|
1
|
Bloem BR, Okun MS and Klein C: Parkinson's
disease. Lancet. 397:2284–2303. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Xia N, Cabin DE, Fang F and Reijo Pera RA:
Parkinson's disease: Overview of transcription factor regulation,
genetics, and cellular and animal models. Front Neurosci.
16:8946202022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cerri S and Blandini F: Role of autophagy
in Parkinson's disease. Curr Med Chem. 26:3702–3718. 2019.
View Article : Google Scholar
|
|
4
|
Kuo SH, Tasset I, Cheng MM, Diaz A, Pan
MK, Lieberman OJ, Hutten SJ, Alcalay RN, Kim S, Ximénez-Embún P, et
al: Mutant glucocerebrosidase impairs α-synuclein degradation by
blockade of chaperone-mediated autophagy. Sci Adv. 8:eabm63932022.
View Article : Google Scholar
|
|
5
|
Haddad D and Nakamura K: Understanding the
susceptibility of dopamine neurons to mitochondrial stressors in
Parkinson's disease. FEBS Lett. 589:3702–3713. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lizama BN and Chu CT: Neuronal autophagy
and mitophagy in Parkinson's disease. Mol Aspects Med.
82:1009722021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xiao B, Kuruvilla J and Tan EK: Mitophagy
and reactive oxygen species interplay in Parkinson's disease. NPJ
Parkinsons Dis. 8:1352022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hou X, Watzlawik JO, Fiesel FC and
Springer W: Autophagy in Parkinson's disease. J Mol Biol.
432:2651–2672. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Goh SY, Chao YX, Dheen ST, Tan EK and Tay
SS: Role of MicroRNAs in Parkinson's disease. Int J Mol Sci.
20:56492019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Das T, Das TK, Khodarkovskaya A and Dash
S: Non-coding RNAs and their bioengineering applications for
neurological diseases. Bioengineered. 12:11675–11698. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Shamsuzzama, Kumar L and Nazir A:
Modulation of alpha-synuclein expression and associated effects by
MicroRNA Let-7 in transgenic C. elegans. Front Mol Neurosci.
10:3282017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Dong X, He X, Yang L, Li Q and Xu Y:
Inhibition of miR-421 preserves mitochondrial function and protects
against parkinson's disease pathogenesis via Pink1/Parkin-dependent
mitophagy. Dis Markers. 2022:51862522022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Galluzzi L, Baehrecke EH, Ballabio A, Boya
P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P,
Colombo MI, et al: Molecular definitions of autophagy and related
processes. EMBO J. 36:1811–1836. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Malpartida AB, Williamson M, Narendra DP,
Wade-Martins R and Ryan BJ: Mitochondrial dysfunction and mitophagy
in Parkinson's disease: From mechanism to therapy. Trends Biochem
Sci. 46:329–343. 2021. View Article : Google Scholar
|
|
15
|
Lystad AH, Carlsson SR and Simonsen A:
Toward the function of mammalian ATG12-ATG5-ATG16L1 complex in
autophagy and related processes. Autophagy. 15:1485–1486. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang X, Wang L, Ireland SC, Ahat E, Li J,
Bekier ME II, Zhang Z and Wang Y: GORASP2/GRASP55 collaborates with
the PtdIns3K UVRAG complex to facilitate autophagosome-lysosome
fusion. Autophagy. 15:1787–1800. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhu Z, Yang C, Iyaswamy A, Krishnamoorthi
S, Sreenivasmurthy SG, Liu J, Wang Z, Tong BC, Song J, Lu J, et al:
Balancing mTOR signaling and autophagy in the treatment of
Parkinson's disease. Int J Mol Sci. 20:7282019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang Z, Sun X, Wang K, Yu Y, Zhang L,
Zhang K, Gu J, Yuan X and Song G: Hydrogen-saturated saline
mediated neuroprotection through autophagy via PI3K/AKT/mTOR
pathway in early and medium stages of rotenone-induced Parkinson's
disease rats. Brain Res Bull. 172:1–13. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mao K and Klionsky DJ: AMPK activates
autophagy by phosphorylating ULK1. Circ Res. 108:787–788. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang S, Gui XH, Huang LP, Deng MZ, Fang
RM, Ke XH, He YP, Li L and Fang YQ: Neuroprotective effects of
β-asarone against 6-hydroxy dopamine-induced parkinsonism via
JNK/Bcl-2/beclin-1 pathway. Mol Neurobiol. 53:83–94. 2016.
View Article : Google Scholar
|
|
21
|
Ba RQ, Liu J, Fan XJ, Jin GL, Huang BG,
Liu MW and Yang JS: Effects of miR-199a on autophagy by targeting
glycogen synthase kinase 3β to activate PTEN/AKT/mTOR signaling in
an MPP+ in vitro model of Parkinson's disease. Neurol
Res. 42:308–318. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Clark EH, Vázquez de la Torre A, Hoshikawa
T and Briston T: Targeting mitophagy in Parkinson's disease. J Biol
Chem. 296:1002092021. View Article : Google Scholar :
|
|
23
|
Qiao CM, Sun MF, Jia XB, Shi Y, Zhang BP,
Zhou ZL, Zhao LP, Cui C and Shen YQ: Sodium butyrate causes
α-synuclein degradation by an Atg5-dependent and
PI3K/Akt/mTOR-related autophagy pathway. Exp Cell Res.
387:1117722020. View Article : Google Scholar
|
|
24
|
Tan Y, Yin L, Sun Z, Shao S, Chen W, Man
X, Du Y and Chen Y: Astragalus polysaccharide exerts anti-Parkinson
via activating the PI3K/AKT/mTOR pathway to increase cellular
autophagy level in vitro. Int J Biol Macromol. 153:349–356. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang XW, Yuan LJ, Yang Y, Zhang M and Chen
WF: IGF-1 inhibits MPTP/MPP+-induced autophagy on
dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and
GPER. Am J Physiol Endocrinol Metab. 319:E734–E743. 2020.
View Article : Google Scholar
|
|
26
|
Zhu J, Xia R, Liu Z, Shen J, Gong X, Hu Y,
Chen H, Yu Y, Gao W, Wang C and Wang SL: Fenvalerate triggers
Parkinson-like symptom during zebrafish development through
initiation of autophagy and p38 MAPK/mTOR signaling pathway.
Chemosphere. 243:1253362020. View Article : Google Scholar
|
|
27
|
Zhang Y, Wu Q, Zhang L, Wang Q, Yang Z,
Liu J and Feng L: Caffeic acid reduces A53T α-synuclein by
activating JNK/Bcl-2-mediated autophagy in vitro and improves
behaviour and protects dopaminergic neurons in a mouse model of
Parkinson's disease. Pharmacol Res. 150:1045382019. View Article : Google Scholar
|
|
28
|
Wan J, Gao Y, Tan J, Yi S, Huang K, Liu Y,
Chang D, Xie J, Chen S and Wu H: Mitochonic acid 5 ameliorates the
motor deficits in the MPTP-induced mouse Parkinson's disease model
by AMPK-mediated autophagy. Folia Neuropathol. 60:329–337. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Parekh P, Sharma N, Sharma M, Gadepalli A,
Sayyed AA, Chatterjee S, Kate A and Khairnar A: AMPK-dependent
autophagy activation and alpha-synuclein clearance: A putative
mechanism behind alpha-mangostin's neuroprotection in a
rotenone-induced mouse model of Parkinson's disease. Metab Brain
Dis. 37:2853–2870. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhou L and Cheng Y: Alpha-lipoic acid
alleviated 6-OHDA-induced cell damage by inhibiting AMPK/mTOR
mediated autophagy. Neuropharmacology. 155:98–103. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chen P, Wang Y, Chen L, Song N and Xie J:
Apelin-13 protects dopaminergic neurons against rotenone-induced
neurotoxicity through the AMPK/mTOR/ULK-1 mediated autophagy
activation. Int J Mol Sci. 21:83762020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang M, Deng YN, Zhang JY, Liu J, Li YB,
Su H and Qu QM: SIRT3 protects rotenone-induced injury in SH-SY5Y
cells by promoting autophagy through the LKB1-AMPK-mTOR pathway.
Aging Dis. 9:273–286. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Agarwal S and Muqit MMK: PTEN-induced
kinase 1 (PINK1) and Parkin: Unlocking a mitochondrial quality
control pathway linked to Parkinson's disease. Curr Opin Neurobiol.
72:111–119. 2022. View Article : Google Scholar
|
|
34
|
Li R and Chen J: Salidroside protects
dopaminergic neurons by enhancing PINK1/parkin-mediated mitophagy.
Oxid Med Cell Longev. 2019:93410182019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xu J, Wang L, Zhang L, Zheng F, Wang F,
Leng J, Wang K, Héroux P, Shen HM, Wu Y and Xia D:
Mono-2-ethylhexyl phthalate drives progression of
PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to
exacerbate cytotoxicity. Redox Biol. 38:1017762021. View Article : Google Scholar
|
|
36
|
Chen J, Ren Y, Gui C, Zhao M, Wu X, Mao K,
Li W and Zou F: Phosphorylation of Parkin at serine 131 by p38 MAPK
promotes mitochondrial dysfunction and neuronal death in mutant
A53T α-synuclein model of Parkinson's disease. Cell Death Dis.
9:7002018. View Article : Google Scholar
|
|
37
|
Chen C, Chen Y, Liu T, Song D, Ma D and
Cheng O: Dexmedetomidine can enhance PINK1/parkin-mediated
mitophagy in MPTP-induced PD mice model by activating AMPK. Oxid
Med Cell Longev. 2022:75113932022.PubMed/NCBI
|
|
38
|
Bekker M, Abrahams S, Loos B and Bardien
S: Can the interplay between autophagy and apoptosis be targeted as
a novel therapy for Parkinson's disease? Neurobiol Aging.
100:91–105. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Miller DR, Cramer SD and Thorburn A: The
interplay of autophagy and non-apoptotic cell death pathways. Int
Rev Cell Mol Biol. 352:159–187. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liao Z, Gong Z, Wang Z, Yang W, Liu W, Hou
L, Liu X, Hua J, Wang B and Li N: The degradation of TMEM166 by
autophagy promotes AMPK activation to protect SH-SY5Y cells exposed
to MPP. Cells. 11:27062022. View Article : Google Scholar
|
|
41
|
Anglade P, Vyas S, Javoy-Agid F, Herrero
MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC and
Agid Y: Apoptosis and autophagy in nigral neurons of patients with
Parkinson's disease. Histol Histopathol. 12:25–31. 1997.PubMed/NCBI
|
|
42
|
Tanji K, Mori F, Kakita A, Takahashi H and
Wakabayashi K: Alteration of autophagosomal proteins (LC3, GABARAP
and GATE-16) in Lewy body disease. Neurobiol Dis. 43:690–697. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dehay B, Bové J, Rodriguez-Muela N, Perier
C, Recasens A, Boya P and Vila M: Pathogenic lysosomal depletion in
Parkinson's disease. J Neurosci. 30:12535–12544. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Alvarez-Erviti L, Rodriguez-Oroz MC,
Cooper JM, Caballero C, Ferrer I, Obeso JA and Schapira AH:
Chaperone-mediated autophagy markers in Parkinson disease brains.
Arch Neurol. 67:1464–1472. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hou X, Fiesel FC, Truban D, Castanedes
Casey M, Lin WL, Soto AI, Tacik P, Rousseau LG, Diehl NN, Heckman
MG, et al: Age- and disease-dependent increase of the mitophagy
marker phospho-ubiquitin in normal aging and Lewy body disease.
Autophagy. 14:1404–1418. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tu HY, Gu YQ, Li X, Pei SF, Hu LF and Wang
YL: Expression of autophagy related genes in peripheral blood cells
in Parkinson's disease. Neurosci Lett. 762:1361662021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sepúlveda D, Grunenwald F, Vidal A,
Troncoso-Escudero P, Cisternas-Olmedo M, Villagra R, Vergara P,
Aguilera C, Nassif M and Vidal RL: Insulin-like growth factor 2 and
autophagy gene expression alteration arise as potential biomarkers
in Parkinson's disease. Sci Rep. 12:20382022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li Y, Yin Q, Wang B, Shen T, Luo W and Liu
T: Preclinical reserpine models recapitulating motor and non-motor
features of Parkinson's disease: Roles of epigenetic upregulation
of alpha-synuclein and autophagy impairment. Front Pharmacol.
13:9443762022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gao J, Perera G, Bhadbhade M, Halliday GM
and Dzamko N: Autophagy activation promotes clearance of
α-synuclein inclusions in fibril-seeded human neural cells. J Biol
Chem. 294:14241–14256. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tang Q, Gao P, Arzberger T, Höllerhage M,
Herms J, Höglinger G and Koeglsperger T: Alpha-synuclein defects
autophagy by impairing SNAP29-mediated autophagosome-lysosome
fusion. Cell Death Dis. 12:8542021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nascimento AC, Erustes AG, Reckziegel P,
Bincoletto C, Ureshino RP, Pereira GJS and Smaili SS: α-Synuclein
overexpression induces lysosomal dysfunction and autophagy
impairment in human neuroblastoma SH-SY5Y. Neurochem Res.
45:2749–2761. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Shaltouki A, Hsieh CH, Kim MJ and Wang X:
Alpha-synuclein delays mitophagy and targeting Miro rescues neuron
loss in Parkinson's models. Acta Neuropathol. 136:607–620. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Portz P and Lee MK: Changes in Drp1
function and mitochondrial morphology are associated with the
α-synuclein pathology in a transgenic mouse model of Parkinson's
disease. Cells. 10:8852021. View Article : Google Scholar
|
|
54
|
Wauters F, Cornelissen T, Imberechts D,
Martin S, Koentjoro B, Sue C, Vangheluwe P and Vandenberghe W:
LRRK2 mutations impair depolarization-induced mitophagy through
inhibition of mitochondrial accumulation of RAB10. Autophagy.
16:203–222. 2020. View Article : Google Scholar :
|
|
55
|
Albanese F, Domenicale C, Volta M and
Morari M: Modeling Parkinson's disease in LRRK2 mice: Focus on
synaptic dysfunction and the autophagy-lysosomal pathway. Biochem
Soc Trans. 50:621–632. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Michiorri S, Gelmetti V, Giarda E,
Lombardi F, Romano F, Marongiu R, Nerini-Molteni S, Sale P, Vago R,
Arena G, et al: The Parkinson-associated protein PINK1 interacts
with Beclin1 and promotes autophagy. Cell Death Differ. 17:962–974.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Narendra D, Tanaka A, Suen DF and Youle
RJ: Parkin is recruited selectively to impaired mitochondria and
promotes their autophagy. J Cell Biol. 183:795–803. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Navarro-Romero A, Fernandez-Gonzalez I,
Riera J, Montpeyo M, Albert-Bayo M, Lopez-Royo T, Castillo-Sanchez
P, Carnicer-Caceres C, Arranz-Amo JA, Castillo-Ribelles L, et al:
Lysosomal lipid alterations caused by glucocerebrosidase deficiency
promote lysosomal dysfunction, chaperone-mediated-autophagy
deficiency, and alpha-synuclein pathology. NPJ Parkinsons Dis.
8:1262022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nash Y, Schmukler E, Trudler D,
Pinkas-Kramarski R and Frenkel D: DJ-1 deficiency impairs autophagy
and reduces alpha-synuclein phagocytosis by microglia. J Neurochem.
143:584–594. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tu HY, Yuan BS, Hou XO, Zhang XJ, Pei CS,
Ma YT, Yang YP, Fan Y, Qin ZH, Liu CF and Hu LF: α-Synuclein
suppresses microglial autophagy and promotes neurodegeneration in a
mouse model of Parkinson's disease. Aging Cell. 20:e135222021.
View Article : Google Scholar
|
|
61
|
Qin Y, Qiu J, Wang P, Liu J, Zhao Y, Jiang
F and Lou H: Impaired autophagy in microglia aggravates
dopaminergic neurodegeneration by regulating NLRP3 inflammasome
activation in experimental models of Parkinson's disease. Brain
Behav Immun. 91:324–338. 2021. View Article : Google Scholar
|
|
62
|
Zhao M, Chen J, Mao K, She H, Ren Y, Gui
C, Wu X, Zou F and Li W: Mitochondrial calcium dysfunction
contributes to autophagic cell death induced by MPP+ via
AMPK pathway. Biochem Biophys Res Commun. 509:390–394. 2019.
View Article : Google Scholar
|
|
63
|
Niranjan R, Mishra KP and Thakur AK:
Inhibition of cyclooxygenase-2 (COX-2) initiates autophagy and
potentiates MPTP-induced autophagic cell death of human
neuroblastoma cells, SH-SY5Y: An INSIDE IN THE PATHOlogy of
Parkinson's disease. Mol Neurobiol. 55:8038–8050. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jang HJ and Chung KC: The
ubiquitin-proteasome system and autophagy mutually interact in
neurotoxin-induced dopaminergic cell death models of Parkinson's
disease. FEBS Lett. 596:2898–2913. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Choi I, Woo JH, Jou I and Joe EH: PINK1
Deficiency decreases expression levels of mir-326, mir-330, and
mir-3099 during brain development and neural stem cell
differentiation. Exp Neurobiol. 25:14–23. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhao XH, Wang YB, Yang J, Liu HQ and Wang
LL: MicroRNA-326 suppresses iNOS expression and promotes autophagy
of dopaminergic neurons through the JNK signaling by targeting XBP1
in a mouse model of Parkinson's disease. J Cell Biochem.
120:14995–15006. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Sarkar A, Shamsuzzama, Kumar L, Hameed R
and Nazir A: Multiple checkpoints of protein clearance machinery
are modulated by a common microRNA, miR-4813-3p through its
putative target genes: Studies employing transgenic C. elegans
model. Biochim Biophys Acta Mol Cell Res. 1869:1193422022.
View Article : Google Scholar
|
|
68
|
Bai X, Dong Q, Zhao L, Yao Y and Wang B:
microRNA-106b-containing extracellular vesicles affect autophagy of
neurons by regulating CDKN2B in Parkinson's disease. Neurosci Lett.
760:1360942021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sun S, Han X, Li X, Song Q, Lu M, Jia M,
Ding J and Hu G: MicroRNA-212-5p prevents dopaminergic neuron death
by inhibiting SIRT2 in MPTP-induced mouse model of Parkinson's
disease. Front Mol Neurosci. 11:3812018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang H, Ye Y, Zhu Z, Mo L, Lin C, Wang Q,
Wang H, Gong X, He X, Lu G, et al: MiR-124 regulates apoptosis and
autophagy process in MPTP model of Parkinson's disease by targeting
to bim. Brain Pathol. 26:167–176. 2016. View Article : Google Scholar
|
|
71
|
Yao L, Zhu Z, Wu J, Zhang Y, Zhang H, Sun
X, Qian C, Wang B, Xie L, Zhang S and Lu G: MicroRNA-124 regulates
the expression of p62/p38 and promotes autophagy in the
inflammatory pathogenesis of Parkinson's disease. FASEB J.
33:8648–8665. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chen J, Jiang C, Du J and Xie CL:
MiR-142-5p protects against 6-OHDA-induced SH-SY5Y cell injury by
downregulating BECN1 and autophagy. Dose Response.
18:15593258209070162020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li W, Jiang Y, Wang Y, Yang S, Bi X, Pan
X, Ma A and Li W: MiR-181b regulates autophagy in a model of
Parkinson's disease by targeting the PTEN/Akt/mTOR signaling
pathway. Neurosci Lett. 675:83–88. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Qin Y, Huang J, Zhao X and Chen C:
MiR-135a-5p and Mst1 regulate MPP + -1 induced apoptosis and
autophagy in Parkinson's disease model in vitro. Cell Signal.
94:1103282022. View Article : Google Scholar
|
|
75
|
Wen Z, Zhang J, Tang P, Tu N, Wang K and
Wu G: Overexpression of miR-185 inhibits autophagy and apoptosis of
dopaminergic neurons by regulating the AMPK/mTOR signaling pathway
in Parkinson's disease. Mol Med Rep. 17:131–137. 2018.
|
|
76
|
Liu Y, Song Y and Zhu X: MicroRNA-181a
regulates apoptosis and autophagy process in Parkinson's disease by
inhibiting p38 mitogen-activated protein kinase (MAPK)/c-Jun
N-terminal kinases (JNK) signaling pathways. Med Sci Monit.
23:1597–1606. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wong AS, Lee RH, Cheung AY, Yeung PK,
Chung SK, Cheung ZH and Ip NY: Cdk5-mediated phosphorylation of
endophilin B1 is required for induced autophagy in models of
Parkinson's disease. Nat Cell Biol. 13:568–579. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li G, Luo W, Wang B, Qian C, Ye Y, Li Y
and Zhang S: HMGA1 induction of miR-103/107 forms a negative
feedback loop to regulate autophagy in MPTP model of Parkinson's
disease. Front Cell Neurosci. 14:6200202021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li Q, Wang Z, Xing H, Wang Y and Guo Y:
Exosomes derived from miR-188-3p-modified adipose-derived
mesenchymal stem cells protect Parkinson's disease. Mol Ther
Nucleic Acids. 23:1334–1344. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang R, Li Q, He Y, Yang Y, Ma Q and Li C:
miR-29c-3p inhibits microglial NLRP3 inflammasome activation by
targeting NFAT5 in Parkinson's disease. Genes Cells. 25:364–374.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang R, Yao J, Gong F, Chen S, He Y, Hu C
and Li C: miR-29c-3p regulates TET2 expression and inhibits
autophagy process in Parkinson's disease models. Genes Cells.
26:684–697. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Gong X, Wang H, Ye Y, Shu Y, Deng Y, He X,
Lu G and Zhang S: miR-124 regulates cell apoptosis and autophagy in
dopaminergic neurons and protects them by regulating AMPK/mTOR
pathway in Parkinson's disease. Am J Transl Res. 8:2127–2137.
2016.PubMed/NCBI
|
|
83
|
Lanford RE, Hildebrandt-Eriksen ES, Petri
A, Persson R, Lindow M, Munk ME, Kauppinen S and Ørum H:
Therapeutic silencing of microRNA-122 in primates with chronic
hepatitis C virus infection. Science. 327:198–201. 2010. View Article : Google Scholar
|
|
84
|
Chiu CC, Yeh TH, Chen RS, Chen HC, Huang
YZ, Weng YH, Cheng YC, Liu YC, Cheng AJ, Lu YC, et al: Upregulated
expression of MicroRNA-204-5p leads to the death of dopaminergic
cells by targeting DYRK1A-mediated apoptotic signaling cascade.
Front Cell Neurosci. 13:3992019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang L, Chen X, Chang M and Jiao B:
MiR-30c-5p/ATG5 axis regulates the progression of Parkinson's
disease. Front Cell Neurosci. 15:6445072021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhu W, Zhang H, Gao J and Xu Y: Silencing
of miR-497-5p inhibits cell apoptosis and promotes autophagy in
Parkinson's disease by upregulation of FGF2. Environ Toxicol.
36:2302–2312. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang HY, Wang ZG, Wu FZ, Kong XX, Yang J,
Lin BB, Zhu SP, Lin L, Gan CS, Fu XB, et al: Regulation of
autophagy and ubiquitinated protein accumulation by bFGF promotes
functional recovery and neural protection in a rat model of spinal
cord injury. Mol Neurobiol. 48:452–464. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lv Q, Zhong Z, Hu B, Yan S, Yan Y, Zhang
J, Shi T, Jiang L, Li W and Huang W: MicroRNA-3473b regulates the
expression of TREM2/ULK1 and inhibits autophagy in inflammatory
pathogenesis of Parkinson disease. J Neurochem. 157:599–610. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Zhou T, Lin D, Chen Y, Peng S, Jing X, Lei
M, Tao E and Liang Y: α-Synuclein accumulation in SH-SY5Y cell
impairs autophagy in microglia by exosomes overloading miR-19a-3p.
Epigenomics. 11:1661–1677. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kim J, Fiesel FC, Belmonte KC, Hudec R,
Wang WX, Kim C, Nelson PT, Springer W and Kim J: miR-27a and
miR-27b regulate autophagic clearance of damaged mitochondria by
targeting PTEN-induced putative kinase 1 (PINK1). Mol Neurodegener.
11:552016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Jauhari A, Singh T, Mishra S, Shankar J
and Yadav S: Coordinated action of miR-146a and parkin gene
regulate rotenone-induced neurodegeneration. Toxicol Sci.
176:433–445. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhou J, Zhao Y, Li Z, Zhu M, Wang Z, Li Y,
Xu T, Feng D, Zhang S, Tang F and Yao J: miR-103a-3p regulates
mitophagy in Parkinson's disease through Parkin/Ambra1 signaling.
Pharmacol Res. 160:1051972020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Li G, Yang H, Zhu D, Huang H, Liu G and
Lun P: Targeted suppression of chaperone-mediated autophagy by
miR-320a promotes α-synuclein aggregation. Int J Mol Sci.
15:15845–15857. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kim J, Inoue K, Ishii J, Vanti WB, Voronov
SV, Murchison E, Hannon G and Abeliovich A: A MicroRNA feedback
circuit in midbrain dopamine neurons. Science. 317:1220–1224. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhao J, Yang M, Li Q, Pei X and Zhu X:
miR-132-5p regulates apoptosis and autophagy in MPTP model of
Parkinson's disease by targeting ULK1. Neuroreport. 31:959–965.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li P, Zhong X, Li J, Liu H, Ma X, He R and
Zhao Y: MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated
endothelial cell pyroptosis through FOXO3 down-regulation in
atherosclerosis. Biochem Biophys Res Commun. 503:2833–2840. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhang C, Yu S, Zheng B, Liu D, Wan F, Ma
Y, Wang J, Gao Z and Shan Z: miR-30c-5p reduces renal
ischemia-reperfusion involving macrophage. Med Sci Monit.
25:4362–4369. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhou L, Yang L, Li YJ, Mei R, Yu HL, Gong
Y, Du MY and Wang F: MicroRNA-128 protects dopamine neurons from
apoptosis and upregulates the expression of excitatory amino acid
transporter 4 in Parkinson's disease by binding to AXIN1. Cell
Physiol Biochem. 51:2275–2289. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Decressac M, Mattsson B, Weikop P,
Lundblad M, Jakobsson J and Björklund A: TFEB-mediated autophagy
rescues midbrain dopamine neurons from α-synuclein toxicity. Proc
Natl Acad Sci USA. 110:E1817–E1826. 2013. View Article : Google Scholar
|
|
100
|
Zhao Y, Xie Y, Yao WY, Wang YY and Song N:
Long non-coding RNA Opa interacting protein 5-antisense RNA 1
promotes mitochondrial autophagy and protects SH-SY5Y cells from
1-methyl-4-phenylpyridine-induced damage by binding to microRNA-137
and upregulating NIX. Kaohsiung J Med Sci. 38:207–217. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Feng Z, Zhang L, Wang S and Hong Q:
Circular RNA circDLGAP4 exerts neuroprotective effects via
modulating miR-134-5p/CREB pathway in Parkinson's disease. Biochem
Biophys Res Commun. 522:388–394. 2020. View Article : Google Scholar
|
|
102
|
Qian C, Ye Y, Mao H, Yao L, Sun X, Wang B,
Zhang H, Xie L, Zhang H, Zhang Y, et al: Downregulated lncRNA-SNHG1
enhances autophagy and prevents cell death through the
miR-221/222/p27/mTOR pathway in Parkinson's disease. Exp Cell Res.
384:1116142019. View Article : Google Scholar
|
|
103
|
Zhuang Z, Zhang L and Liu C: SNHG14
upregulation was a molecular mechanism underlying MPP+
neurotoxicity in dopaminergic SK-N-SH cells via
SNHG14-miR-519a-3p-ATG10 ceRNA pathway. Neurotox Res. 40:553–563.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Fan Y, Zhao X, Lu K and Cheng G: LncRNA
BDNF-AS promotes autophagy and apoptosis in MPTP-induced
Parkinson's disease via ablating microRNA-125b-5p. Brain Res Bull.
157:119–127. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Dong L, Zheng Y and Luo X: lncRNA NEAT1
promotes autophagy of neurons in mice by impairing miR-107-5p.
Bioengineered. 13:12261–12274. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Dong LI, Zheng Y, Gao L and Luo X: lncRNA
NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson's
disease by impairing miR-374c-5p. Acta Biochim Biophys Sin
(Shanghai). 53:870–882. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zhao J, Li H and Chang N: LncRNA HOTAIR
promotes MPP+-induced neuronal injury in Parkinson's disease by
regulating the miR-874-5p/ATG10 axis. EXCLI J. 19:1141–1153.
2020.PubMed/NCBI
|
|
108
|
Lang Y, Li Y, Yu H, Lin L, Chen X, Wang S
and Zhang H: HOTAIR drives autophagy in midbrain dopaminergic
neurons in the substantia nigra compacta in a mouse model of
Parkinson's disease by elevating NPTX2 via miR-221-3p binding.
Aging (Albany NY). 12:7660–7678. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang W, Lv R, Zhang J and Liu Y:
circSAMD4A participates in the apoptosis and autophagy of
dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway
in Parkinson's disease. Mol Med Rep. 24:5402021. View Article : Google Scholar :
|
|
110
|
Motawi TK, Al-Kady RH, Abdelraouf SM and
Senousy MA: Empagliflozin alleviates endoplasmic reticulum stress
and augments autophagy in rotenone-induced Parkinson's disease in
rats: Targeting the GRP78/PERK/eIF2α/CHOP pathway and miR-211-5p.
Chem Biol Interact. 362:1100022022. View Article : Google Scholar
|
|
111
|
Wang DX, Yang Y, Huang XS, Tang JY, Zhang
X, Huang HX, Zhou B, Liu B, Xiao HQ, Li XH, et al: Pramipexole
attenuates neuronal injury in Parkinson's disease by targeting
miR-96 to activate BNIP3-mediated mitophagy. Neurochem Int.
146:1049722021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sang Q, Liu X, Wang L, Qi L, Sun W, Wang
W, Sun Y and Zhang H: CircSNCA downregulation by pramipexole
treatment mediates cell apoptosis and autophagy in Parkinson's
disease by targeting miR-7. Aging (Albany NY). 10:1281–1293.
2018.
|
|
113
|
Chen M, Peng L, Gong P, Zheng X, Sun T,
Zhang X and Huo J: Baicalein mediates mitochondrial autophagy via
miR-30b and the NIX/BNIP3 signaling pathway in Parkinson's disease.
Biochem Res Int. 2021:23194122021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chen M, Peng L, Gong P, Zheng X, Sun T,
Zhang X and Huo J: Baicalein induces mitochondrial autophagy to
prevent Parkinson's disease in rats via miR-30b and the
SIRT1/AMPK/mTOR pathway. Front Neurol. 12:6468172022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kang C, Wang L, Kang M, Liu X, Fu Y and
Gao J: Baicalin alleviates 6-hydroxydopamine-induced neurotoxicity
in PC12 cells by down-regulation of microRNA-192-5p. Brain Res.
1708:84–92. 2019. View Article : Google Scholar
|