Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2023 Volume 52 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2023 Volume 52 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review)

  • Authors:
    • Li-Hua Shao
    • Li Zhu
    • Meng Wang
    • Yue Ning
    • Feng-Qin Chen
    • Xia-Qing Gao
    • Chun-Ting Yang
    • Hong-Wei Wang
    • Hai-Long Li
  • View Affiliations / Copyright

    Affiliations: Department of Internal Medicine, First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China, Emergency Department, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China, Department of Internal Medicine, First School of Clinical Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, P.R. China, Department of Clinical Laboratory, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730050, P.R. China
    Copyright: © Shao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 69
    |
    Published online on: June 29, 2023
       https://doi.org/10.3892/ijmm.2023.5272
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tumor multidrug resistance (MDR) remains one of the most challenging barriers to successful cancer treatment. Several previous studies have suggested that high mobility group box 1 (HMGB1) may be a promising therapeutic target for overcoming cancer drug resistance. Emerging evidence has indicated that HMGB1 functions as a ‘double‑edged sword’ that plays both pro‑ and anti‑tumor roles in the development and progression of multiple types of cancer. HMGB1 has also been found to be a key regulator of several cell death and signaling pathways, and is involved in MDR by mediating cell autophagy and apoptosis, ferroptosis, pyroptosis and multiple signaling pathways. Additionally, HMGB1 is regulated by a variety of non‑coding RNAs (ncRNAs), such as microRNAs, long ncRNAs and circular RNAs that are involved in MDR. Thus far, studies have been conducted to identify strategies with which to overcome HMGB1‑mediated MDR by the targeted silencing of HMGB1 and the targeted interference of HMGB1 expression using drugs and ncRNAs. Therefore, HMGB1 is closely associated with tumor MDR and is a promising therapeutic target.
View Figures

Figure 1

View References

1 

Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A and Levine H: Hybrid Epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther. 194:161–184. 2019. View Article : Google Scholar

2 

Phan TG and Croucher PI: The dormant cancer cell life cycle. Nat Rev Cancer. 20:398–411. 2020. View Article : Google Scholar : PubMed/NCBI

3 

Jenkins RW, Barbie DA and Flaherty KT: Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 118:9–16. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Lopez JS and Banerji U: Combine and conquer: Challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 14:57–66. 2017. View Article : Google Scholar

5 

Wilczyński JR, Wilczyński M and Paradowska E: Cancer stem cells in ovarian cancer-a source of tumor success and a challenging target for novel therapies. Int J Mol Sci. 23:24962022. View Article : Google Scholar

6 

Vasan N, Baselga J and Hyman DM: A view on drug resistance in cancer. Nature. 575:299–309. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A, Machuqueiro M, Saponara S, Sarmento-Ribeiro AB, Xavier CPR and Vasconcelos MH: The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist Updat. 46:1006452019. View Article : Google Scholar : PubMed/NCBI

8 

Schoenfeld AJ and Hellmann MD: Acquired resistance to immune checkpoint inhibitors. Cancer Cell. 37:443–455. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Aleksakhina SN, Kashyap A and Imyanitov EN: Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer. 1872:1883102019. View Article : Google Scholar : PubMed/NCBI

10 

Xie Y, Feng SL, He F, Yan PY, Yao XJ, Fan XX, Leung EL and Zhou H: Down-regulating Nrf2 by tangeretin reverses multiple drug resistance to both chemotherapy and EGFR tyrosine kinase inhibitors in lung cancer. Pharmacol Res. 186:1065142022. View Article : Google Scholar : PubMed/NCBI

11 

Makena MR, Ranjan A, Thirumala V and Reddy AP: Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochim Biophys Acta Mol Basis Dis. 1866:1653392020. View Article : Google Scholar

12 

Erin N, Grahovac J, Brozovic A and Efferth T: Tumor micro-environment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist Updat. 53:1007152020. View Article : Google Scholar

13 

Gourley C, Balmaña J, Ledermann JA, Serra V, Dent R, Loibl S, Pujade-Lauraine E and Boulton SJ: Moving from poly (ADP-Ribose) polymerase inhibition to targeting DNA repair and DNA damage response in cancer therapy. J Clin Oncol. 37:2257–2269. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Sundar R, Huang KK, Kumar V, Ramnarayanan K, Demircioglu D, Her Z, Ong X, Bin Adam Isa ZF, Xing M, Tan AL, et al: Epigenetic promoter alterations in GI tumour immune-editing and resistance to immune checkpoint inhibition. Gut. 71:1277–1288. 2022. View Article : Google Scholar

15 

Carneiro BA and El-Deiry WS: Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Kumar A and Jaitak V: Natural products as multidrug resistance modulators in cancer. Eur J Med Chem. 176:268–291. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Lai JI, Tseng YJ, Chen MH, Huang CF and Chang PM: Clinical perspective of FDA approved drugs with P-Glycoprotein inhibition activities for potential cancer therapeutics. Front Oncol. 10:5619362020. View Article : Google Scholar : PubMed/NCBI

18 

Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE and Gottesman MM: Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 18:452–464. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Chen Y, Zhang J, Zhang M, Song Y, Zhang Y, Fan S, Ren S, Fu L, Zhang N, Hui H, et al: Baicalein resensitizes tamoxifen-resistant breast cancer cells by reducing aerobic glycolysis and reversing mitochondrial dysfunction via inhibition of hypoxia-inducible factor-1α. Clin Transl Med. 11:e5772021. View Article : Google Scholar

20 

Zhai K, Mazurakova A, Koklesova L, Kubatka P and Büsselberg D: Flavonoids synergistically enhance the anti-glioblastoma effects of chemotherapeutic drugs. Biomolecules. 11:18412021. View Article : Google Scholar : PubMed/NCBI

21 

He XL, Xu XH, Shi JJ, Huang M, Wang Y, Chen X and Lu JJ: Anticancer effects of ginsenoside Rh2: A systematic review. Curr Mol Pharmacol. 15:179–189. 2022.

22 

Wang Y, Xu J, Wang Y, Xiang L and He X: S-20, a steroidal saponin from the berries of black nightshade, exerts anti-multidrug resistance activity in K562/ADR cells through autophagic cell death and ERK activation. Food Funct. 13:2200–2215. 2022. View Article : Google Scholar : PubMed/NCBI

23 

Tilaoui M, Ait Mouse H and Zyad A: Update and new insights on future cancer drug candidates from plant-based alkaloids. Front Pharmacol. 12:7196942021. View Article : Google Scholar :

24 

Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M, Mihanfar A, Karimian A, Safa A and Yousefi B: Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life. 72:855–871. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Guo X, He D, Zhang E, Chen J, Chen Q, Li Y, Yang L, Yang Y, Zhao Y, Wang G, et al: HMGB1 knockdown increases MM cell vulnerability by regulating autophagy and DNA damage repair. J Exp Clin Cancer Res. 37:2052018. View Article : Google Scholar : PubMed/NCBI

26 

Borde C, Dillard C, L'Honoré A, Quignon F, Hamon M, Marchand CH, Faccion RS, Costa MGS, Pramil E, Larsen AK, et al: The C-terminal acidic tail modulates the anti-cancer properties of HMGB1. Int J Mol Sci. 23:78652022. View Article : Google Scholar

27 

Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U and Kayed R: Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep. 36:1094192021. View Article : Google Scholar : PubMed/NCBI

28 

Stros M: HMGB proteins: Interactions with DNA and chromatin. Biochim Biophys Acta. 1799:101–113. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Wen B, Wei YT and Zhao K: The role of high mobility group protein B3 (HMGB3) in tumor proliferation and drug resistance. Mol Cell Biochem. 476:1729–1739. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Voong CK, Goodrich JA and Kugel JF: Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules. 11:14512021. View Article : Google Scholar : PubMed/NCBI

31 

Catena R, Escoffier E, Caron C, Khochbin S, Martianov I and Davidson I: HMGB4, a novel member of the HMGB family, is preferentially expressed in the mouse testis and localizes to the basal pole of elongating spermatids. Biol Reprod. 80:358–366. 2009. View Article : Google Scholar

32 

Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, et al: Biological functions and theranostic potential of HMGB family members in human cancers. Ther Adv Med Oncol. 12:17588359209708502020. View Article : Google Scholar : PubMed/NCBI

33 

Taniguchi N, Kawakami Y, Maruyama I and Lotz M: HMGB proteins and arthritis. Hum Cell. 31:1–9. 2018. View Article : Google Scholar

34 

Bianchi ME, Crippa MP, Manfredi AA, Mezzapelle R, Rovere Querini P and Venereau E: High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol Rev. 280:74–82. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Cheng KJ, Alshawsh MA, Mejia Mohamed EH, Thavagnanam S, Sinniah A and Ibrahim ZA: HMGB1: An overview of its versatile roles in the pathogenesis of colorectal cancer. Cell Oncol (Dordr). 43:177–193. 2020. View Article : Google Scholar

36 

Liu L, Liu S, Luo H, Chen C, Zhang X, He L and Tu G: GPR30-mediated HMGB1 upregulation in CAFs induces autophagy and tamoxifen resistance in ERα-positive breast cancer cells. Aging. 13:16178–16197. 2021. View Article : Google Scholar

37 

Wei Y, Tang X, Ren Y, Yang Y, Song F, Fu J, Liu S, Yu M, Chen J, Wang S, et al: An RNA-RNA crosstalk network involving HMGB1 and RICTOR facilitates hepatocellular carcinoma tumorigenesis by promoting glutamine metabolism and impedes immunotherapy by PD-L1+ exosomes activity. Signal Transduct Target Ther. 6:4212021. View Article : Google Scholar : PubMed/NCBI

38 

Chai W, Ye F, Zeng L, Li Y and Yang L: HMGB1-mediated autophagy regulates sodium/iodide symporter protein degradation in thyroid cancer cells. J Exp Clin Cancer Res. 38:3252019. View Article : Google Scholar : PubMed/NCBI

39 

Zhao M, Zhang Y, Jiang Y, Wang K, Wang X, Zhou D, Wang Y, Yu R and Zhou X: YAP promotes autophagy and progression of gliomas via upregulating HMGB1. J Exp Clin Cancer Res. 40:992021. View Article : Google Scholar : PubMed/NCBI

40 

Hubert P, Roncarati P, Demoulin S, Pilard C, Ancion M, Reynders C, Lerho T, Bruyere D, Lebeau A, Radermecker C, et al: Extracellular HMGB1 blockade inhibits tumor growth through profoundly remodeling immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. J Immunother Cancer. 9:e0019662021. View Article : Google Scholar : PubMed/NCBI

41 

Zha C, Meng X, Li L, Mi S, Qian D, Li Z, Wu P, Hu S, Zhao S, Cai J and Liu Y: Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol Med. 17:154–168. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Chou YE, Yang PJ, Lin CY, Chen YY, Chiang WL, Lin PX, Huang ZY, Huang M, Ho YC and Yang SF: The Impact of HMGB1 Polymorphisms on Prostate Cancer Progression and Clinicopathological Characteristics. Int J Environ Res Public Health. 17:13322020. View Article : Google Scholar

43 

Wang JB, Li P, Liu XL, Zheng QL, Ma YB, Zhao YJ, Xie JW, Lin JX, Lu J, Chen QY, et al: An immune checkpoint score system for prognostic evaluation and adjuvant chemotherapy selection in gastric cancer. Nat Commun. 11:63522020. View Article : Google Scholar : PubMed/NCBI

44 

Kam NW, Wu KC, Dai W, Wang Y, Yan LYC, Shakya R, Khanna R, Qin Y, Law S, Lo AWI, et al: Peritumoral B cells drive proangiogenic responses in HMGB1-enriched esophageal squamous cell carcinoma. Angiogenesis. 25:181–203. 2022. View Article : Google Scholar

45 

Gong W, Zheng Y, Chao F, Li Y, Xu Z, Huang G, Gao X, Li S and He F: The anti-inflammatory activity of HMGB1 A box is enhanced when fused with C-terminal acidic tail. J Biomed Biotechnol. 2010:9152342010. View Article : Google Scholar : PubMed/NCBI

46 

Wang S and Zhang Y: HMGB1 in inflammation and cancer. J Hematol Oncol. 13:1162020. View Article : Google Scholar : PubMed/NCBI

47 

Huebener P, Gwak GY, Pradere JP, Quinzii CM, Friedman R, Lin CS, Trent CM, Mederacke I, Zhao E, Dapito DH, et al: High-mobility group box 1 is dispensable for autophagy, mitochondrial quality control, and organ function in vivo. Cell Metab. 19:539–547. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y and Anderson R: High mobility group Box 1 in human cancer. Cells. 9:16642020. View Article : Google Scholar : PubMed/NCBI

49 

Kang R, Zhang Q, Zeh HJ III, Lotze MT and Tang D: HMGB1 in cancer: Good, bad, or both? Clin Cancer Res. 19:4046–4057. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Amornsupak K, Thongchot S, Thinyakul C, Box C, Hedayat S, Thuwajit P, Eccles SA and Thuwajit C: HMGB1 mediates invasion and PD-L1 expression through RAGE-PI3K/AKT signaling pathway in MDA-MB-231 breast cancer cells. BMC Cancer. 22:5782022. View Article : Google Scholar : PubMed/NCBI

51 

Jiang J, Wang GZ, Wang Y, Huang HZ, Li WT and Qu XD: Hypoxia-induced HMGB1 expression of HCC promotes tumor invasiveness and metastasis via regulating macrophage-derived IL-6. Exp Cell Res. 367:81–88. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Hernandez C, Huebener P, Pradere JP, Antoine DJ, Friedman RA and Schwabe RF: HMGB1 links chronic liver injury to progenitor responses and hepatocarcinogenesis. J Clin Invest. 128:2436–2451. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Zhang H, Wang J, Li J, Zhou X, Yin L, Wang Y, Gu Y, Niu X, Yang Y, Ji H and Zhang Q: HMGB1 is a key factor for tamoxifen resistance and has the potential to predict the efficacy of CDK4/6 inhibitors in breast cancer. Cancer Sci. 112:1603–1613. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Tan G, Huang C, Chen J and Zhi F: HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. J Hematol Oncol. 13:1492020. View Article : Google Scholar : PubMed/NCBI

55 

Li Pomi F, Borgia F, Custurone P, Vaccaro M, Pioggia G and Gangemi S: Role of HMGB1 in Cutaneous Melanoma: State of the Art. Int J Mol Sci. 23:93272022. View Article : Google Scholar : PubMed/NCBI

56 

Gao Q, Wang S, Chen X, Cheng S, Zhang Z, Li F, Huang L, Yang Y, Zhou B, Yue D, et al: Cancer-cell-secreted CXCL11 promoted CD8+ T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC. J Immunother Cancer. 7:422019. View Article : Google Scholar

57 

Zhang X, Shi H, Yuan X, Jiang P, Qian H and Xu W: Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer. 17:1462018. View Article : Google Scholar : PubMed/NCBI

58 

Ye F, Chai W, Xie M, Yang M, Yu Y, Cao L and Yang L: HMGB1 regulates erastin-induced ferroptosis via RAS-JNK/p38 signaling in HL-60/NRAS(Q61L) cells. Am J Cancer Res. 9:730–739. 2019.PubMed/NCBI

59 

Liu Y, Yan W, Tohme S, Chen M, Fu Y, Tian D, Lotze M, Tang D and Tsung A: Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J Hepatol. 63:114–121. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Liang L, Fu J, Wang S, Cen H, Zhang L, Mandukhail SR, Du L, Wu Q, Zhang P and Yu X: MiR-142-3p enhances chemosensitivity of breast cancer cells and inhibits autophagy by targeting HMGB1. Acta Pharm Sin B. 10:1036–1046. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Chen Y, Cai L, Guo X, Li Z, Liao X, Zhang X, Huang L and He J: HMGB1-activated fibroblasts promote breast cancer cells metastasis via RAGE/aerobic glycolysis. Neoplasma. 68:71–78. 2021. View Article : Google Scholar

62 

Lee HJ, Kim A, Song IH, Park IA, Yu JH, Ahn JH and Gong G: Cytoplasmic expression of high mobility group B1 (HMGB1) is associated with tumor-infiltrating lymphocytes (TILs) in breast cancer. Pathol Int. 66:202–209. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Yuan S, Liu Z, Xu Z, Liu J and Zhang J: High mobility group box 1 (HMGB1): A pivotal regulator of hematopoietic malignancies. J Hematol Oncol. 13:912020. View Article : Google Scholar : PubMed/NCBI

64 

Yasinska IM, Gonçalves Silva I, Sakhnevych SS, Ruegg L, Hussain R, Siligardi G, Fiedler W, Wellbrock J, Bardelli M, Varani L, et al: High mobility group box 1 (HMGB1) acts as an 'alarmin' to promote acute myeloid leukaemia progression. Oncoimmunology. 7:e14381092018. View Article : Google Scholar

65 

Liu L, Zhang J, Zhang X, Cheng P, Liu L, Huang Q, Liu H, Ren S, Wei P, Wang C, et al: HMGB1: An important regulator of myeloid differentiation and acute myeloid leukemia as well as a promising therapeutic target. J Mol Med (Berl). 99:107–118. 2021. View Article : Google Scholar

66 

Zhao M, Yang M, Yang L, Yu Y, Xie M, Zhu S, Kang R, Tang D, Jiang Z, Yuan W, et al: HMGB1 regulates autophagy through increasing transcriptional activities of JNK and ERK in human myeloid leukemia cells. BMB Rep. 44:601–606. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Ding C, Yu H, Shi C, Shi T, Qin H and Cui Y: MiR-let-7e inhibits invasion and magration and regulates HMGB1 expression in papillary thyroid carcinoma. Biomed Pharmacother. 110:528–536. 2019. View Article : Google Scholar

68 

Wang CQ, Huang BF, Wang Y, Tang CH, Jin HC, Shao F, Shao JK, Wang Q and Zeng Y: Subcellular localization of HMGB1 in colorectal cancer impacts on tumor grade and survival prognosis. Sci Rep. 10:185872020. View Article : Google Scholar : PubMed/NCBI

69 

Qian F, Xiao J, Gai L and Zhu J: HMGB1-RAGE signaling facilitates Ras-dependent Yap1 expression to drive colorectal cancer stemness and development. Mol Carcinog. 58:500–510. 2019. View Article : Google Scholar

70 

Zhang JL, Zheng HF, Li K and Zhu YP: miR-495-3p depresses cell proliferation and migration by downregulating HMGB1 in colorectal cancer. World J Surg Oncol. 20:1012022. View Article : Google Scholar : PubMed/NCBI

71 

Wu X, Wang W, Chen Y, Liu X, Wang J, Qin X, Yuan D, Yu T, Chen G, Mi Y, et al: High mobility group box Protein 1 serves as a potential prognostic marker of lung cancer and promotes its invasion and metastasis by matrix Metalloproteinase-2 in a nuclear Factor-κB-dependent manner. Biomed Res Int. 2018:34537062018.

72 

Zhou Y, Liu SX, Zhou YN, Wang J and Ji R: Research on the relationship between RAGE and its ligand HMGB1, and prognosis and pathogenesis of gastric cancer with diabetes mellitus. Eur Rev Med Pharmacol Sci. 25:1339–1350. 2021.PubMed/NCBI

73 

van Beijnum JR, Nowak-Sliwinska P, van den Boezem E, Hautvast P, Buurman WA and Griffioen AW: Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene. 32:363–374. 2013. View Article : Google Scholar

74 

van Beijnum JR, Buurman WA and Griffioen AW: Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis. 11:91–99. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Zhu L, Li X, Chen Y, Fang J and Ge Z: High-mobility group box 1: A novel inducer of the epithelial-mesenchymal transition in colorectal carcinoma. Cancer Lett. 357:527–534. 2015. View Article : Google Scholar

76 

Kuniyasu H, Chihara Y and Kondo H: Differential effects between amphoterin and advanced glycation end products on colon cancer cells. Int J Cancer. 104:722–727. 2003. View Article : Google Scholar : PubMed/NCBI

77 

Sharma S, Evans A and Hemers E: Mesenchymal-epithelial signalling in tumour microenvironment: Role of high-mobility group Box 1. Cell Tissue Res. 365:357–366. 2016. View Article : Google Scholar : PubMed/NCBI

78 

Gialeli C, Theocharis AD and Karamanos NK: Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 278:16–27. 2011. View Article : Google Scholar

79 

Liu PL, Liu WL, Chang JM, Chen YH, Liu YP, Kuo HF, Hsieh CC, Ding YS, Chen WW and Chong IW: MicroRNA-200c inhibits epithelial-mesenchymal transition, invasion, and migration of lung cancer by targeting HMGB1. PLoS One. 12:e01808442017. View Article : Google Scholar : PubMed/NCBI

80 

Yao S, Zhao T and Jin H: Expression of MicroRNA-325-3p and its potential functions by targeting HMGB1 in non-small cell lung cancer. Biomed Pharmacother. 70:72–79. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Zhou J, Chen X, Gilvary DL, Tejera MM, Eksioglu EA, Wei S and Djeu JY: HMGB1 induction of clusterin creates a chemoresistant niche in human prostate tumor cells. Sci Rep. 5:150852015. View Article : Google Scholar : PubMed/NCBI

82 

Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B and Liu B: Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: A revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol. 15:442022. View Article : Google Scholar : PubMed/NCBI

83 

Bahar E, Han SY, Kim JY and Yoon H: Chemotherapy resistance: Role of mitochondrial and autophagic components. Cancers (Basel). 14:14622022. View Article : Google Scholar : PubMed/NCBI

84 

Ge R, Liu L, Dai W, Zhang W, Yang Y, Wang H, Shi Q, Guo S, Yi X, Wang G, et al: Xeroderma pigmentosum Group A promotes autophagy to facilitate cisplatin resistance in melanoma cells through the activation of PARP1. J Invest Dermatol. 136:1219–1228. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Ferreira PMP, Sousa RWR, Ferreira JRO, Militão GCG and Bezerra DP: Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol Res. 168:1055822021. View Article : Google Scholar : PubMed/NCBI

86 

Kim JS, Lee JM, Chwae YJ, Kim YH, Lee JH, Kim K, Lee TH, Kim SJ and Park JH: Cisplatin-induced apoptosis in Hep3B cells: Mitochondria-dependent and -independent pathways. Biochem Pharmacol. 67:1459–1468. 2004. View Article : Google Scholar : PubMed/NCBI

87 

Çoku J, Booth DM, Skoda J, Pedrotty MC, Vogel J, Liu K, Vu A, Carpenter EL, Ye JC, Chen MA, et al: Reduced ER-mitochondria connectivity promotes neuroblastoma multidrug resistance. EMBO J. 41:e1082722022. View Article : Google Scholar : PubMed/NCBI

88 

Yang M, Liu L, Xie M, Sun X, Yu Y, Kang R, Yang L, Zhu S, Cao L and Tang D: Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy. Autophagy. 11:214–224. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Pal Singh M, Pal Khaket T, Bajpai VK, Alfarraj S, Kim SG, Chen L, Huh YS, Han YK and Kang SC: Morin Hydrate Sensitizes Hepatoma Cells and Xenograft Tumor towards Cisplatin by Downregulating PARP-1-HMGB1 Mediated Autophagy. Int J Mol Sci. 21:82532020. View Article : Google Scholar : PubMed/NCBI

90 

Tang D, Loze MT, Zeh HJ and Kang R: The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy. 6:1181–1183. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ III and Lotze MT: Endogenous HMGB1 regulates autophagy. J Cell Biol. 190:881–892. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ III and Lotze MT: HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene. 29:5299–5310. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Singh MP, Cho HJ, Kim JT, Baek KE, Lee HG and Kang SC: Morin hydrate reverses cisplatin resistance by impairing PARP1/HMGB1-dependent autophagy in hepatocellular carcinoma. Cancers (Basel). 11:9862019. View Article : Google Scholar : PubMed/NCBI

94 

Shi Q, Wang Y, Dong W, Song E and Song Y: Polychlorinated biphenyl quinone-induced signaling transition from autophagy to apoptosis is regulated by HMGB1 and p53 in human hepatoma HepG2 cells. Toxicol Lett. 306:25–34. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Shi Y, Gong W, Lu L, Wang Y and Ren J: Upregulation of miR-129-5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells. Braz J Med Biol Res. 52:e86572019. View Article : Google Scholar : PubMed/NCBI

96 

Zhang Y, Chu X and Wei Q: MiR-451 promotes cell apoptosis and inhibits autophagy in pediatric acute myeloid leukemia by targeting HMGB1. J Environ Pathol Toxicol Oncol. 40:45–53. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Run L, Wang L, Nong X, Li N, Huang X and Xiao Y: Involvement of HMGB1 in vemurafenib resistance in thyroid cancer cells harboring BRAF (V600E) mutation by regulating excessive autophagy. Endocrine. 71:418–426. 2021. View Article : Google Scholar

98 

Mou K, Liu W, Han D and Li P: HMGB1/RAGE axis promotes autophagy and protects keratinocytes from ultraviolet radiation-induced cell death. J Dermatol Sci. 85:162–169. 2017. View Article : Google Scholar

99 

Li H, Li J, Zhang G, Da Q, Chen L, Yu S, Zhou Q, Weng Z, Xin Z, Shi L, et al: HMGB1-induced p62 overexpression promotes snail-mediated epithelial-mesenchymal transition in glioblastoma cells via the degradation of GSK-3β. Theranostics. 9:1909–1922. 2019. View Article : Google Scholar :

100 

Liu W, Zhang Z, Zhang Y, Chen X, Guo S, Lei Y, Xu Y, Ji C, Bi Z and Wang K: HMGB1-mediated autophagy modulates sensitivity of colorectal cancer cells to oxaliplatin via MEK/ERK signaling pathway. Cancer Biol Ther. 16:511–517. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Chen SY, Hsu YH, Wang SY, Chen YY, Hong CJ and Yen GC: Lucidone inhibits autophagy and MDR1 via HMGB1/RAGE/PI3K/Akt signaling pathway in pancreatic cancer cells. Phytother Res. 36:1664–1677. 2022. View Article : Google Scholar : PubMed/NCBI

102 

Luo P, Xu Z, Li G, Yan H, Zhu Y, Zhu H, Ma S, Yang B and He Q: HMGB1 represses the anti-cancer activity of sunitinib by governing TP53 autophagic degradation via its nucleus-to-cytoplasm transport. Autophagy. 14:2155–2170. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Liang C, Zhang X, Yang M and Dong X: Recent progress in ferroptosis inducers for cancer therapy. Adv Mater. 31:e19041972019. View Article : Google Scholar : PubMed/NCBI

106 

Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI

107 

Hassannia B, Vandenabeele P and Vanden Berghe T: Targeting ferroptosis to Iron out cancer. Cancer Cell. 35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H and ME LL: Oxidative stress and cancer: An overview. Ageing Res Rev. 12:376–390. 2013. View Article : Google Scholar

110 

Wang D, Tang L, Zhang Y, Ge G, Jiang X, Mo Y, Wu P, Deng X, Li L, Zuo S, et al: Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 13:5442022. View Article : Google Scholar : PubMed/NCBI

111 

Chen R, Kang R and Tang D: The mechanism of HMGB1 secretion and release. Exp Mol Med. 54:91–102. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Wiernicki B, Maschalidi S, Pinney J, Adjemian S, Vanden Berghe T, Ravichandran KS and Vandenabeele P: Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity. Nat Commun. 13:36762022. View Article : Google Scholar : PubMed/NCBI

114 

Efimova I, Catanzaro E, Van der Meeren L, Turubanova VD, Hammad H, Mishchenko TA, Vedunova MV, Fimognari C, Bachert C, Coppieters F, et al: Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer. 8:e0013692020. View Article : Google Scholar : PubMed/NCBI

115 

Vats K, Kruglov O, Mizes A, Samovich SN, Amoscato AA, Tyurin VA, Tyurina YY, Kagan VE and Bunimovich YL: Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure. Redox Biol. 47:1021432021. View Article : Google Scholar : PubMed/NCBI

116 

Zhang H, Wang Z, Liu Z, Du K and Lu X: Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1. Front Cardiovasc Med. 8:6854342021. View Article : Google Scholar : PubMed/NCBI

117 

Friedmann Angeli JP, Krysko DV and Conrad M: Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer. 19:405–414. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Chaudhary N, Choudhary BS, Shah SG, Khapare N, Dwivedi N, Gaikwad A, Joshi N, Raichanna J, Basu S, Gurjar M, et al: Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer. 149:1495–1511. 2021. View Article : Google Scholar : PubMed/NCBI

119 

You JH, Lee J and Roh JL: PGRMC1-dependent lipophagy promotes ferroptosis in paclitaxel-tolerant persister cancer cells. J Exp Clin Cancer Res. 40:3502021. View Article : Google Scholar : PubMed/NCBI

120 

Lee J, You JH, Shin D and Roh JL: Inhibition of Glutaredoxin 5 predisposes Cisplatin-resistant head and neck cancer cells to ferroptosis. Theranostics. 10:7775–7786. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Wu D, Wang S, Yu G and Chen X: Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: Prospects for cancer therapy. Angew Chem Int Ed Engl. 60:8018–8034. 2021. View Article : Google Scholar

122 

Qi S, Wang Q, Zhang J, Liu Q and Li C: Pyroptosis and its role in the modulation of cancer progression and antitumor immunity. Int J Mol Sci. 23:104942022. View Article : Google Scholar : PubMed/NCBI

123 

Hage C, Hoves S, Strauss L, Bissinger S, Prinz Y, Pöschinger T, Kiessling F and Ries CH: Sorafenib induces pyroptosis in macrophages and triggers natural killer cell-mediated cytotoxicity against hepatocellular carcinoma. Hepatology. 70:1280–1297. 2019. View Article : Google Scholar : PubMed/NCBI

124 

Wu LS, Liu Y, Wang XW, Xu B, Lin YL, Song Y, Dong Y, Liu JL, Wang XJ, Liu S, et al: LPS enhances the chemosensitivity of oxaliplatin in HT29 cells via GSDMD-mediated pyroptosis. Cancer Manag Res. 12:10397–10409. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Tang Z, Ji L, Han M, Xie J, Zhong F, Zhang X, Su Q, Yang Z, Liu Z, Gao H and Jiang G: Pyroptosis is involved in the inhibitory effect of FL118 on growth and metastasis in colorectal cancer. Life Sci. 257:1180652020. View Article : Google Scholar : PubMed/NCBI

126 

Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J, Wang K, Sun X and Zheng J: Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis. 10:1932019. View Article : Google Scholar : PubMed/NCBI

127 

Wang F, Liu W, Ning J, Wang J, Lang Y, Jin X, Zhu K, Wang X, Li X, Yang F, et al: Simvastatin suppresses proliferation and migration in non-small cell lung cancer via pyroptosis. Int J Biol Sci. 14:406–417. 2018. View Article : Google Scholar : PubMed/NCBI

128 

Wu L, Lu H, Pan Y, Liu C, Wang J, Chen B and Wang Y: The role of pyroptosis and its crosstalk with immune therapy in breast cancer. Front Immunol. 13:9739352022. View Article : Google Scholar : PubMed/NCBI

129 

Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther. 6:1282021. View Article : Google Scholar : PubMed/NCBI

130 

Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J and Hu J: The role of pyroptosis in cancer: Pro-cancer or pro-'host'? Cell Death Dis. 10:6502019. View Article : Google Scholar

131 

Volchuk A, Ye A, Chi L, Steinberg BE and Goldenberg NM: Indirect regulation of HMGB1 release by gasdermin D. Nat Commun. 11:45612020. View Article : Google Scholar : PubMed/NCBI

132 

Deng M, Tang Y, Li W, Wang X, Zhang R, Zhang X, Zhao X, Liu J, Tang C, Liu Z, et al: The endotoxin delivery protein HMGB1 mediates Caspase-11-dependent lethality in sepsis. Immunity. 49:740–753.e7. 2018. View Article : Google Scholar : PubMed/NCBI

133 

Hou W, Wei X, Liang J, Fang P, Ma C, Zhang Q and Gao Y: HMGB1-induced hepatocyte pyroptosis expanding inflammatory responses contributes to the pathogenesis of Acute-on-chronic liver failure (ACLF). J Inflamm Res. 14:7295–7313. 2021. View Article : Google Scholar

134 

Peng Z, Wang P, Song W, Yao Q, Li Y, Liu L, Li Y and Zhou S: GSDME enhances Cisplatin sensitivity to regress non-small cell lung carcinoma by mediating pyroptosis to trigger antitumor immunocyte infiltration. Signal Transduct Target Ther. 5:1592020. View Article : Google Scholar : PubMed/NCBI

135 

Shi F, Zhang L, Liu X and Wang Y: Knock-down of microRNA miR-556-5p increases cisplatin-sensitivity in non-small cell lung cancer (NSCLC) via activating NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptotic cell death. Bioengineered. 12:6332–6342. 2021. View Article : Google Scholar : PubMed/NCBI

136 

Erkes DA, Cai W, Sanchez IM, Purwin TJ, Rogers C, Field CO, Berger AC, Hartsough EJ, Rodeck U, Alnemri ES and Aplin AE: Mutant BRAF and MEK inhibitors regulate the tumor immune microenvironment via pyroptosis. Cancer Discov. 10:254–269. 2020. View Article : Google Scholar :

137 

Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI

138 

Barth DA, Drula R, Ott L, Fabris L, Slaby O, Calin GA and Pichler M: Circulating Non-coding RNAs in renal cell carcinoma-pathogenesis and potential implications as clinical biomarkers. Front Cell Dev Biol. 8:8282020. View Article : Google Scholar : PubMed/NCBI

139 

Zeuschner P, Linxweiler J and Junker K: Non-coding RNAs as biomarkers in liquid biopsies with a special emphasis on extracellular vesicles in urological malignancies. Expert Rev Mol Diagn. 20:151–167. 2020. View Article : Google Scholar

140 

Barth DA, Slaby O, Klec C, Juracek J, Drula R, Calin GA and Pichler M: Current concepts of Non-coding RNAs in the pathogenesis of non-clear cell renal cell carcinoma. Cancers (Basel). 11:15802019. View Article : Google Scholar : PubMed/NCBI

141 

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP and Bartel DP: MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell. 27:91–105. 2007. View Article : Google Scholar : PubMed/NCBI

142 

He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers, therapies, and resistance in Cancer. Int J Biol Sci. 16:2628–2647. 2020. View Article : Google Scholar : PubMed/NCBI

143 

Taheri M, Shirvani-Farsani Z, Ghafouri-Fard S and Omrani MD: Expression profile of microRNAs in bladder cancer and their application as biomarkers. Biomed Pharmacother. 131:1107032020. View Article : Google Scholar : PubMed/NCBI

144 

Deng H, Lv L, Li Y, Zhang C, Meng F, Pu Y, Xiao J, Qian L, Zhao W, Liu Q, et al: miR-193a-3p regulates the multi-drug resistance of bladder cancer by targeting the LOXL4 gene and the oxidative stress pathway. Mol Cancer. 13:2342014. View Article : Google Scholar : PubMed/NCBI

145 

Díaz-Martínez M, Benito-Jardón L, Alonso L, Koetz-Ploch L, Hernando E and Teixidó J: miR-204-5p and miR-211-5p Contribute to BRAF inhibitor resistance in melanoma. Cancer Res. 78:1017–1030. 2018. View Article : Google Scholar :

146 

Sur S and Ray RB: Emerging role of lncRNA ELDR in development and cancer. FEBS J. 289:3011–3023. 2022. View Article : Google Scholar

147 

Zhu L, Zhu Y, Han S, Chen M, Song P, Dai D, Xu W, Jiang T, Feng L, Shin VY, et al: Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis. 10:3832019. View Article : Google Scholar : PubMed/NCBI

148 

Luo Y, Zheng S, Wu Q, Wu J, Zhou R, Wang C, Wu Z, Rong X, Huang N, Sun L, et al: Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy. 17:4083–4101. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Lu J, Xu Y, Xie W, Tang Y, Zhang H, Wang B, Mao J, Rui T, Jiang P and Zhang W: Long noncoding RNA DLGAP1-AS2 facilitates Wnt1 transcription through physically interacting with Six3 and drives the malignancy of gastric cancer. Cell Death Discov. 7:2552021. View Article : Google Scholar : PubMed/NCBI

150 

Ren C, Han H, Pan J, Chang Q, Wang W, Guo X and Bian J: DLGAP1-AS2 promotes human colorectal cancer progression through trans-activation of Myc. Mamm Genome. 33:672–683. 2022. View Article : Google Scholar : PubMed/NCBI

151 

Li Q, Sun H, Luo D, Gan L, Mo S, Dai W, Liang L, Yang Y, Xu M, Li J, et al: Lnc-RP11-536 K7.3/SOX2/HIF-1α signaling axis regulates oxaliplatin resistance in patient-derived colorectal cancer organoids. J Exp Clin Cancer Res. 40:3482021. View Article : Google Scholar

152 

Chioccarelli T, Falco G, Cappetta D, De Angelis A, Roberto L, Addeo M, Ragusa M, Barbagallo D, Berrino L, Purrello M, et al: FUS driven circCNOT6L biogenesis in mouse and human spermatozoa supports zygote development. Cell Mol Life Sci. 79:502021. View Article : Google Scholar : PubMed/NCBI

153 

Singh V, Uddin MH, Zonder JA, Azmi AS and Balasubramanian SK: Circular RNAs in acute myeloid leukemia. Mol Cancer. 20:1492021. View Article : Google Scholar : PubMed/NCBI

154 

Chen DL, Sheng H, Zhang DS, Jin Y, Zhao BT, Chen N, Song K and Xu RH: The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p. Mol Cancer. 20:1662021. View Article : Google Scholar : PubMed/NCBI

155 

Li P, Song R, Yin F, Liu M, Liu H, Ma S, Jia X, Lu X, Zhong Y, Yu L, et al: circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther. 30:431–447. 2022. View Article : Google Scholar :

156 

Zhang Y, Liu Y and Xu X: Upregulation of miR-142-3p improves drug sensitivity of acute myelogenous leukemia through reducing P-glycoprotein and repressing autophagy by targeting HMGB1. Transl Oncol. 10:410–418. 2017. View Article : Google Scholar : PubMed/NCBI

157 

LeClair K, Bell KJL, Furuya-Kanamori L, Doi SA, Francis DO and Davies L: Evaluation of gender inequity in thyroid cancer diagnosis: Differences by Sex in US thyroid cancer incidence compared with a meta-analysis of subclinical thyroid cancer rates at autopsy. JAMA Internal Med. 181:1351–1358. 2021. View Article : Google Scholar

158 

Lei T, Huang J, Xie F, Gu J, Cheng Z and Wang Z: HMGB1-mediated autophagy promotes gefitinib resistance in human non-small cell lung cancer. Acta Biochim Biophys Sin (Shanghai). 54:fpage–lpage. 2022. View Article : Google Scholar : PubMed/NCBI

159 

Kishi S, Fujiwara-Tani R, Honoki K, Sasaki R, Mori S, Ohmori H, Sasaki T, Miyagawa Y, Kawahara I, Kido A, et al: Oxidized high mobility group B-1 enhances metastability of colorectal cancer via modification of mesenchymal stem/stromal cells. Cancer Sci. 113:2904–2915. 2022. View Article : Google Scholar : PubMed/NCBI

160 

Ren Y, Cao L, Wang L, Zheng S, Zhang Q, Guo X, Li X, Chen M, Wu X, Furlong F, et al: Autophagic secretion of HMGB1 from cancer-associated fibroblasts promotes metastatic potential of non-small cell lung cancer cells via NFκB signaling. Cell Death Dis. 12:8582021. View Article : Google Scholar

161 

Ning J, Yang R, Wang H and Cui L: HMGB1 enhances chemotherapy resistance in multiple myeloma cells by activating the nuclear factor-κB pathway. Exp Ther Med. 22:7052021. View Article : Google Scholar

162 

Zhou P, Zheng ZH, Wan T, Wu J, Liao CW and Sun XJ: Vitexin inhibits gastric cancer growth and metastasis through HMGB1-mediated inactivation of the PI3K/AKT/mTOR/HIF-1α signaling pathway. J Gastric Cancer. 21:439–456. 2021. View Article : Google Scholar

163 

Pu Z, Duda DG, Zhu Y, Pei S, Wang X, Huang Y, Yi P, Huang Z, Peng F, Hu X and Fan X: VCP interaction with HMGB1 promotes hepatocellular carcinoma progression by activating the PI3K/AKT/mTOR pathway. J Transl Med. 20:2122022. View Article : Google Scholar : PubMed/NCBI

164 

Zhang X, Zou N, Deng W, Song C, Yan K, Shen W and Zhu S: HMGB1 induces radioresistance through PI3K/AKT/ATM pathway in esophageal squamous cell carcinoma. Mol Biol Rep. 49:11933–11945. 2022. View Article : Google Scholar : PubMed/NCBI

165 

Xu HZ, Li TF, Wang C, Ma Y, Liu Y, Zheng MY, Liu ZJ, Chen JB, Li K, Sun SK, et al: Synergy of nanodiamond-doxorubicin conjugates and PD-L1 blockade effectively turns tumor-associated macrophages against tumor cells. J Nanobiotechnol. 19:2682021. View Article : Google Scholar

166 

Yang L, Yu Y, Kang R, Yang M, Xie M, Wang Z, Tang D, Zhao M, Liu L, Zhang H and Cao L: Up-regulated autophagy by endogenous high mobility group box-1 promotes chemoresistance in leukemia cells. Leuk Lymphoma. 53:315–322. 2012. View Article : Google Scholar

167 

Liu N, Wu Y, Wen X, Li P, Lu F and Shang H: Chronic stress promotes acute myeloid leukemia progression through HMGB1/NLRP3/IL-1β signaling pathway. J Mol Med (Berl). 99:403–414. 2021. View Article : Google Scholar : PubMed/NCBI

168 

Wei L, Wang Z, Jing N, Lu Y, Yang J, Xiao H, Guo H, Sun S, Li M, Zhao D, et al: Frontier progress of the combination of modern medicine and traditional Chinese medicine in the treatment of hepatocellular carcinoma. Chin Med. 17:902022. View Article : Google Scholar : PubMed/NCBI

169 

Wei J, Liu Z, He J, Liu Q, Lu Y, He S, Yuan B, Zhang J and Ding Y: Traditional Chinese medicine reverses cancer multidrug resistance and its mechanism. Clin Transl Oncol. 24:471–482. 2022. View Article : Google Scholar

170 

Xi S, Peng Y, Minuk GY, Shi M, Fu B, Yang J, Li Q, Gong Y, Yue L, Li L, et al: The combination effects of Shen-Ling-Bai-Zhu on promoting apoptosis of transplanted H22 hepatocellular carcinoma in mice receiving chemotherapy. J Ethnopharmacol. 190:1–12. 2016. View Article : Google Scholar : PubMed/NCBI

171 

Wang H, Li Y, Lu J, Qiu M, Cheng D, Zhang X and Yuan W: Shengbai decoction enhances the anti-tumor efficacy of cyclophosphamide on hepatoma 22-bearing mice. Biomed Pharmacother. 140:1117752021. View Article : Google Scholar : PubMed/NCBI

172 

Xi S, Zhai X, Wang Y, Gong Y, Fu B, Gao C, Guo X, Li Y, Wang Z, Huang S, et al: The Ciji-Hua'ai-Baosheng II formula attenuates chemotherapy-induced anorexia in mice with H22 hepatocellular carcinoma. Front Pharmacol. 12:7158242021. View Article : Google Scholar

173 

Li ZJ, Dai HQ, Huang XW, Feng J, Deng JH, Wang ZX, Yang XM, Liu YJ, Wu Y, Chen PH, et al: Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin. 42:301–310. 2021. View Article : Google Scholar :

174 

Ming JX, Wang ZC, Huang Y, Ohishi H, Wu RJ, Shao Y, Wang H, Qin MY, Wu ZL, Li YY, et al: Fucoxanthin extracted from Laminaria Japonica inhibits metastasis and enhances the sensitivity of lung cancer to Gefitinib. J Ethnopharmacol. 265:1133022021. View Article : Google Scholar

175 

Li Y, Liu T, Li Y, Han D, Hong J, Yang N, He J, Peng R, Mi X, Kuang C, et al: Baicalin ameliorates cognitive impairment and protects microglia from LPS-induced neuroinflammation via the SIRT1/HMGB1 pathway. Oxid Med Cell Longev. 2020:47513492020. View Article : Google Scholar : PubMed/NCBI

176 

Yan G, Chen L, Wang H, Wu S, Li S and Wang X: Baicalin inhibits LPS-induced inflammation in RAW264.7 cells through miR-181b/HMGB1/TRL4/NF-κB pathway. Am J Transl Res. 13:10127–10141. 2021.

177 

Chen P, Huang HP, Wang Y, Jin J, Long WG, Chen K, Zhao XH, Chen CG and Li J: Curcumin overcome primary gefitinib resistance in non-small-cell lung cancer cells through inducing autophagy-related cell death. J Exp Clin Cancer Res. 38:2542019. View Article : Google Scholar : PubMed/NCBI

178 

Wang Z, Chen W, Li Y, Zhang S, Lou H, Lu X and Fan X: Reduning injection and its effective constituent luteoloside protect against sepsis partly via inhibition of HMGB1/TLR4/NF-κB/MAPKs signaling pathways. J Ethnopharmacol. 270:1137832021. View Article : Google Scholar

179 

Wei X, Zhang B, Wei F, Ding M, Luo Z, Han X and Tan X: Gegen Qinlian pills alleviate carrageenan-induced thrombosis in mice model by regulating the HMGB1/NF-κB/NLRP3 signaling. Phytomedicine. 100:1540832022. View Article : Google Scholar

180 

Roy M, Liang L, Xiao X, Peng Y, Luo Y, Zhou W, Zhang J, Qiu L, Zhang S, Liu F, et al: Lycorine downregulates HMGB1 to inhibit autophagy and enhances bortezomib activity in multiple myeloma. Theranostics. 6:2209–2224. 2016. View Article : Google Scholar : PubMed/NCBI

181 

Yu AM, Jian C, Yu AH and Tu MJ: RNA therapy: Are we using the right molecules? Pharmacol Ther. 196:91–104. 2019. View Article : Google Scholar :

182 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI

183 

Ngamcherdtrakul W and Yantasee W: siRNA therapeutics for breast cancer: Recent efforts in targeting metastasis, drug resistance, and immune evasion. Transl Res. 214:105–120. 2019. View Article : Google Scholar : PubMed/NCBI

184 

Sharma P, Yadav P, Sundaram S, Venkatraman G, Bera AK and Karunagaran D: HMGB3 inhibition by miR-142-3p/sh-RNA modulates autophagy and induces apoptosis via ROS accumulation and mitochondrial dysfunction and reduces the tumorigenic potential of human breast cancer cells. Life Sci. 304:1207272022. View Article : Google Scholar : PubMed/NCBI

185 

Sharma P, Yadav P, Jain RP, Bera AK and Karunagaran D: miR-142-3p simultaneously targets HMGA1, HMGA2, HMGB1, and HMGB3 and inhibits tumorigenic properties and in-vivo metastatic potential of human cervical cancer cells. Life Sci. 291:1202682022. View Article : Google Scholar : PubMed/NCBI

186 

Mukherjee A and Vasquez KM: Targeting chromosomal architectural HMGB proteins could be the next frontier in cancer therapy. Cancer Res. 80:2075–2082. 2020. View Article : Google Scholar : PubMed/NCBI

187 

Wu T, Zhang W, Yang G, Li H, Chen Q, Song R and Zhao L: HMGB1 overexpression as a prognostic factor for survival in cancer: A meta-analysis and systematic review. Oncotarget. 7:50417–50427. 2016. View Article : Google Scholar : PubMed/NCBI

188 

Xie J, Yang Y, Gao Y and He J: Cuproptosis: Mechanisms and links with cancers. Mol Cancer. 22:462023. View Article : Google Scholar : PubMed/NCBI

189 

Liu J, Liu Y, Wang Y, Kang R and Tang D: HMGB1 is a mediator of cuproptosis-related sterile inflammation. Front Cell Dev Biol. 10:9963072022. View Article : Google Scholar : PubMed/NCBI

190 

Hassannia B, Wiernicki B, Ingold I, Qu F, Van Herck S, Tyurina YY, Bayır H, Abhari BA, Angeli JPF, Choi SM, et al: Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest. 128:3341–3355. 2018. View Article : Google Scholar : PubMed/NCBI

191 

Kim KS, Choi B, Choi H, Ko MJ and Kim DH and Kim DH: Enhanced natural killer cell anti-tumor activity with nanoparticles mediated ferroptosis and potential therapeutic application in prostate cancer. J Nanobiotechnol. 20:4282022. View Article : Google Scholar

192 

Zheng X, Zhao Y, Jia Y, Shao D, Zhang F, Sun M, Dawulieti J, Hu H, Cui L, Pan Y, et al: Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. Biomaterials. 271:1207162021. View Article : Google Scholar : PubMed/NCBI

193 

Meng X, Lou QY, Yang WY, Wang YR, Chen R, Wang L, Xu T and Zhang L: The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential. Cancer Commun (Lond). 41:981–1006. 2021. View Article : Google Scholar : PubMed/NCBI

194 

Jiang T, Qiao Y, Ruan W, Zhang D, Yang Q, Wang G, Chen Q, Zhu F, Yin J, Zou Y, et al: Cation-free siRNA micelles as effective drug delivery platform and potent RNAi nanomedicines for glioblastoma therapy. Adv Mater. 33:e21047792021. View Article : Google Scholar : PubMed/NCBI

195 

Fu S, Li G, Zang W, Zhou X, Shi K and Zhai Y: Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B. 12:92–106. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shao L, Zhu L, Wang M, Ning Y, Chen F, Gao X, Yang C, Wang H and Li H: Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review). Int J Mol Med 52: 69, 2023.
APA
Shao, L., Zhu, L., Wang, M., Ning, Y., Chen, F., Gao, X. ... Li, H. (2023). Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review). International Journal of Molecular Medicine, 52, 69. https://doi.org/10.3892/ijmm.2023.5272
MLA
Shao, L., Zhu, L., Wang, M., Ning, Y., Chen, F., Gao, X., Yang, C., Wang, H., Li, H."Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review)". International Journal of Molecular Medicine 52.2 (2023): 69.
Chicago
Shao, L., Zhu, L., Wang, M., Ning, Y., Chen, F., Gao, X., Yang, C., Wang, H., Li, H."Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review)". International Journal of Molecular Medicine 52, no. 2 (2023): 69. https://doi.org/10.3892/ijmm.2023.5272
Copy and paste a formatted citation
x
Spandidos Publications style
Shao L, Zhu L, Wang M, Ning Y, Chen F, Gao X, Yang C, Wang H and Li H: Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review). Int J Mol Med 52: 69, 2023.
APA
Shao, L., Zhu, L., Wang, M., Ning, Y., Chen, F., Gao, X. ... Li, H. (2023). Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review). International Journal of Molecular Medicine, 52, 69. https://doi.org/10.3892/ijmm.2023.5272
MLA
Shao, L., Zhu, L., Wang, M., Ning, Y., Chen, F., Gao, X., Yang, C., Wang, H., Li, H."Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review)". International Journal of Molecular Medicine 52.2 (2023): 69.
Chicago
Shao, L., Zhu, L., Wang, M., Ning, Y., Chen, F., Gao, X., Yang, C., Wang, H., Li, H."Mechanisms involved in the HMGB1 modulation of tumor multidrug resistance (Review)". International Journal of Molecular Medicine 52, no. 2 (2023): 69. https://doi.org/10.3892/ijmm.2023.5272
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team