Zentilin L, Zacchigna S and Giacca M: Epigenetic
modification at Notch responsive promoters blunts efficacy of
inducing notch pathway reactivation after myocardial infarction.
Circ Res. 115:636–649. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Raya A, Koth CM, Buscher D, Kawakami Y,
Itoh T, Raya RM, Sternik G, Tsai HJ, Rodríguez-Esteban C and
Izpisúa-Belmonte JC: Activation of Notch signaling pathway precedes
heart regeneration in zebrafish. Proc Natl Acad Sci USA. 100 (Suppl
1):S11889–S11895. 2003. View Article : Google Scholar
|
|
117
|
Zhao L, Borikova AL, Ben-Yair R,
Guner-Ataman B, MacRae CA, Lee RT, Burns CG and Burns CE: Notch
signaling regulates cardiomyocyte proliferation during zebrafish
heart regeneration. Proc Natl Acad Sci USA. 111:1403–1408. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Munch J, Grivas D, Gonzalez-Rajal A,
Torregrosa-Carrion R and de la Pompa JL: Notch signalling restricts
inflammation and serpine1 expression in the dynamic endocardium of
the regenerating zebrafish heart. Development. 144:1425–1440.
2017.PubMed/NCBI
|
|
119
|
Zhang R, Han P, Yang H, Ouyang K, Lee D,
Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, et al: In vivo
cardiac reprogramming contributes to zebrafish heart regeneration.
Nature. 498:497–501. 2013. View Article : Google Scholar : PubMed/NCBI
|