Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2023 Volume 51 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2023 Volume 51 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Autophagy‑regulating miRNAs: Novel therapeutic targets for Parkinson's disease (Review)

  • Authors:
    • Zhenwang Ma
    • Hao Liang
    • Bingcheng Hu
    • Shaojie Cai
    • Dong Yan
  • View Affiliations / Copyright

    Affiliations: Department of Encephalopathy, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150036, P.R. China, Graduate School of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China, Department of Endocrinology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150036, P.R. China
    Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 50
    |
    Published online on: May 2, 2023
       https://doi.org/10.3892/ijmm.2023.5253
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Parkinson's disease (PD) is a neurodegenerative disorder that has a high incidence during the aging process and is characterized by the loss of dopaminergic neurons in the substantia nigra, leading to motor dysfunctions and non‑motor symptoms. Impaired clearance and excessive accumulation of aberrantly modified proteins or damaged organelles, such as aggregated α‑synuclein and dysfunctional mitochondria, are regarded as the main causes of nigrostriatal neurodegeneration. As one of the major degradation pathways, autophagy can recycle these useless or toxic substances to maintain cellular homeostasis and it plays a crucial role in PD progression. MicroRNAs (miRNAs) are a group of small non‑coding RNA molecules that regulate gene expression by silencing targeted mRNAs. Recent studies have illustrated that autophagy‑regulating miRNA has been implicated in pathological processes of PD, including α‑synuclein accumulation, mitochondrial damage, neuroinflammation and neuronal apoptosis, which suggests that targeting autophagy‑regulating miRNAs may provide novel therapeutic strategies for this disease. The present review summarizes the role of autophagy in PD and emphasizes the role of miRNA‑mediated autophagy in PD, for the development of promising interventions in this disease.
View Figures

Figure 1

Figure 2

View References

1 

Bloem BR, Okun MS and Klein C: Parkinson's disease. Lancet. 397:2284–2303. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Xia N, Cabin DE, Fang F and Reijo Pera RA: Parkinson's disease: Overview of transcription factor regulation, genetics, and cellular and animal models. Front Neurosci. 16:8946202022. View Article : Google Scholar : PubMed/NCBI

3 

Cerri S and Blandini F: Role of autophagy in Parkinson's disease. Curr Med Chem. 26:3702–3718. 2019. View Article : Google Scholar

4 

Kuo SH, Tasset I, Cheng MM, Diaz A, Pan MK, Lieberman OJ, Hutten SJ, Alcalay RN, Kim S, Ximénez-Embún P, et al: Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. Sci Adv. 8:eabm63932022. View Article : Google Scholar

5 

Haddad D and Nakamura K: Understanding the susceptibility of dopamine neurons to mitochondrial stressors in Parkinson's disease. FEBS Lett. 589:3702–3713. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Lizama BN and Chu CT: Neuronal autophagy and mitophagy in Parkinson's disease. Mol Aspects Med. 82:1009722021. View Article : Google Scholar : PubMed/NCBI

7 

Xiao B, Kuruvilla J and Tan EK: Mitophagy and reactive oxygen species interplay in Parkinson's disease. NPJ Parkinsons Dis. 8:1352022. View Article : Google Scholar : PubMed/NCBI

8 

Hou X, Watzlawik JO, Fiesel FC and Springer W: Autophagy in Parkinson's disease. J Mol Biol. 432:2651–2672. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Goh SY, Chao YX, Dheen ST, Tan EK and Tay SS: Role of MicroRNAs in Parkinson's disease. Int J Mol Sci. 20:56492019. View Article : Google Scholar : PubMed/NCBI

10 

Das T, Das TK, Khodarkovskaya A and Dash S: Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered. 12:11675–11698. 2021. View Article : Google Scholar : PubMed/NCBI

11 

Shamsuzzama, Kumar L and Nazir A: Modulation of alpha-synuclein expression and associated effects by MicroRNA Let-7 in transgenic C. elegans. Front Mol Neurosci. 10:3282017. View Article : Google Scholar : PubMed/NCBI

12 

Dong X, He X, Yang L, Li Q and Xu Y: Inhibition of miR-421 preserves mitochondrial function and protects against parkinson's disease pathogenesis via Pink1/Parkin-dependent mitophagy. Dis Markers. 2022:51862522022. View Article : Google Scholar : PubMed/NCBI

13 

Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, et al: Molecular definitions of autophagy and related processes. EMBO J. 36:1811–1836. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Malpartida AB, Williamson M, Narendra DP, Wade-Martins R and Ryan BJ: Mitochondrial dysfunction and mitophagy in Parkinson's disease: From mechanism to therapy. Trends Biochem Sci. 46:329–343. 2021. View Article : Google Scholar

15 

Lystad AH, Carlsson SR and Simonsen A: Toward the function of mammalian ATG12-ATG5-ATG16L1 complex in autophagy and related processes. Autophagy. 15:1485–1486. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Zhang X, Wang L, Ireland SC, Ahat E, Li J, Bekier ME II, Zhang Z and Wang Y: GORASP2/GRASP55 collaborates with the PtdIns3K UVRAG complex to facilitate autophagosome-lysosome fusion. Autophagy. 15:1787–1800. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Zhu Z, Yang C, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Liu J, Wang Z, Tong BC, Song J, Lu J, et al: Balancing mTOR signaling and autophagy in the treatment of Parkinson's disease. Int J Mol Sci. 20:7282019. View Article : Google Scholar : PubMed/NCBI

18 

Zhang Z, Sun X, Wang K, Yu Y, Zhang L, Zhang K, Gu J, Yuan X and Song G: Hydrogen-saturated saline mediated neuroprotection through autophagy via PI3K/AKT/mTOR pathway in early and medium stages of rotenone-induced Parkinson's disease rats. Brain Res Bull. 172:1–13. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Mao K and Klionsky DJ: AMPK activates autophagy by phosphorylating ULK1. Circ Res. 108:787–788. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Zhang S, Gui XH, Huang LP, Deng MZ, Fang RM, Ke XH, He YP, Li L and Fang YQ: Neuroprotective effects of β-asarone against 6-hydroxy dopamine-induced parkinsonism via JNK/Bcl-2/beclin-1 pathway. Mol Neurobiol. 53:83–94. 2016. View Article : Google Scholar

21 

Ba RQ, Liu J, Fan XJ, Jin GL, Huang BG, Liu MW and Yang JS: Effects of miR-199a on autophagy by targeting glycogen synthase kinase 3β to activate PTEN/AKT/mTOR signaling in an MPP+ in vitro model of Parkinson's disease. Neurol Res. 42:308–318. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Clark EH, Vázquez de la Torre A, Hoshikawa T and Briston T: Targeting mitophagy in Parkinson's disease. J Biol Chem. 296:1002092021. View Article : Google Scholar :

23 

Qiao CM, Sun MF, Jia XB, Shi Y, Zhang BP, Zhou ZL, Zhao LP, Cui C and Shen YQ: Sodium butyrate causes α-synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway. Exp Cell Res. 387:1117722020. View Article : Google Scholar

24 

Tan Y, Yin L, Sun Z, Shao S, Chen W, Man X, Du Y and Chen Y: Astragalus polysaccharide exerts anti-Parkinson via activating the PI3K/AKT/mTOR pathway to increase cellular autophagy level in vitro. Int J Biol Macromol. 153:349–356. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Wang XW, Yuan LJ, Yang Y, Zhang M and Chen WF: IGF-1 inhibits MPTP/MPP+-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER. Am J Physiol Endocrinol Metab. 319:E734–E743. 2020. View Article : Google Scholar

26 

Zhu J, Xia R, Liu Z, Shen J, Gong X, Hu Y, Chen H, Yu Y, Gao W, Wang C and Wang SL: Fenvalerate triggers Parkinson-like symptom during zebrafish development through initiation of autophagy and p38 MAPK/mTOR signaling pathway. Chemosphere. 243:1253362020. View Article : Google Scholar

27 

Zhang Y, Wu Q, Zhang L, Wang Q, Yang Z, Liu J and Feng L: Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson's disease. Pharmacol Res. 150:1045382019. View Article : Google Scholar

28 

Wan J, Gao Y, Tan J, Yi S, Huang K, Liu Y, Chang D, Xie J, Chen S and Wu H: Mitochonic acid 5 ameliorates the motor deficits in the MPTP-induced mouse Parkinson's disease model by AMPK-mediated autophagy. Folia Neuropathol. 60:329–337. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Parekh P, Sharma N, Sharma M, Gadepalli A, Sayyed AA, Chatterjee S, Kate A and Khairnar A: AMPK-dependent autophagy activation and alpha-synuclein clearance: A putative mechanism behind alpha-mangostin's neuroprotection in a rotenone-induced mouse model of Parkinson's disease. Metab Brain Dis. 37:2853–2870. 2022. View Article : Google Scholar : PubMed/NCBI

30 

Zhou L and Cheng Y: Alpha-lipoic acid alleviated 6-OHDA-induced cell damage by inhibiting AMPK/mTOR mediated autophagy. Neuropharmacology. 155:98–103. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Chen P, Wang Y, Chen L, Song N and Xie J: Apelin-13 protects dopaminergic neurons against rotenone-induced neurotoxicity through the AMPK/mTOR/ULK-1 mediated autophagy activation. Int J Mol Sci. 21:83762020. View Article : Google Scholar : PubMed/NCBI

32 

Zhang M, Deng YN, Zhang JY, Liu J, Li YB, Su H and Qu QM: SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging Dis. 9:273–286. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Agarwal S and Muqit MMK: PTEN-induced kinase 1 (PINK1) and Parkin: Unlocking a mitochondrial quality control pathway linked to Parkinson's disease. Curr Opin Neurobiol. 72:111–119. 2022. View Article : Google Scholar

34 

Li R and Chen J: Salidroside protects dopaminergic neurons by enhancing PINK1/parkin-mediated mitophagy. Oxid Med Cell Longev. 2019:93410182019. View Article : Google Scholar : PubMed/NCBI

35 

Xu J, Wang L, Zhang L, Zheng F, Wang F, Leng J, Wang K, Héroux P, Shen HM, Wu Y and Xia D: Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity. Redox Biol. 38:1017762021. View Article : Google Scholar

36 

Chen J, Ren Y, Gui C, Zhao M, Wu X, Mao K, Li W and Zou F: Phosphorylation of Parkin at serine 131 by p38 MAPK promotes mitochondrial dysfunction and neuronal death in mutant A53T α-synuclein model of Parkinson's disease. Cell Death Dis. 9:7002018. View Article : Google Scholar

37 

Chen C, Chen Y, Liu T, Song D, Ma D and Cheng O: Dexmedetomidine can enhance PINK1/parkin-mediated mitophagy in MPTP-induced PD mice model by activating AMPK. Oxid Med Cell Longev. 2022:75113932022.PubMed/NCBI

38 

Bekker M, Abrahams S, Loos B and Bardien S: Can the interplay between autophagy and apoptosis be targeted as a novel therapy for Parkinson's disease? Neurobiol Aging. 100:91–105. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Miller DR, Cramer SD and Thorburn A: The interplay of autophagy and non-apoptotic cell death pathways. Int Rev Cell Mol Biol. 352:159–187. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Liao Z, Gong Z, Wang Z, Yang W, Liu W, Hou L, Liu X, Hua J, Wang B and Li N: The degradation of TMEM166 by autophagy promotes AMPK activation to protect SH-SY5Y cells exposed to MPP. Cells. 11:27062022. View Article : Google Scholar

41 

Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC and Agid Y: Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol. 12:25–31. 1997.PubMed/NCBI

42 

Tanji K, Mori F, Kakita A, Takahashi H and Wakabayashi K: Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol Dis. 43:690–697. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Dehay B, Bové J, Rodriguez-Muela N, Perier C, Recasens A, Boya P and Vila M: Pathogenic lysosomal depletion in Parkinson's disease. J Neurosci. 30:12535–12544. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Alvarez-Erviti L, Rodriguez-Oroz MC, Cooper JM, Caballero C, Ferrer I, Obeso JA and Schapira AH: Chaperone-mediated autophagy markers in Parkinson disease brains. Arch Neurol. 67:1464–1472. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Hou X, Fiesel FC, Truban D, Castanedes Casey M, Lin WL, Soto AI, Tacik P, Rousseau LG, Diehl NN, Heckman MG, et al: Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy. 14:1404–1418. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Tu HY, Gu YQ, Li X, Pei SF, Hu LF and Wang YL: Expression of autophagy related genes in peripheral blood cells in Parkinson's disease. Neurosci Lett. 762:1361662021. View Article : Google Scholar : PubMed/NCBI

47 

Sepúlveda D, Grunenwald F, Vidal A, Troncoso-Escudero P, Cisternas-Olmedo M, Villagra R, Vergara P, Aguilera C, Nassif M and Vidal RL: Insulin-like growth factor 2 and autophagy gene expression alteration arise as potential biomarkers in Parkinson's disease. Sci Rep. 12:20382022. View Article : Google Scholar : PubMed/NCBI

48 

Li Y, Yin Q, Wang B, Shen T, Luo W and Liu T: Preclinical reserpine models recapitulating motor and non-motor features of Parkinson's disease: Roles of epigenetic upregulation of alpha-synuclein and autophagy impairment. Front Pharmacol. 13:9443762022. View Article : Google Scholar : PubMed/NCBI

49 

Gao J, Perera G, Bhadbhade M, Halliday GM and Dzamko N: Autophagy activation promotes clearance of α-synuclein inclusions in fibril-seeded human neural cells. J Biol Chem. 294:14241–14256. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Tang Q, Gao P, Arzberger T, Höllerhage M, Herms J, Höglinger G and Koeglsperger T: Alpha-synuclein defects autophagy by impairing SNAP29-mediated autophagosome-lysosome fusion. Cell Death Dis. 12:8542021. View Article : Google Scholar : PubMed/NCBI

51 

Nascimento AC, Erustes AG, Reckziegel P, Bincoletto C, Ureshino RP, Pereira GJS and Smaili SS: α-Synuclein overexpression induces lysosomal dysfunction and autophagy impairment in human neuroblastoma SH-SY5Y. Neurochem Res. 45:2749–2761. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Shaltouki A, Hsieh CH, Kim MJ and Wang X: Alpha-synuclein delays mitophagy and targeting Miro rescues neuron loss in Parkinson's models. Acta Neuropathol. 136:607–620. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Portz P and Lee MK: Changes in Drp1 function and mitochondrial morphology are associated with the α-synuclein pathology in a transgenic mouse model of Parkinson's disease. Cells. 10:8852021. View Article : Google Scholar

54 

Wauters F, Cornelissen T, Imberechts D, Martin S, Koentjoro B, Sue C, Vangheluwe P and Vandenberghe W: LRRK2 mutations impair depolarization-induced mitophagy through inhibition of mitochondrial accumulation of RAB10. Autophagy. 16:203–222. 2020. View Article : Google Scholar :

55 

Albanese F, Domenicale C, Volta M and Morari M: Modeling Parkinson's disease in LRRK2 mice: Focus on synaptic dysfunction and the autophagy-lysosomal pathway. Biochem Soc Trans. 50:621–632. 2022. View Article : Google Scholar : PubMed/NCBI

56 

Michiorri S, Gelmetti V, Giarda E, Lombardi F, Romano F, Marongiu R, Nerini-Molteni S, Sale P, Vago R, Arena G, et al: The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy. Cell Death Differ. 17:962–974. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Narendra D, Tanaka A, Suen DF and Youle RJ: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 183:795–803. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Navarro-Romero A, Fernandez-Gonzalez I, Riera J, Montpeyo M, Albert-Bayo M, Lopez-Royo T, Castillo-Sanchez P, Carnicer-Caceres C, Arranz-Amo JA, Castillo-Ribelles L, et al: Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. NPJ Parkinsons Dis. 8:1262022. View Article : Google Scholar : PubMed/NCBI

59 

Nash Y, Schmukler E, Trudler D, Pinkas-Kramarski R and Frenkel D: DJ-1 deficiency impairs autophagy and reduces alpha-synuclein phagocytosis by microglia. J Neurochem. 143:584–594. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Tu HY, Yuan BS, Hou XO, Zhang XJ, Pei CS, Ma YT, Yang YP, Fan Y, Qin ZH, Liu CF and Hu LF: α-Synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson's disease. Aging Cell. 20:e135222021. View Article : Google Scholar

61 

Qin Y, Qiu J, Wang P, Liu J, Zhao Y, Jiang F and Lou H: Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson's disease. Brain Behav Immun. 91:324–338. 2021. View Article : Google Scholar

62 

Zhao M, Chen J, Mao K, She H, Ren Y, Gui C, Wu X, Zou F and Li W: Mitochondrial calcium dysfunction contributes to autophagic cell death induced by MPP+ via AMPK pathway. Biochem Biophys Res Commun. 509:390–394. 2019. View Article : Google Scholar

63 

Niranjan R, Mishra KP and Thakur AK: Inhibition of cyclooxygenase-2 (COX-2) initiates autophagy and potentiates MPTP-induced autophagic cell death of human neuroblastoma cells, SH-SY5Y: An INSIDE IN THE PATHOlogy of Parkinson's disease. Mol Neurobiol. 55:8038–8050. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Jang HJ and Chung KC: The ubiquitin-proteasome system and autophagy mutually interact in neurotoxin-induced dopaminergic cell death models of Parkinson's disease. FEBS Lett. 596:2898–2913. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Choi I, Woo JH, Jou I and Joe EH: PINK1 Deficiency decreases expression levels of mir-326, mir-330, and mir-3099 during brain development and neural stem cell differentiation. Exp Neurobiol. 25:14–23. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Zhao XH, Wang YB, Yang J, Liu HQ and Wang LL: MicroRNA-326 suppresses iNOS expression and promotes autophagy of dopaminergic neurons through the JNK signaling by targeting XBP1 in a mouse model of Parkinson's disease. J Cell Biochem. 120:14995–15006. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Sarkar A, Shamsuzzama, Kumar L, Hameed R and Nazir A: Multiple checkpoints of protein clearance machinery are modulated by a common microRNA, miR-4813-3p through its putative target genes: Studies employing transgenic C. elegans model. Biochim Biophys Acta Mol Cell Res. 1869:1193422022. View Article : Google Scholar

68 

Bai X, Dong Q, Zhao L, Yao Y and Wang B: microRNA-106b-containing extracellular vesicles affect autophagy of neurons by regulating CDKN2B in Parkinson's disease. Neurosci Lett. 760:1360942021. View Article : Google Scholar : PubMed/NCBI

69 

Sun S, Han X, Li X, Song Q, Lu M, Jia M, Ding J and Hu G: MicroRNA-212-5p prevents dopaminergic neuron death by inhibiting SIRT2 in MPTP-induced mouse model of Parkinson's disease. Front Mol Neurosci. 11:3812018. View Article : Google Scholar : PubMed/NCBI

70 

Wang H, Ye Y, Zhu Z, Mo L, Lin C, Wang Q, Wang H, Gong X, He X, Lu G, et al: MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson's disease by targeting to bim. Brain Pathol. 26:167–176. 2016. View Article : Google Scholar

71 

Yao L, Zhu Z, Wu J, Zhang Y, Zhang H, Sun X, Qian C, Wang B, Xie L, Zhang S and Lu G: MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease. FASEB J. 33:8648–8665. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Chen J, Jiang C, Du J and Xie CL: MiR-142-5p protects against 6-OHDA-induced SH-SY5Y cell injury by downregulating BECN1 and autophagy. Dose Response. 18:15593258209070162020. View Article : Google Scholar : PubMed/NCBI

73 

Li W, Jiang Y, Wang Y, Yang S, Bi X, Pan X, Ma A and Li W: MiR-181b regulates autophagy in a model of Parkinson's disease by targeting the PTEN/Akt/mTOR signaling pathway. Neurosci Lett. 675:83–88. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Qin Y, Huang J, Zhao X and Chen C: MiR-135a-5p and Mst1 regulate MPP + -1 induced apoptosis and autophagy in Parkinson's disease model in vitro. Cell Signal. 94:1103282022. View Article : Google Scholar

75 

Wen Z, Zhang J, Tang P, Tu N, Wang K and Wu G: Overexpression of miR-185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson's disease. Mol Med Rep. 17:131–137. 2018.

76 

Liu Y, Song Y and Zhu X: MicroRNA-181a regulates apoptosis and autophagy process in Parkinson's disease by inhibiting p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinases (JNK) signaling pathways. Med Sci Monit. 23:1597–1606. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Wong AS, Lee RH, Cheung AY, Yeung PK, Chung SK, Cheung ZH and Ip NY: Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson's disease. Nat Cell Biol. 13:568–579. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Li G, Luo W, Wang B, Qian C, Ye Y, Li Y and Zhang S: HMGA1 induction of miR-103/107 forms a negative feedback loop to regulate autophagy in MPTP model of Parkinson's disease. Front Cell Neurosci. 14:6200202021. View Article : Google Scholar : PubMed/NCBI

79 

Li Q, Wang Z, Xing H, Wang Y and Guo Y: Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson's disease. Mol Ther Nucleic Acids. 23:1334–1344. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Wang R, Li Q, He Y, Yang Y, Ma Q and Li C: miR-29c-3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson's disease. Genes Cells. 25:364–374. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Wang R, Yao J, Gong F, Chen S, He Y, Hu C and Li C: miR-29c-3p regulates TET2 expression and inhibits autophagy process in Parkinson's disease models. Genes Cells. 26:684–697. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Gong X, Wang H, Ye Y, Shu Y, Deng Y, He X, Lu G and Zhang S: miR-124 regulates cell apoptosis and autophagy in dopaminergic neurons and protects them by regulating AMPK/mTOR pathway in Parkinson's disease. Am J Transl Res. 8:2127–2137. 2016.PubMed/NCBI

83 

Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME, Kauppinen S and Ørum H: Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 327:198–201. 2010. View Article : Google Scholar

84 

Chiu CC, Yeh TH, Chen RS, Chen HC, Huang YZ, Weng YH, Cheng YC, Liu YC, Cheng AJ, Lu YC, et al: Upregulated expression of MicroRNA-204-5p leads to the death of dopaminergic cells by targeting DYRK1A-mediated apoptotic signaling cascade. Front Cell Neurosci. 13:3992019. View Article : Google Scholar : PubMed/NCBI

85 

Zhang L, Chen X, Chang M and Jiao B: MiR-30c-5p/ATG5 axis regulates the progression of Parkinson's disease. Front Cell Neurosci. 15:6445072021. View Article : Google Scholar : PubMed/NCBI

86 

Zhu W, Zhang H, Gao J and Xu Y: Silencing of miR-497-5p inhibits cell apoptosis and promotes autophagy in Parkinson's disease by upregulation of FGF2. Environ Toxicol. 36:2302–2312. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J, Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, et al: Regulation of autophagy and ubiquitinated protein accumulation by bFGF promotes functional recovery and neural protection in a rat model of spinal cord injury. Mol Neurobiol. 48:452–464. 2013. View Article : Google Scholar : PubMed/NCBI

88 

Lv Q, Zhong Z, Hu B, Yan S, Yan Y, Zhang J, Shi T, Jiang L, Li W and Huang W: MicroRNA-3473b regulates the expression of TREM2/ULK1 and inhibits autophagy in inflammatory pathogenesis of Parkinson disease. J Neurochem. 157:599–610. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Zhou T, Lin D, Chen Y, Peng S, Jing X, Lei M, Tao E and Liang Y: α-Synuclein accumulation in SH-SY5Y cell impairs autophagy in microglia by exosomes overloading miR-19a-3p. Epigenomics. 11:1661–1677. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Kim J, Fiesel FC, Belmonte KC, Hudec R, Wang WX, Kim C, Nelson PT, Springer W and Kim J: miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Mol Neurodegener. 11:552016. View Article : Google Scholar : PubMed/NCBI

91 

Jauhari A, Singh T, Mishra S, Shankar J and Yadav S: Coordinated action of miR-146a and parkin gene regulate rotenone-induced neurodegeneration. Toxicol Sci. 176:433–445. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Zhou J, Zhao Y, Li Z, Zhu M, Wang Z, Li Y, Xu T, Feng D, Zhang S, Tang F and Yao J: miR-103a-3p regulates mitophagy in Parkinson's disease through Parkin/Ambra1 signaling. Pharmacol Res. 160:1051972020. View Article : Google Scholar : PubMed/NCBI

93 

Li G, Yang H, Zhu D, Huang H, Liu G and Lun P: Targeted suppression of chaperone-mediated autophagy by miR-320a promotes α-synuclein aggregation. Int J Mol Sci. 15:15845–15857. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, Hannon G and Abeliovich A: A MicroRNA feedback circuit in midbrain dopamine neurons. Science. 317:1220–1224. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Zhao J, Yang M, Li Q, Pei X and Zhu X: miR-132-5p regulates apoptosis and autophagy in MPTP model of Parkinson's disease by targeting ULK1. Neuroreport. 31:959–965. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Li P, Zhong X, Li J, Liu H, Ma X, He R and Zhao Y: MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated endothelial cell pyroptosis through FOXO3 down-regulation in atherosclerosis. Biochem Biophys Res Commun. 503:2833–2840. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Zhang C, Yu S, Zheng B, Liu D, Wan F, Ma Y, Wang J, Gao Z and Shan Z: miR-30c-5p reduces renal ischemia-reperfusion involving macrophage. Med Sci Monit. 25:4362–4369. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Zhou L, Yang L, Li YJ, Mei R, Yu HL, Gong Y, Du MY and Wang F: MicroRNA-128 protects dopamine neurons from apoptosis and upregulates the expression of excitatory amino acid transporter 4 in Parkinson's disease by binding to AXIN1. Cell Physiol Biochem. 51:2275–2289. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J and Björklund A: TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc Natl Acad Sci USA. 110:E1817–E1826. 2013. View Article : Google Scholar

100 

Zhao Y, Xie Y, Yao WY, Wang YY and Song N: Long non-coding RNA Opa interacting protein 5-antisense RNA 1 promotes mitochondrial autophagy and protects SH-SY5Y cells from 1-methyl-4-phenylpyridine-induced damage by binding to microRNA-137 and upregulating NIX. Kaohsiung J Med Sci. 38:207–217. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Feng Z, Zhang L, Wang S and Hong Q: Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson's disease. Biochem Biophys Res Commun. 522:388–394. 2020. View Article : Google Scholar

102 

Qian C, Ye Y, Mao H, Yao L, Sun X, Wang B, Zhang H, Xie L, Zhang H, Zhang Y, et al: Downregulated lncRNA-SNHG1 enhances autophagy and prevents cell death through the miR-221/222/p27/mTOR pathway in Parkinson's disease. Exp Cell Res. 384:1116142019. View Article : Google Scholar

103 

Zhuang Z, Zhang L and Liu C: SNHG14 upregulation was a molecular mechanism underlying MPP+ neurotoxicity in dopaminergic SK-N-SH cells via SNHG14-miR-519a-3p-ATG10 ceRNA pathway. Neurotox Res. 40:553–563. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Fan Y, Zhao X, Lu K and Cheng G: LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson's disease via ablating microRNA-125b-5p. Brain Res Bull. 157:119–127. 2020. View Article : Google Scholar : PubMed/NCBI

105 

Dong L, Zheng Y and Luo X: lncRNA NEAT1 promotes autophagy of neurons in mice by impairing miR-107-5p. Bioengineered. 13:12261–12274. 2022. View Article : Google Scholar : PubMed/NCBI

106 

Dong LI, Zheng Y, Gao L and Luo X: lncRNA NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson's disease by impairing miR-374c-5p. Acta Biochim Biophys Sin (Shanghai). 53:870–882. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Zhao J, Li H and Chang N: LncRNA HOTAIR promotes MPP+-induced neuronal injury in Parkinson's disease by regulating the miR-874-5p/ATG10 axis. EXCLI J. 19:1141–1153. 2020.PubMed/NCBI

108 

Lang Y, Li Y, Yu H, Lin L, Chen X, Wang S and Zhang H: HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson's disease by elevating NPTX2 via miR-221-3p binding. Aging (Albany NY). 12:7660–7678. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Wang W, Lv R, Zhang J and Liu Y: circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson's disease. Mol Med Rep. 24:5402021. View Article : Google Scholar :

110 

Motawi TK, Al-Kady RH, Abdelraouf SM and Senousy MA: Empagliflozin alleviates endoplasmic reticulum stress and augments autophagy in rotenone-induced Parkinson's disease in rats: Targeting the GRP78/PERK/eIF2α/CHOP pathway and miR-211-5p. Chem Biol Interact. 362:1100022022. View Article : Google Scholar

111 

Wang DX, Yang Y, Huang XS, Tang JY, Zhang X, Huang HX, Zhou B, Liu B, Xiao HQ, Li XH, et al: Pramipexole attenuates neuronal injury in Parkinson's disease by targeting miR-96 to activate BNIP3-mediated mitophagy. Neurochem Int. 146:1049722021. View Article : Google Scholar : PubMed/NCBI

112 

Sang Q, Liu X, Wang L, Qi L, Sun W, Wang W, Sun Y and Zhang H: CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson's disease by targeting miR-7. Aging (Albany NY). 10:1281–1293. 2018.

113 

Chen M, Peng L, Gong P, Zheng X, Sun T, Zhang X and Huo J: Baicalein mediates mitochondrial autophagy via miR-30b and the NIX/BNIP3 signaling pathway in Parkinson's disease. Biochem Res Int. 2021:23194122021. View Article : Google Scholar : PubMed/NCBI

114 

Chen M, Peng L, Gong P, Zheng X, Sun T, Zhang X and Huo J: Baicalein induces mitochondrial autophagy to prevent Parkinson's disease in rats via miR-30b and the SIRT1/AMPK/mTOR pathway. Front Neurol. 12:6468172022. View Article : Google Scholar : PubMed/NCBI

115 

Kang C, Wang L, Kang M, Liu X, Fu Y and Gao J: Baicalin alleviates 6-hydroxydopamine-induced neurotoxicity in PC12 cells by down-regulation of microRNA-192-5p. Brain Res. 1708:84–92. 2019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ma Z, Liang H, Hu B, Cai S and Yan D: Autophagy‑regulating miRNAs: Novel therapeutic targets for Parkinson's disease (Review). Int J Mol Med 51: 50, 2023.
APA
Ma, Z., Liang, H., Hu, B., Cai, S., & Yan, D. (2023). Autophagy‑regulating miRNAs: Novel therapeutic targets for Parkinson's disease (Review). International Journal of Molecular Medicine, 51, 50. https://doi.org/10.3892/ijmm.2023.5253
MLA
Ma, Z., Liang, H., Hu, B., Cai, S., Yan, D."Autophagy‑regulating miRNAs: Novel therapeutic targets for Parkinson's disease (Review)". International Journal of Molecular Medicine 51.6 (2023): 50.
Chicago
Ma, Z., Liang, H., Hu, B., Cai, S., Yan, D."Autophagy‑regulating miRNAs: Novel therapeutic targets for Parkinson's disease (Review)". International Journal of Molecular Medicine 51, no. 6 (2023): 50. https://doi.org/10.3892/ijmm.2023.5253
Copy and paste a formatted citation
x
Spandidos Publications style
Ma Z, Liang H, Hu B, Cai S and Yan D: Autophagy‑regulating miRNAs: Novel therapeutic targets for Parkinson's disease (Review). Int J Mol Med 51: 50, 2023.
APA
Ma, Z., Liang, H., Hu, B., Cai, S., & Yan, D. (2023). Autophagy‑regulating miRNAs: Novel therapeutic targets for Parkinson's disease (Review). International Journal of Molecular Medicine, 51, 50. https://doi.org/10.3892/ijmm.2023.5253
MLA
Ma, Z., Liang, H., Hu, B., Cai, S., Yan, D."Autophagy‑regulating miRNAs: Novel therapeutic targets for Parkinson's disease (Review)". International Journal of Molecular Medicine 51.6 (2023): 50.
Chicago
Ma, Z., Liang, H., Hu, B., Cai, S., Yan, D."Autophagy‑regulating miRNAs: Novel therapeutic targets for Parkinson's disease (Review)". International Journal of Molecular Medicine 51, no. 6 (2023): 50. https://doi.org/10.3892/ijmm.2023.5253
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team