Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2023 Volume 51 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2023 Volume 51 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Role of the Notch1 signaling pathway in ischemic heart disease (Review)

  • Authors:
    • Xiafeng Peng
    • Shixin Wang
    • Hongwu Chen
    • Minglong Chen
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
  • Article Number: 27
    |
    Published online on: February 9, 2023
       https://doi.org/10.3892/ijmm.2023.5230
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ischemic heart disease (IHD) is a prevalent cardiovascular disease characterized by the formation, progression and rupture of atherosclerotic plaque. The Notch signaling pathway is a key mechanism facilitating intercellular coordination. An increasing number of studies have revealed the significance of Notch signaling, particularly as regards Notch1. Of note, the existence of aberrant Notch1 signaling in IHD is universal, suggesting clinical significance. Thus, the present review summarizes the implications of Notch1 signaling in endothelial cells, vascular smooth muscle cells and macrophages in association with the development of IHD. The present review also examined the effects of Notch1 signaling on various remodeling stages of IHD consisting of reendothelialization, neovascularization, and myocardial fibrosis. Moreover, the participation of Notch1 signaling in conventional reperfusion treatments and cardiac regeneration therapies is discussed. On the whole, the present review aims to outline Notch1 signaling as a novel target which may be used to enhance the treatment efficacy for patients with IHD.
View Figures

Figure 1

View References

1 

Barquera S, Pedroza-Tobias A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R and Moran AE: Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 46:328–338. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47:C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Sun Y: Myocardial repair/remodelling following infarction: Roles of local factors. Cardiovasc Res. 81:482–490. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Schwanbeck R, Martini S, Bernoth K and Just U: The Notch signaling pathway: Molecular basis of cell context dependency. Eur J Cell Biol. 90:572–581. 2011. View Article : Google Scholar : PubMed/NCBI

5 

de la Pompa JL and Epstein JA: Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell. 22:244–254. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Briot A, Civelek M, Seki A, Hoi K, Mack JJ, Lee SD, Kim J, Hong C, Yu J, Fishbein GA, et al: Endothelial NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during atherosclerosis. J Exp Med. 212:2147–2163. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Sweeney C, Morrow D, Birney YA, Coyle S, Hennessy C, Scheller A, Cummins PM, Walls D, Redmond EM and Cahill PA: Notch 1 and 3 receptor signaling modulates vascular smooth muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk dependent pathway. FASEB J. 18:1421–1423. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Binesh A, Devaraj SN and Halagowder D: Molecular interaction of NFκB and NICD in monocyte-macrophage differentiation is a target for intervention in atherosclerosis. J Cell Physiol. 234:7040–7050. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Al Haj Zen A, Oikawa A, Bazan-Peregrino M, Meloni M, Emanueli C and Madeddu P: Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circ Res. 107:283–293. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Nemir M, Metrich M, Plaisance I, Lepore M, Cruchet S, Berthonneche C, Sarre A, Radtke F and Pedrazzini T: The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J. 35:2174–2185. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Nus M, Martinez-Poveda B, MacGrogan D, Chevre R, D'Amato G, Sbroggio M, Rodríguez C, Martínez-González J, Andrés V, Hidalgo A and de la Pompa JL: Endothelial Jag1-RBPJ signalling promotes inflammatory leucocyte recruitment and atherosclerosis. Cardiovasc Res. 112:568–580. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Qin WD, Zhang F, Qin XJ, Wang J, Meng X, Wang H, Guo HP, Wu QZ, Wu DW and Zhang MX: Notch1 inhibition reduces low shear stress-induced plaque formation. Int J Biochem Cell Biol. 72:63–72. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Lin QQ, Zhao J, Zheng CG and Chun J: Roles of notch signaling pathway and endothelial-mesenchymal transition in vascular endothelial dysfunction and atherosclerosis. Eur Rev Med Pharmacol Sci. 22:6485–6491. 2018.PubMed/NCBI

14 

Tian D, Zeng X, Wang W, Wang Z, Zhang Y and Wang Y: Protective effect of rapamycin on endothelial-to-mesenchymal transition in HUVECs through the Notch signaling pathway. Vascul Pharmacol. 113:20–26. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Liu Y, Zou J, Li B, Wang Y, Wang D, Hao Y, Ke X and Li X: RUNX3 modulates hypoxia-induced endothelial-to-mesenchymal transition of human cardiac microvascular endothelial cells. Int J Mol Med. 40:65–74. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Liu ZJ, Tan Y, Beecham GW, Seo DM, Tian R, Li Y, Vazquez-Padron RI, Pericak-Vance M, Vance JM, Goldschmidt-Clermont PJ, et al: Notch activation induces endothelial cell senescence and pro-inflammatory response: Implication of Notch signaling in atherosclerosis. Atherosclerosis. 225:296–303. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Venkatesh D, Fredette N, Rostama B, Tang Y, Vary CP, Liaw L and Urs S: RhoA-mediated signaling in Notch-induced senescence-like growth arrest and endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol. 31:876–882. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Qin XF, Shan YG, Dou M, Li FX and Guo YX: Notch1 signaling activation alleviates coronary microvascular dysfunction through histone modification of Nrg-1 via the interaction between NICD and GCN5. Apoptosis. Oct 14–2022.doi: 10.1007/s10495-022-01777-2 (Epub ahead of print). View Article : Google Scholar

19 

Yu GH and Fang Y: Resveratrol attenuates atherosclerotic endothelial injury through the Pin1/Notch1 pathway. Toxicol Appl Pharmacol. 446:1160472022. View Article : Google Scholar : PubMed/NCBI

20 

Vieceli Dalla Sega F, Mastrocola R, Aquila G, Fortini F, Fornelli C, Zotta A, Cento AS, Perrelli A, Boda E, Pannuti A, et al: KRIT1 deficiency promotes aortic endothelial dysfunction. Int J Mol Sci. 20:49302019. View Article : Google Scholar : PubMed/NCBI

21 

Li S, Dong J, Ta G, Liu Y, Cui J, Li X, Song J, Liu A and Cheng G: Xuan Bi Tong Yu Fang Promotes Angiogenesis via VEGF-Notch1/Dll4 pathway in myocardial ischemic rats. Evid Based Complement Alternat Med. 2020:50416292020.PubMed/NCBI

22 

Niderla-Bielinska J, Bartkowiak K, Ciszek B, Jankowska-Steifer E, Krejner A and Ratajska A: Sulodexide inhibits angiogenesis via decreasing Dll4 and Notch1 expression in mouse proepicardial explant cultures. Fundam Clin Pharmacol. 33:159–169. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Niderla-Bielinska J, Bartkowiak K, Ciszek B, Czajkowski E, Jankowska-Steifer E, Krejner A and Ratajska A: Pentoxifylline inhibits angiogenesis via decreasing Dll4 and Notch1 expression in mouse proepicardial explant cultures. Eur J Pharmacol. 827:80–87. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Si Y, Zhang Y, Zhao J, Guo S, Zhai L, Yao S, Sang H, Yang N, Song G, Gu J and Qin S: Niacin inhibits vascular inflammation via downregulating nuclear transcription factor-κBB signaling pathway. Mediators Inflamm. 2014:2637862014. View Article : Google Scholar : PubMed/NCBI

25 

Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM and Cahill PA: Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol. 289:C1188–C1196. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Noseda M, Fu Y, Niessen K, Wong F, Chang L, McLean G and Karsan A: Smooth Muscle alpha-actin is a direct target of Notch/CSL. Circ Res. 98:1468–1470. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Tang Y, Urs S and Liaw L: Hairy-related transcription factors inhibit Notch-induced smooth muscle alpha-actin expression by interfering with Notch intracellular domain/CBF-1 complex interaction with the CBF-1-binding site. Circ Res. 102:661–668. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Proweller A, Pear WS and Parmacek MS: Notch signaling represses myocardin-induced smooth muscle cell differentiation. J Biol Chem. 280:8994–9004. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Doi H, Iso T, Yamazaki M, Akiyama H, Kanai H, Sato H, Kawai-Kowase K, Tanaka T, Maeno T, Okamoto E, et al: HERP1 inhibits myocardin-induced vascular smooth muscle cell differentiation by interfering with SRF binding to CArG box. Arterioscler Thromb Vasc Biol. 25:2328–2334. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Wang W, Prince CZ, Hu X and Pollman MJ: HRT1 modulates vascular smooth muscle cell proliferation and apoptosis. Biochem Biophys Res Commun. 308:596–601. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Havrda MC, Johnson MJ, O'Neill CF and Liaw L: A novel mechanism of transcriptional repression of p27kip1 through Notch/HRT2 signaling in vascular smooth muscle cells. Thromb Haemost. 96:361–370. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Sakata Y, Xiang F, Chen Z, Kiriyama Y, Kamei CN, Simon DI and Chin MT: Transcription factor CHF1/Hey2 regulates neointimal formation in vivo and vascular smooth muscle proliferation and migration in vitro. Arterioscler Thromb Vasc Biol. 24:2069–2074. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Lindner V, Booth C, Prudovsky I, Small D, Maciag T and Liaw L: Members of the Jagged/Notch gene families are expressed in injured arteries and regulate cell phenotype via alterations in cell matrix and cell-cell interaction. Am J Pathol. 159:875–883. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Chen M, Li F, Jiang Q, Zhang W, Li Z and Tang W: Role of miR-181b/Notch1 Axis in circ_TNPO1 promotion of proliferation and migration of atherosclerotic vascular smooth muscle cells. J Healthc Eng. 2022:40869352022. View Article : Google Scholar : PubMed/NCBI

35 

Li X, Lu Z, Zhou F, Jin W, Yang Y, Chen S, Xie Z and Zhao Y: Indoxyl sulfate promotes the atherosclerosis through up-regulating the miR-34a expression in endothelial cells and vascular smooth muscle cells in vitro. Vascul Pharmacol. 131:1067632020. View Article : Google Scholar : PubMed/NCBI

36 

Zhang J, Chen J, Xu C, Yang J, Guo Q, Hu Q and Jiang H: Resveratrol inhibits phenotypic switching of neointimal vascular smooth muscle cells after balloon injury through blockade of Notch pathway. J Cardiovasc Pharmacol. 63:233–239. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Zhang J, Chen J, Yang J, Xu C, Ding J, Yang J, Guo Q, Hu Q and Jiang H: Sodium ferulate inhibits neointimal hyperplasia in rat balloon injury model. PLoS One. 9:e875612014. View Article : Google Scholar : PubMed/NCBI

38 

Sun SW, Tong WJ, Guo ZF, Tuo QH, Lei XY, Zhang CP, Liao DF and Chen JX: Curcumin enhances vascular contractility via induction of myocardin in mouse smooth muscle cells. Acta Pharmacol Sin. 38:1329–1339. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Ren BC, Zhang W, Zhang W, Ma JX, Pei F and Li BY: Melatonin attenuates aortic oxidative stress injury and apoptosis in STZ-diabetes rats by Notch1/Hes1 pathway. J Steroid Biochem Mol Biol. 212:1059482021. View Article : Google Scholar : PubMed/NCBI

40 

Hatch E, Morrow D, Liu W, Cahill PA and Redmond EM: Differential effects of alcohol and its metabolite acetaldehyde on vascular smooth muscle cell Notch signaling and growth. Am J Physiol Heart Circ Physiol. 314:H131–H137. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Singla RD, Wang J and Singla DK: Regulation of Notch 1 signaling in THP-1 cells enhances M2 macrophage differentiation. Am J Physiol Heart Circ Physiol. 307:H1634–H1642. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Wolfs IM, Donners MM and de Winther MP: Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost. 106:763–771. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Monsalve E, Perez MA, Rubio A, Ruiz-Hidalgo MJ, Baladrón V, García-Ramírez JJ, Gómez JC, Laborda J and Díaz-Guerra MJ: Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. J Immunol. 176:5362–5373. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Singla DK, Wang J and Singla R: Primary human monocytes differentiate into M2 macrophages and involve Notch-1 pathway. Can J Physiol Pharmacol. 95:288–294. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Fukuda D, Aikawa E, Swirski FK, Novobrantseva TI, Kotelianski V, Gorgun CZ, Chudnovskiy A, Yamazaki H, Croce K, Weissleder R, et al: Notch ligand delta-like 4 blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci USA. 109:E1868–E1877. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C, Weber S, et al: Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol. 13:642–650. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Ruan ZB, Fu XL, Li W, Ye J, Wang RZ and Zhu L: Effect of notch1,2,3 genes silicing on NF-kappaB signaling pathway of macrophages in patients with atherosclerosis. Biomed Pharmacother. 84:666–673. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Monsalve E, Ruiz-Garcia A, Baladron V, Ruiz-Hidalgo MJ, Sánchez-Solana B, Rivero S, García-Ramírez JJ, Rubio A, Laborda J and Díaz-Guerra MJ: Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity. Eur J Immunol. 39:2556–2570. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Yang F, Chen Q, Yang M, Maguire EM, Yu X, He S, Xiao R, Wang CS, An W, Wu W, et al: Macrophage-derived MMP-8 determines smooth muscle cell differentiation from adventitia stem/progenitor cells and promotes neointima hyperplasia. Cardiovasc Res. 11:211–225. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Li Y, Tang J, Gao H, Xu Y, Han Y, Shang H, Lu Y and Qin C: Ganoderma lucidum triterpenoids and polysaccharides attenuate atherosclerotic plaque in high-fat diet rabbits. Nutr Metab Cardiovasc Dis. 31:1929–1938. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Wang T and Lu H: Ganoderic acid A inhibits ox-LDL-induced THP-1-derived macrophage inflammation and lipid deposition via Notch1/PPARγ/CD36 signaling. Adv Clin Exp Med. 30:1031–1041. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Si Y, Guo S, Fang Y, Qin S, Li F, Zhang Y, Jiao P, Zhang C and Gao L: Celery seed extract blocks peroxide injury in macrophages via notch1/NF-κB pathway. Am J Chin Med. 43:443–455. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Ii M, Takeshita K, Ibusuki K, Luedemann C, Wecker A, Eaton E, Thorne T, Asahara T, Liao JK and Losordo DW: Notch signaling regulates endothelial progenitor cell activity during recovery from arterial injury in hypercholesterolemic mice. Circulation. 121:1104–1112. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Miyagawa K, Shi M, Chen PI, Hennigs JK, Zhao Z, Wang M, Li CG, Saito T, Taylor S, Sa S, et al: Smooth muscle contact drives endothelial regeneration by BMPR2-Notch1-mediated metabolic and epigenetic changes. Circ Res. 124:211–224. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Wang P, Du H, Zhou CC, Song J, Liu X, Cao X, Mehta JL, Shi Y, Su DF and Miao CY: Intracellular NAMPT-NAD+-SIRT1 cascade improves post-ischaemic vascular repair by modulating Notch signalling in endothelial progenitors. Cardiovasc Res. 104:477–488. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Sukmawati D, Tanaka R, Ito-Hirano R, Fujimura S, Hayashi A, Itoh S, Mizuno H and Daida H: The role of Notch signaling in diabetic endothelial progenitor cells dysfunction. J Diabetes Complications. 30:12–20. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Jiang H, Cheng XW, Shi GP, Hu L, Inoue A, Yamamura Y, Wu H, Takeshita K, Li X, Huang Z, et al: Cathepsin K-mediated Notch1 activation contributes to neovascularization in response to hypoxia. Nat Commun. 5:38382014. View Article : Google Scholar : PubMed/NCBI

58 

Sharma B and Albig AR: Matrix Gla protein reinforces angiogenic resolution. Microvasc Res. 85:24–33. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Kwon SM, Eguchi M, Wada M, Iwami Y, Hozumi K, Iwaguro H, Masuda H, Kawamoto A and Asahara T: Specific Jagged-1 signal from bone marrow microenvironment is required for endothelial progenitor cell development for neovascularization. Circulation. 118:157–165. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Watson O, Novodvorsky P, Gray C, Rothman AM, Lawrie A, Crossman DC, Haase A, McMahon K, Gering M, Van Eeden FJ and Chico TJ: Blood flow suppresses vascular Notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling. Cardiovasc Res. 100:252–261. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Harjes U, Bridges E, McIntyre A, Fielding BA and Harris AL: Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J Biol Chem. 289:23168–23176. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Xu J, Liu X, Chen J, Zacharek A, Cui X, Savant-Bhonsale S, Liu Z and Chopp M: Simvastatin enhances bone marrow stromal cell differentiation into endothelial cells via notch signaling pathway. Am J Physiol Cell Physiol. 296:C535–C543. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Liang T, Zhu L, Gao W, Gong M, Ren J, Yao H, Wang K and Shi D: Coculture of endothelial progenitor cells and mesenchymal stem cells enhanced their proliferation and angiogenesis through PDGF and Notch signaling. FEBS Open Bio. 7:1722–1736. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Talman V and Ruskoaho H: Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res. 365:563–581. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Zhou XL, Fang YH, Wan L, Xu QR, Huang H, Zhu RR, Wu QC and Liu JC: Notch signaling inhibits cardiac fibroblast to myofibroblast transformation by antagonizing TGF-β1/Smad3 signaling. J Cell Physiol. 234:8834–8845. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Chen X, Su J, Feng J, Cheng L, Li Q, Qiu C and Zheng Q: TRIM72 contributes to cardiac fibrosis via regulating STAT3/Notch-1 signaling. J Cell Physiol. 234:17749–17756. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Zhou X, Chen X, Cai JJ, Chen LZ, Gong YS, Wang LX, Gao Z, Zhang HQ, Huang WJ and Zhou H: Relaxin inhibits cardiac fibrosis and endothelial-mesenchymal transition via the Notch pathway. Drug Des Devel Ther. 9:4599–4611. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Sassoli C, Chellini F, Pini A, Tani A, Nistri S, Nosi D, Zecchi-Orlandini S, Bani D and Formigli L: Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-β/Smad3 signaling. PLoS One. 8:e638962013. View Article : Google Scholar : PubMed/NCBI

69 

Boopathy AV, Martinez MD, Smith AW, Brown ME, Garcia AJ and Davis ME: Intramyocardial Delivery of Notch Ligand-Containing Hydrogels Improves Cardiac Function and Angiogenesis Following Infarction. Tissue Eng Part A. 21:2315–2322. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Zhao L, Xu Y, Tao L, Yang Y, Shen X, Li L and Luo P: Oxymatrine inhibits transforming growth factor β1 (TGF-β1)-induced cardiac Fibroblast-to-Myofibroblast transformation (FMT) by mediating the notch signaling pathway in vitro. Med Sci Monit. 24:6280–6288. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Liu T, Hu B, Choi YY, Chung M, Ullenbruch M, Yu H, Lowe JB and Phan SH: Notch1 signaling in FIZZ1 induction of myofibroblast differentiation. Am J Pathol. 174:1745–1755. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Kida Y, Zullo JA and Goligorsky MS: Endothelial sirtuin 1 inactivation enhances capillary rarefaction and fibrosis following kidney injury through Notch activation. Biochem Biophys Res Commun. 478:1074–1079. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Xiao Z, Zhang J, Peng X, Dong Y, Jia L, Li H and Du J: The Notch γ-secretase inhibitor ameliorates kidney fibrosis via inhibition of TGF-β/Smad2/3 signaling pathway activation. Int J Biochem Cell Biol. 55:65–71. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y and Tao L: Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol. 108:3732013. View Article : Google Scholar : PubMed/NCBI

75 

Zhou T, Chuang CC and Zuo L: Molecular characterization of reactive oxygen species in myocardial ischemia-reperfusion injury. Biomed Res Int. 2015:8649462015. View Article : Google Scholar : PubMed/NCBI

76 

Boccalini G, Sassoli C, Formigli L, Bani D and Nistri S: Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: Involvement of the Notch-1 pathway. FASEB J. 29:239–249. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Jiang S, Zhao XC, Jiao B, Yue ZJ and Yu ZB: Simulated microgravity hampers Notch signaling in the fight against myocardial ischemiareperfusion injury. Mol Med Rep. 17:5150–5158. 2018.PubMed/NCBI

78 

Yu L, Li Z, Dong X, Xue X, Liu Y, Xu S, Zhang J, Han J, Yang Y and Wang H: Polydatin protects diabetic heart against ischemia-reperfusion injury via Notch1/Hes1-Mediated activation of Pten/Akt signaling. Oxid Med Cell Longev. 2018:27506952018. View Article : Google Scholar : PubMed/NCBI

79 

Yu L, Fan C, Li Z, Zhang J, Xue X, Xu Y, Zhao G, Yang Y and Wang H: Melatonin rescues cardiac thioredoxin system during ischemia-reperfusion injury in acute hyperglycemic state by restoring Notch1/Hes1/Akt signaling in a membrane receptor-dependent manner. J Pineal Res. 622017.doi: 10.1111/jpi.12375.

80 

Cai W, Yang X, Han S, Guo H, Zheng Z, Wang H, Guan H, Jia Y, Gao J, Yang T, et al: Notch1 pathway protects against burn-induced myocardial injury by repressing reactive oxygen species production through JAK2/STAT3 signaling. Oxid Med Cell Longev. 2016:56389432016. View Article : Google Scholar : PubMed/NCBI

81 

Pei H, Du J, Song X, He L, Zhang Y, Li X, Qiu C, Zhang Y, Hou J, Feng J, et al: Melatonin prevents adverse myocardial infarction remodeling via Notch1/Mfn2 pathway. Free Radic Biol Med. 97:408–417. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Xu H, Wan XD, Zhu RR, Liu JL, Liu JC and Zhou XL: Keap-NRF2 signaling contributes to the Notch1 protected heart against ischemic reperfusion injury via regulating mitochondrial ROS generation and bioenergetics. Int J Biol Sci. 18:1651–1662. 2022. View Article : Google Scholar : PubMed/NCBI

83 

Zhou XL, Wu X, Xu QR, Zhu RR, Xu H, Li YY, Liu S, Huang H, Xu X, Wan L, et al: Notch1 provides myocardial protection by improving mitochondrial quality control. J Cell Physiol. 234:11835–11841. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Zhang M, Yu LM, Zhao H, Zhou XX, Yang Q, Song F, Yan L, Zhai ME, Li BY, Zhang B, et al: 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside protects murine hearts against ischemia/reperfusion injury by activating Notch1/Hes1 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin. 38:317–330. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Zhu P, Yang M, He H, Kuang Z, Liang M, Lin A, Liang S, Wen Q, Cheng Z and Sun C: Curcumin attenuates hypoxia/reoxygenationinduced cardiomyocyte injury by downregulating Notch signaling. Mol Med Rep. 20:1541–1550. 2019.PubMed/NCBI

86 

Cheng J, Wu Q, Lv R, Huang L, Xu B, Wang X, Chen A and He F: MicroRNA-449a inhibition protects H9C2 cells against hypoxia/reoxygenation-induced injury by targeting the Notch-1 signaling pathway. Cell Physiol Biochem. 46:2587–2600. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Chen Z, Su X, Shen Y, Jin Y, Luo T, Kim IM, Weintraub NL and Tang Y: MiR322 mediates cardioprotection against ischemia/reperfusion injury via FBXW7/notch pathway. J Mol Cell Cardiol. 133:67–74. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Zhang S, Zhang R, Wu F and Li X: MicroRNA-208a regulates H9c2 cells simulated ischemia-reperfusion myocardial injury via targeting CHD9 through Notch/NF-kappa B signal pathways. Int Heart J. 59:580–588. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Zhao Z, Zhao Y, Ying-Chun L, Zhao L, Zhang W and Yang JG: Protective role of microRNA-374 against myocardial ischemia-reperfusion injury in mice following thoracic epidural anesthesia by downregulating dystrobrevin alpha-mediated Notch1 axis. J Cell Physiol. 234:10726–10740. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Li M, Jiao L, Shao Y, Li H, Sun L, Yu Q, Gong M, Liu D, Wang Y, Xuan L, et al: LncRNA-ZFAS1 promotes myocardial ischemia-reperfusion injury through DNA Methylation-Mediated notch1 down-regulation in mice. JACC Basic Transl Sci. 7:880–895. 2022. View Article : Google Scholar : PubMed/NCBI

91 

Yu B and Song B: Notch 1 signalling inhibits cardiomyocyte apoptosis in ischaemic postconditioning. Heart Lung Circ. 23:152–158. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Zhou XL, Wan L and Liu JC: Activated Notch1 reduces myocardial ischemia reperfusion injury in vitro during ischemic postconditioning by crosstalk with the RISK signaling pathway. Chin Med J (Engl). 126:4545–4551. 2013.PubMed/NCBI

93 

Zhou XL, Zhao Y, Fang YH, Xu QR and Liu JC: Hes1 is upregulated by ischemic postconditioning and contributes to cardioprotection. Cell Biochem Funct. 32:730–736. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Zhou XL, Wan L, Xu QR, Zhao Y and Liu JC: Notch signaling activation contributes to cardioprotection provided by ischemic preconditioning and postconditioning. J Transl Med. 11:2512013. View Article : Google Scholar : PubMed/NCBI

95 

Wang L, Lai S, Zou H, Zhou X, Wan Q, Luo Y, Wu Q, Wan L, Liu J and Huang H: Ischemic preconditioning/ischemic postconditioning alleviates anoxia/reoxygenation injury via the Notch1/Hes1/VDAC1 axis. J Biochem Mol Toxicol. 36:e231992022. View Article : Google Scholar : PubMed/NCBI

96 

Laflamme MA and Murry CE: Heart regeneration. Nature. 473:326–335. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Rippon HJ and Bishop AE: Embryonic stem cells. Cell Prolif. 37:23–34. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Wu JM, Hsueh YC, Ch'ang HJ, Luo CY, Wu LW, Nakauchi H and Hsieh PC: Circulating cells contribute to cardiomyocyte regeneration after injury. Circ Res. 116:633–641. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Li H, Yu B, Zhang Y, Pan Z, Xu W and Li H: Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun. 341:320–325. 2006. View Article : Google Scholar : PubMed/NCBI

100 

Koyanagi M, Bushoven P, Iwasaki M, Urbich C, Zeiher AM and Dimmeler S: Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res. 101:1139–1145. 2007. View Article : Google Scholar : PubMed/NCBI

101 

Chen C, Yan Q, Yan Y, Ma M, He Y, Shui X, Yang Z, Lan X, Tang Y and Lei W: MicroRNA-1 regulates the differentiation of adipose-derived stem cells into cardiomyocyte-like cells. Stem Cells Int. 2018:74945302018. View Article : Google Scholar : PubMed/NCBI

102 

Nemir M, Croquelois A, Pedrazzini T and Radtke F: Induction of cardiogenesis in embryonic stem cells via downregulation of Notch1 signaling. Circ Res. 98:1471–1478. 2006. View Article : Google Scholar : PubMed/NCBI

103 

Tung JC, Paige SL, Ratner BD, Murry CE and Giachelli CM: Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation. Stem Cell Reports. 2:271–281. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Merino H and Singla DK: Notch-1 mediated cardiac protection following embryonic and induced pluripotent stem cell transplantation in doxorubicin-induced heart failure. PLoS One. 9:e1010242014. View Article : Google Scholar : PubMed/NCBI

105 

Tsang KM, Hyun JS, Cheng KT, Vargas M, Mehta D, Ushio-Fukai M, Zou L, Pajcini KV, Rehman J and Malik AB: Embryonic stem cell differentiation to functional arterial endothelial cells through sequential activation of ETV2 and NOTCH1 signaling by HIF1α. Stem Cell Reports. 9:796–806. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Boopathy AV, Pendergrass KD, Che PL, Yoon YS and Davis ME: Oxidative stress-induced Notch1 signaling promotes cardiogenic gene expression in mesenchymal stem cells. Stem Cell Res Ther. 4:432013. View Article : Google Scholar : PubMed/NCBI

107 

Ding R, Jiang X, Ha Y, Wang Z, Guo J, Jiang H, Zheng S, Shen Z and Jie W: Activation of Notch1 signalling promotes multi-lineage differentiation of c-Kit(POS)/NKX2.5(POS) bone marrow stem cells: Implication in stem cell translational medicine. Stem Cell Res Ther. 6:912015. View Article : Google Scholar : PubMed/NCBI

108 

Ciria M, Garcia NA, Ontoria-Oviedo I, González-King H, Carrero R, De La Pompa JL, Montero JA and Sepúlveda P: Mesenchymal stem cell migration and proliferation are mediated by hypoxia-inducible factor-1α Upstream of Notch and SUMO pathways. Stem Cells Dev. 26:973–985. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K, Wang CY, Wang HW, Zhou Q, Radtke F, Liao R and Liao JK: Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction. Circulation. 123:866–876. 2011. View Article : Google Scholar : PubMed/NCBI

110 

Mazini L, Rochette L, Amine M and Malka G: Regenerative capacity of adipose derived stem cells (ADSCs), comparison with mesenchymal stem cells (MSCs). Int J Mol Sci. 20:25232019. View Article : Google Scholar : PubMed/NCBI

111 

Gao L, Mei S, Zhang S, Qin Q, Li H, Liao Y, Fan H, Liu Z and Zhu H: Cardio-renal exosomes in myocardial infarction serum regulate proangiogenic paracrine signaling in adipose mesenchymal stem cells. Theranostics. 10:1060–1073. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP and Lee RT: Mammalian heart renewal by pre-existing cardiomyocytes. Nature. 493:433–436. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E and Sussman MA: Activation of Notch-mediated protective signaling in the myocardium. Circ Res. 102:1025–1035. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Kratsios P, Catela C, Salimova E, Huth M, Berno V, Rosenthal N and Mourkioti F: Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart. Circ Res. 106:559–572. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Felician G, Collesi C, Lusic M, Martinelli V, Ferro MD, Zentilin L, Zacchigna S and Giacca M: Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res. 115:636–649. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Raya A, Koth CM, Buscher D, Kawakami Y, Itoh T, Raya RM, Sternik G, Tsai HJ, Rodríguez-Esteban C and Izpisúa-Belmonte JC: Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA. 100 (Suppl 1):S11889–S11895. 2003. View Article : Google Scholar

117 

Zhao L, Borikova AL, Ben-Yair R, Guner-Ataman B, MacRae CA, Lee RT, Burns CG and Burns CE: Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration. Proc Natl Acad Sci USA. 111:1403–1408. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Munch J, Grivas D, Gonzalez-Rajal A, Torregrosa-Carrion R and de la Pompa JL: Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart. Development. 144:1425–1440. 2017.PubMed/NCBI

119 

Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, et al: In vivo cardiac reprogramming contributes to zebrafish heart regeneration. Nature. 498:497–501. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Peng X, Wang S, Chen H and Chen M: Role of the Notch1 signaling pathway in ischemic heart disease (Review). Int J Mol Med 51: 27, 2023.
APA
Peng, X., Wang, S., Chen, H., & Chen, M. (2023). Role of the Notch1 signaling pathway in ischemic heart disease (Review). International Journal of Molecular Medicine, 51, 27. https://doi.org/10.3892/ijmm.2023.5230
MLA
Peng, X., Wang, S., Chen, H., Chen, M."Role of the Notch1 signaling pathway in ischemic heart disease (Review)". International Journal of Molecular Medicine 51.3 (2023): 27.
Chicago
Peng, X., Wang, S., Chen, H., Chen, M."Role of the Notch1 signaling pathway in ischemic heart disease (Review)". International Journal of Molecular Medicine 51, no. 3 (2023): 27. https://doi.org/10.3892/ijmm.2023.5230
Copy and paste a formatted citation
x
Spandidos Publications style
Peng X, Wang S, Chen H and Chen M: Role of the Notch1 signaling pathway in ischemic heart disease (Review). Int J Mol Med 51: 27, 2023.
APA
Peng, X., Wang, S., Chen, H., & Chen, M. (2023). Role of the Notch1 signaling pathway in ischemic heart disease (Review). International Journal of Molecular Medicine, 51, 27. https://doi.org/10.3892/ijmm.2023.5230
MLA
Peng, X., Wang, S., Chen, H., Chen, M."Role of the Notch1 signaling pathway in ischemic heart disease (Review)". International Journal of Molecular Medicine 51.3 (2023): 27.
Chicago
Peng, X., Wang, S., Chen, H., Chen, M."Role of the Notch1 signaling pathway in ischemic heart disease (Review)". International Journal of Molecular Medicine 51, no. 3 (2023): 27. https://doi.org/10.3892/ijmm.2023.5230
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team