Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2023 Volume 52 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2023 Volume 52 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review)

  • Authors:
    • Li Jiang
    • Jingwei Lu
    • Yixuan Chen
    • Kexin Lyu
    • Longhai Long
    • Xiaoqiang Wang
    • Tianzhu Liu
    • Sen Li
  • View Affiliations / Copyright

    Affiliations: School of Physical Education, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Spinal Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Neurology Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Jiangsu, Nanjing 210000, P.R. China
    Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 70
    |
    Published online on: June 30, 2023
       https://doi.org/10.3892/ijmm.2023.5273
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tendon injury is a common disorder of the musculoskeletal system caused by overuse or trauma. With increasing incidence of tendon injuries, it is necessary to find an effective treatment. Mesenchymal stem cells (MSCs) are attracting attention because of their high proliferative and self‑renewal capacity. These functions of MSCs show promise in treating a variety of diseases, including immune and musculoskeletal system disorder and cardiovascular disease, and show especially satisfactory effects in the treatment of tendon injury. First, since MSCs have multidirectional differentiation potential, they differentiate into specific cells after induction in vivo and in vitro. Furthermore, MSCs have paracrine functions and can secrete biologically active molecules and exosomes such as cytokines, growth factors and chemokines to promote tissue repair and regeneration. In tendon injury, MSCs promote tendon repair through four mechanisms: Decreasing inflammation and promoting neovascularization and cell proliferation and differentiation. They are also involved in extracellular matrix reorganization by promoting collagen production and transforming type III collagen fibers to type I collagen fibers. The present review summarized preclinical experiments with different sources of MSCs and their mechanisms in tendon repair, as well as the limitations of MSCs in current clinical applications and directions that need to be explored in the future.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Andarawis-Puri N, Flatow EL and Soslowsky LJ: Tendon basic science: Development, repair, regeneration, and healing. J Orthop Res. 33:780–784. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Cook JL and Purdam C: Is compressive load a factor in the development of tendinopathy? Br J Sports Med. 46:163–168. 2012. View Article : Google Scholar

3 

Beatty NR, Félix I, Hettler J, Moley PJ and Wyss JF: Rehabilitation and prevention of proximal hamstring tendinopathy. Curr Sports Med Rep. 16:162–171. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Silbernagel KG, Hanlon S and Sprague A: Current Clinical concepts: Conservative management of achilles tendinopathy. J Athl Train. 55:438–447. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Figueroa D, Figueroa F and Calvo R: Patellar tendinopathy: Diagnosis and treatment. J Am Acad Orthop Surg. 24:e184–e192. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Chun SW, Kim W, Lee SY, Lim CY, Kim K, Kim JG, Park CH, Hong SH, Yoo HJ and Chung SG: A randomized controlled trial of stem cell injection for tendon tear. Sci Rep. 12:8182022. View Article : Google Scholar : PubMed/NCBI

7 

Chen Z, Jin M, He H, Dong J, Li J, Nie J, Wang Z, Xu J and Wu F: Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing. J Orthop Translat. 39:63–73. 2023. View Article : Google Scholar : PubMed/NCBI

8 

Malekpour K, Hazrati A, Zahar M, Markov A, Zekiy AO, Navashenaq JG, Roshangar L and Ahmadi M: The potential use of mesenchymal stem cells and their derived exosomes for orthopedic diseases treatment. Stem Cell Rev Rep. 18:933–951. 2022. View Article : Google Scholar

9 

Xu Y, Zhang WX, Wang LN, Ming YQ, Li YL and Ni GX: Stem cell therapies in tendon-bone healing. World J Stem Cells. 13:753–775. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Fu X, Liu G, Halim A, Ju Y, Luo Q and Song AG: Mesenchymal stem cell migration and tissue repair. Cells. 8:7842019. View Article : Google Scholar : PubMed/NCBI

11 

Torres-Torrillas M, Rubio M, Damia E, Cuervo B, Del Romero A, Peláez P, Chicharro D, Miguel L and Sopena JJ: Adipose-derived mesenchymal stem cells: A promising tool in the treatment of musculoskeletal diseases. Int J Mol Sci. 20:31052019. View Article : Google Scholar : PubMed/NCBI

12 

Docheva D, Müller SA, Majewski M and Evans CH: Biologics for tendon repair. Adv Drug Deliv Rev. 84:222–239. 2015. View Article : Google Scholar :

13 

Mirghaderi SP, Valizadeh Z, Shadman K, Lafosse T, Oryadi-Zanjani L, Yekaninejad MS and Nabian MH: Cell therapy efficacy and safety in treating tendon disorders: A systemic review of clinical studies. J Exp Orthop. 9:852022. View Article : Google Scholar : PubMed/NCBI

14 

Lui PP: Stem cell technology for tendon regeneration: Current status, challenges, and future research directions. Stem Cells Cloning. 8:163–174. 2015.PubMed/NCBI

15 

Migliorini F, Tingart M and Maffulli N: Progress with stem cell therapies for tendon tissue regeneration. Expert Opin Biol Ther. 20:1373–1379. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Guo D, Li H, Liu Y, Yu X, Zhang X, Chu W, She Y, Wang D and Chen G: Fibroblast growth factor-2 promotes the function of tendon-derived stem cells in Achilles tendon restoration in an Achilles tendon injury rat model. Biochem Biophys Res Commun. 521:91–97. 2020. View Article : Google Scholar

17 

Cohen S, Leshansky L, Zussman E, Burman M, Srouji S, Livne E, Abramov N and Itskovitz-Eldor J: Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues. Tissue Eng Part A. 16:3119–3137. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Yea JH, Kim Y and Jo CH: Comparison of mesenchymal stem cells from bone marrow, umbilical cord blood, and umbilical cord tissue in regeneration of a full-thickness tendon defect in vitro and in vivo. Biochem Biophys Rep. 34:1014862023.PubMed/NCBI

19 

Baberg F, Geyh S, Waldera-Lupa D, Stefanski A, Zilkens C, Haas R, Schroeder T and Stühler K: Secretome analysis of human bone marrow derived mesenchymal stromal cells. Biochim Biophys Acta Proteins Proteom. 1867:434–441. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Thomopoulos S, Das R, Sakiyama-Elbert S, Silva MJ, Charlton N and Gelberman RH: bFGF and PDGF-BB for tendon repair: Controlled release and biologic activity by tendon fibroblasts in vitro. Ann Biomed Eng. 38:225–234. 2010. View Article : Google Scholar :

21 

Gelberman RH, Linderman SW, Jayaram R, Dikina AD, Sakiyama-Elbert S, Alsberg E, Thomopoulos S and Shen H: Combined administration of ASCs and BMP-12 promotes an M2 macrophage phenotype and enhances tendon healing. Clin Orthop Relat Res. 475:2318–2331. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Yea JH, Bae TS, Kim BJ, Cho YW and Jo CH: Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model. Acta Biomater. 114:104–116. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Lim WL, Chowdhury SR, Ng MH and Law JX: Physicochemical properties and biocompatibility of electrospun polycaprolactone/gelatin nanofibers. Int J Environ Res Public Health. 18:47642021. View Article : Google Scholar : PubMed/NCBI

24 

Ciardulli MC, Marino L, Lovecchio J, Giordano E, Forsyth NR, Selleri C, Maffulli N and Porta GD: Tendon and cytokine marker expression by human bone marrow mesenchymal stem cells in a hyaluronate/poly-lactic-co-glycolic acid (PLGA)/fibrin three-dimensional (3D) scaffold. Cells. 9:12682020. View Article : Google Scholar : PubMed/NCBI

25 

Smith RK, Werling NJ, Dakin SG, Alam R, Goodship AE and Dudhia J: Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy. PLoS One. 8:e756972013. View Article : Google Scholar : PubMed/NCBI

26 

Manning CN, Martel C, Sakiyama-Elbert SE, Silva MJ, Shah S, Gelberman RH and Thomopoulos S: Adipose-derived mesenchymal stromal cells modulate tendon fibroblast responses to macrophage-induced inflammation in vitro. Stem Cell Res Ther. 6:742015. View Article : Google Scholar : PubMed/NCBI

27 

Tan Q, Lui PP and Lee YW: In vivo identity of tendon stem cells and the roles of stem cells in tendon healing. Stem Cells Dev. 22:3128–3140. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Li P, Xu Y, Gan Y, Song L, Zhang C, Wang L and Zhou Q: Role of the ERK1/2 signaling pathway in osteogenesis of rat tendon-derived stem cells in normoxic and hypoxic cultures. Int J Med Sci. 13:629–637. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Rui YF, Lui PP, Chan LS, Chan KM, Fu SC and Li G: Does erroneous differentiation of tendon-derived stem cells contribute to the pathogenesis of calcifying tendinopathy? Chin Med J (Engl). 124:606–610. 2011.PubMed/NCBI

30 

Nie D, Zhou Y, Wang W, Zhang J and Wang JHC: Mechanical overloading induced-activation of mTOR signaling in tendon stem/progenitor cells contributes to tendinopathy development. Front Cell Dev Biol. 9:6878562021. View Article : Google Scholar : PubMed/NCBI

31 

Zhang J and Wang JH: Prostaglandin E2 (PGE2) exerts biphasic effects on human tendon stem cells. PLoS One. 9:e877062014. View Article : Google Scholar : PubMed/NCBI

32 

Bajada S, Mazakova I, Richardson JB and Ashammakhi N: Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med. 2:169–183. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Dale TP, Mazher S, Webb WR, Zhou J, Maffulli N, Chen GQ, El Haj AJ and Forsyth NR: Tenogenic differentiation of human embryonic stem cells. Tissue Eng Part A. 24:361–368. 2018. View Article : Google Scholar

34 

Blum B and Benvenisty N: The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 100:133–158. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Wyles SP, Yamada S, Oommen S, Maleszewski JJ, Beraldi R, Martinez-Fernandez A, Terzic A and Nelson TJ: Inhibition of DNA topoisomerase II selectively reduces the threat of tumorigenicity following induced pluripotent stem cell-based myocardial therapy. Stem Cells Dev. 23:2274–2282. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Aguiar C, Theoret C, Smith O, Segura M, Lemire P and Smith LC: Immune potential of allogeneic equine induced pluripotent stem cells. Equine Vet J. 47:708–714. 2015. View Article : Google Scholar

37 

Bavin EP, Smith O, Baird AEG, Smith LC and Guest DJ: Equine induced pluripotent stem cells have a reduced tendon differentiation capacity compared to embryonic stem cells. Front Vet Sci. 2:552015. View Article : Google Scholar : PubMed/NCBI

38 

Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, et al: Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 28:848–855. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Nourissat G, Berenbaum F and Duprez D: Tendon injury: From biology to tendon repair. Nat Rev Rheumatol. 11:223–233. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Wang JH: Mechanobiology of tendon. J Biomech. 39:1563–1582. 2006. View Article : Google Scholar

41 

Whittaker P and Canham PB: Demonstration of quantitative fabric analysis of tendon collagen using two-dimensional polarized light microscopy. Matrix. 11:56–62. 1991. View Article : Google Scholar : PubMed/NCBI

42 

Canty EG and Kadler KE: Procollagen trafficking, processing and fibrillogenesis. J Cell Sci. 118:1341–1353. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Herchenhan A, Kalson NS, Holmes DF, Hill P, Kadler KE and Margetts L: Tenocyte contraction induces crimp formation in tendon-like tissue. Biomech Model Mechanobiol. 11:449–459. 2012. View Article : Google Scholar

44 

Stammers M, Niewczas IS, Segonds-Pichon A and Clark J: Mechanical stretching changes crosslinking and glycation levels in the collagen of mouse tail tendon. J Biol Chem. 295:10572–10580. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Thorpe CT, Udeze CP, Birch HL, Clegg PD and Screen HR: Specialization of tendon mechanical properties results from interfascicular differences. J R Soc Interface. 9:3108–3117. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Wang JHC, Guo Q and Li B: Tendon biomechanics and mechanobiology-a minireview of basic concepts and recent advancements. J Hand Ther. 25:133–141. 2012. View Article : Google Scholar

47 

Thorpe CT and Screen HR: Tendon structure and composition. Adv Exp Med Biol. 920:3–10. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Zhang G, Young BB, Ezura Y, Favata M, Soslowsky LJ, Chakravarti S and Birk DE: Development of tendon structure and function: Regulation of collagen fibrillogenesis. J Musculoskelet Neuronal Interact. 5:5–21. 2005.PubMed/NCBI

49 

Screen HRC, Berk DE, Kadler KE, Ramirez F and Young MF: Tendon functional extracellular matrix. J Orthop Res. 33:793–799. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Riechert K, Labs K, Lindenhayn K and Sinha P: Semiquantitative analysis of types I and III collagen from tendons and ligaments in a rabbit model. J Orthop Sci. 6:68–74. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Liu SH, Yang RS, al-Shaikh R and Lane JM: Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res. 265–278. 1995.PubMed/NCBI

52 

Birk DE and Mayne R: Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol. 72:352–361. 1997.PubMed/NCBI

53 

Wenstrup RJ, Smith SM, Florer JB, Zhang G, Beason DP, Seegmiller RE, Soslowsky LJ and Birk DE: Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. J Biol Chem. 286:20455–20465. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Izu Y, Ansorge HL, Zhang G, Soslowsky LJ, Bonaldo P, Chu ML and Birk DE: Dysfunctional tendon collagen fibrillogenesis in collagen VI null mice. Matrix Biol. 30:53–61. 2011. View Article : Google Scholar

55 

Taye N, Karoulias SZ and Hubmacher D: The 'other' 15-40%: The role of non-collagenous extracellular matrix proteins and minor collagens in tendon. J Orthop Res. 38:23–35. 2020. View Article : Google Scholar

56 

Birch HL: Tendon matrix composition and turnover in relation to functional requirements. Int J Exp Pathol. 88:241–248. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Ristaniemi A, Regmi D, Mondal D, Torniainen J, Tanska P, Stenroth L, Finnilä MAJ, Töyräs J and Korhonen RK: Structure, composition and fibril-reinforced poroviscoelastic properties of bovine knee ligaments and patellar tendon. J R Soc Interface. 18:202007372021. View Article : Google Scholar : PubMed/NCBI

58 

Schwartz AG, Lipner JH, Pasteris JD, Genin GM and Thomopoulos S: Muscle loading is necessary for the formation of a functional tendon enthesis. Bone. 55:44–51. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Thorpe CT, Birch HL, Clegg PD and Screen HRC: The role of the non-collagenous matrix in tendon function. Int J Exp Pathol. 94:248–259. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Chen S and Birk DE: The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly. FEBS J. 280:2120–2137. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Halper J: Proteoglycans and diseases of soft tissues. Adv Exp Med Biol. 802:49–58. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Smith RKW, Gerard M, Dowling B, Dart AJ, Birch HL and Goodship AE: Correlation of cartilage oligomeric matrix protein (COMP) levels in equine tendon with mechanical properties: A proposed role for COMP in determining function-specific mechanical characteristics of locomotor tendons. Equine Vet J Suppl. 241–244. 2002.PubMed/NCBI

63 

Järvinen TAH, Józsa L, Kannus P, Järvinen TL, Hurme T, Kvist M, Pelto-Huikko M, Kalimo H and Järvinen M: Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo synthesis in the skeletal muscle. J Cell Sci. 116:857–866. 2003. View Article : Google Scholar : PubMed/NCBI

64 

Pajala A, Melkko J, Leppilahti J, Ohtonen P, Soini Y and Risteli J: Tenascin-C and type I and III collagen expression in total Achilles tendon rupture. An immunohistochemical study. Histol Histopathol. 24:1207–1211. 2009.PubMed/NCBI

65 

Grant TM, Thompson MS, Urban J and Yu J: Elastic fibres are broadly distributed in tendon and highly localized around tenocytes. J Anat. 222:573–579. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Thakkar D, Grant TM, Hakimi O and Carr AJ: Distribution and expression of type VI collagen and elastic fibers in human rotator cuff tendon tears. Connect Tissue Res. 55:397–402. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Zhang J and Wang JHC: Characterization of differential properties of rabbit tendon stem cells and tenocytes. BMC Musculoskelet Disord. 11:102010. View Article : Google Scholar : PubMed/NCBI

68 

Ralphs JR, Waggett AD and Benjamin M: Actin stress fibres and cell-cell adhesion molecules in tendons: Organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biol. 21:67–74. 2002. View Article : Google Scholar : PubMed/NCBI

69 

Zhang S, Ju W and Chen X, Zhao Y, Feng L, Yin Z and Chen X: Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater. 8:124–139. 2022. View Article : Google Scholar

70 

Marr N, Meeson R, Kelly EF, Fang Y, Peffers MJ, Pitsillides AA, Dudhia J and Thorpe CT: CD146 Delineates an interfascicular cell sub-population in tendon that is recruited during injury through its ligand laminin-α4. Int J Mol Sci. 22:97292021. View Article : Google Scholar

71 

Xu W, Hua H, Chiu YH, Li G, Zhi H, Yu Z, Ren F, Luo Y and Cui W: CD146 regulates growth factor-induced mTORC2 activity independent of the PI3K and mTORC1 pathways. Cell Rep. 29:1311–1322.e5. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Grol MW, Haelterman NA, Lim J, Munivez EM, Archer M, Hudson DM, Tufa SF, Keene DR, Lei K, Park D, et al: Tendon and motor phenotypes in the Crtap−/− mouse model of recessive osteogenesis imperfecta. Elife. 10:e634882021. View Article : Google Scholar

73 

Flanagan K, Fitzgerald K, Baker J, Regnstrom K, Gardai S, Bard F, Mocci S, Seto P, You M, Larochelle C, et al: Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS One. 7:e404432012. View Article : Google Scholar : PubMed/NCBI

74 

Wei B and Lu J: Characterization of tendon-derived stem cells and rescue tendon injury. Stem Cell Rev Rep. 17:1534–1551. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Zhou Z, Akinbiyi T, Xu L, Ramcharan M, Leong DJ, Ros SJ, Colvin AC, Schaffler MB, Majeska RJ, Flatow EL and Sun HB: Tendon-derived stem/progenitor cell aging: Defective self-renewal and altered fate. Aging Cell. 9:911–915. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Zhang J and Wang JHC: Mechanobiological response of tendon stem cells: Implications of tendon homeostasis and pathogenesis of tendinopathy. J Orthop Res. 28:639–643. 2010. View Article : Google Scholar

77 

Voleti PB, Buckley MR and Soslowsky LJ: Tendon healing: repair and regeneration. Annu Rev Biomed Eng. 14:47–71. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV and Soslowsky LJ: Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann Biomed Eng. 31:599–605. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Winnicki K, Ochała-Kłos A, Rutowicz B, Pękala PA and Tomaszewski KA: Functional anatomy, histology and biomechanics of the human Achilles tendon-A comprehensive review. Ann Anat. 229:1514612020. View Article : Google Scholar

80 

Zhang M, Liu H, Cui Q, Han P, Yang S, Shi M, Zhang T, Zhang Z and Li Z: Tendon stem cell-derived exosomes regulate inflammation and promote the high-quality healing of injured tendon. Stem Cell Res Ther. 11:4022020. View Article : Google Scholar : PubMed/NCBI

81 

Margiana R, Markov A, Zekiy AO, Hamza MU, Al-Dabbagh KA, Al-Zubaidi SH, Hameed NM, Ahmad I, Sivaraman R, Kzar HH, et al: Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res Ther. 13:3662022. View Article : Google Scholar : PubMed/NCBI

82 

Chanda D, Kumar S and Ponnazhagan S: Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton. J Cell Biochem. 111:249–257. 2010. View Article : Google Scholar : PubMed/NCBI

83 

McDougall RA, Canapp SO and Canapp DA: Ultrasonographic findings in 41 dogs treated with bone marrow aspirate concentrate and platelet-rich plasma for a supraspinatus tendinopathy: A retrospective study. Front Vet Sci. 5:982018. View Article : Google Scholar : PubMed/NCBI

84 

Ruzzini L, Longo UG, Rizzello G and Denaro V: Stem cells and tendinopathy: State of the art from the basic science to clinic application. Muscles Ligaments Tendons J. 2:235–238. 2012.

85 

Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, et al: Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 13:1219–1227. 2007. View Article : Google Scholar : PubMed/NCBI

86 

Chong AKS, Ang AD, Goh JCH, Hui JHP, Lim AYT, Lee EH and Lim BH: Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg Am. 89:74–81. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Harris MT, Butler DL, Boivin GP, Florer JB, Schantz EJ and Wenstrup RJ: Mesenchymal stem cells used for rabbit tendon repair can form ectopic bone and express alkaline phosphatase activity in constructs. J Orthop Res. 22:998–1003. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Arnaud-Franco Á, Lara-Arias J, Marino-Martínez IA, Cienfuegos-Jiménez O, Barbosa-Quintana Á and Peña-Martínez VM: Effect of adipose-derived mesenchymal stem cells (ADMSCs) application in achilles-tendon injury in an animal model. Curr Issues Mol Biol. 44:5827–5838. 2022. View Article : Google Scholar : PubMed/NCBI

89 

Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, Ma K and Zhou C: Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 17:761–773. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Chu DT, Nguyen Thi Phuong T, Tien NLB, Tran DK, Minh LB, Thanh VV, Gia Anh P, Pham VH and Thi Nga V: Adipose tissue stem cells for therapy: An update on the progress of isolation, culture, storage, and clinical application. J Clin Med. 8:9172019. View Article : Google Scholar : PubMed/NCBI

91 

Gentile P, Calabrese C, De Angelis B, Pizzicannella J, Kothari A and Garcovich S: Impact of the different preparation methods to obtain human adipose-derived stromal vascular fraction cells (AD-SVFs) and human adipose-derived mesenchymal stem cells (AD-MSCs): Enzymatic digestion versus mechanical centrifugation. Int J Mol Sci. 20:54712019. View Article : Google Scholar : PubMed/NCBI

92 

Itro A, Trotta MC, Miranda R, Paoletta M, De Cicco A, Lepre CC, Tarantino U, D'Amico M, Toro G and Schiavone Panni A: Why use adipose-derived mesenchymal stem cells in tendinopathic patients: A systematic review. Pharmaceutics. 14:11512022. View Article : Google Scholar : PubMed/NCBI

93 

Lin L, Shen Q, Xue T and Yu CL: Heterotopic ossification induced by Achilles tenotomy via endochondral bone formation: Expression of bone and cartilage related genes. Bone. 46:425–431. 2010. View Article : Google Scholar

94 

Schipani E: Posttranslational modifications of collagens as targets of hypoxia and Hif-1alpha in endochondral bone development. Ann N Y Acad Sci. 1192:317–321. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Kokubu S, Inaki R, Hoshi K and Hikita A: Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regen Ther. 14:103–110. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Lee SY, Kwon B, Lee K, Son YH and Chung SG: Therapeutic mechanisms of human adipose-derived mesenchymal stem cells in a rat tendon injury model. Am J Sports Med. 45:1429–1439. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N and Suganuma N: Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. 76:3323–3348. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Fu G, Lu L, Pan Z, Fan A and Yin F: Adipose-derived stem cell exosomes facilitate rotator cuff repair by mediating tendon-derived stem cells. Regen Med. 16:359–372. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Liu H, Zhang M, Shi M, Zhang T, Lu W, Yang S, Cui Q and Li Z: Adipose-derived mesenchymal stromal cell-derived exosomes promote tendon healing by activating both SMAD1/5/9 and SMAD2/3. Stem Cell Res Ther. 12:3382021. View Article : Google Scholar : PubMed/NCBI

100 

Shi Y, Kang X, Wang Y, Bian X, He G, Zhou M and Tang K: Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Med Sci Monit. 26:e9233282020. View Article : Google Scholar : PubMed/NCBI

101 

Wu XD, Kang L, Tian J, Wu Y, Huang Y, Liu J, Wang H, Qiu G and Wu Z: Exosomes derived from magnetically actuated bone mesenchymal stem cells promote tendon-bone healing through the miR-21-5p/SMAD7 pathway. Mater Today Bio. 15:1003192022. View Article : Google Scholar : PubMed/NCBI

102 

Heo JS, Choi Y and Kim HO: Adipose-derived mesenchymal stem cells promote M2 macrophage phenotype through exosomes. Stem Cells Int. 2019:79217602019. View Article : Google Scholar : PubMed/NCBI

103 

Ragni E, Papait A, Perucca Orfei C, Silini AR, Colombini A, Viganò M, Libonati F, Parolini O and de Girolamo L: Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Transl Med. 10:1044–1062. 2021. View Article : Google Scholar : PubMed/NCBI

104 

Hong P, Yang H, Wu Y, Li K and Tang Z: The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: A comprehensive review. Stem Cell Res Ther. 10:2422019. View Article : Google Scholar : PubMed/NCBI

105 

Chen SH, Chen ZY, Lin YH, Chen SH, Chou PY, Kao HK and Lin FH: Extracellular vesicles of adipose-derived stem cells promote the healing of traumatized achilles tendons. Int J Mol Sci. 22:123732021. View Article : Google Scholar : PubMed/NCBI

106 

Racchetti G and Meldolesi J: Extracellular vesicles of mesenchymal stem cells: Therapeutic properties discovered with extraordinary success. Biomedicines. 9:6672021. View Article : Google Scholar : PubMed/NCBI

107 

Tetta C, Consiglio AL, Bruno S, Tetta E, Gatti E, Dobreva M, Cremonesi F and Camussi G: The role of microvesicles derived from mesenchymal stem cells in tissue regeneration; a dream for tendon repair? Muscles Ligaments Tendons J. 2:212–221. 2012.

108 

Rodas G, Soler-Rich R, Rius-Tarruella J, Alomar X, Balius R, Orozco L, Masci L and Maffulli N: Effect of autologous expanded bone marrow mesenchymal stem cells or leukocyte-poor platelet-rich plasma in chronic patellar tendinopathy (with gap > 3 mm): Preliminary outcomes after 6 months of a double-blind, randomized, prospective study. Am J Sports Med. 49:1492–1504. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Caplan AI: Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics. Tissue Eng. 11:1198–1211. 2005. View Article : Google Scholar : PubMed/NCBI

110 

Zhu Z, Gan X, Fan H and Yu H: Mechanical stretch endows mesenchymal stem cells stronger angiogenic and anti-apoptotic capacities via NFκB activation. Biochem Biophys Res Commun. 468:601–605. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Kasper G, Dankert N, Tuischer J, Hoeft M, Gaber T, Glaeser JD, Zander D, Tschirschmann M, Thompson M, Matziolis G and Duda GN: Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells. 25:903–910. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Longo UG, Garau G, Denaro V and Maffulli N: Surgical management of tendinopathy of biceps femoris tendon in athletes. Disabil Rehabil. 30:1602–1607. 2008. View Article : Google Scholar : PubMed/NCBI

113 

Millar NL, Murrell GAC and McInnes IB: Inflammatory mechanisms in tendinopathy-towards translation. Nat Rev Rheumatol. 13:110–122. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Dakin SG, Newton J, Martinez FO, Hedley R, Gwilym S, Jones N, Reid HAB, Wood S, Wells G, Appleton L, et al: Chronic inflammation is a feature of Achilles tendinopathy and rupture. Br J Sports Med. 52:359–367. 2018. View Article : Google Scholar

115 

Frich LH, Fernandes LR, Schrøder HD, Hejbøl EK, Nielsen PV, Jørgensen PH, Stensballe A and Lambertsen KL: The inflammatory response of the supraspinatus muscle in rotator cuff tear conditions. J Shoulder Elbow Surg. 30:e261–e275. 2021. View Article : Google Scholar

116 

Yang G, Rothrauff BB and Tuan RS: Tendon and ligament regeneration and repair: Clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today. 99:203–222. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Arvind V and Huang AH: Reparative and maladaptive inflammation in tendon healing. Front Bioeng Biotechnol. 9:7190472021. View Article : Google Scholar : PubMed/NCBI

118 

Crowe LAN, McLean M, Kitson SM, Melchor EG, Patommel K, Cao HM, Reilly JH, Leach WJ, Rooney BP, Spencer SJ, et al: S100A8 & S100A9: Alarmin mediated inflammation in tendinopathy. Sci Rep. 9:14632019. View Article : Google Scholar : PubMed/NCBI

119 

Marsolais D, Côté CH and Frenette J: Neutrophils and macrophages accumulate sequentially following Achilles tendon injury. J Orthop Res. 19:1203–1209. 2001. View Article : Google Scholar

120 

Abraham AC, Shah SA, Golman M, Song L, Li X, Kurtaliaj I, Akbar M, Millar NL, Abu-Amer Y, Galatz LM and Thomopoulos S: Targeting the NF-κB signaling pathway in chronic tendon disease. Sci Transl Med. 11:eaav43192019. View Article : Google Scholar

121 

Thankam FG, Dilisio MF, Dietz NE and Agrawal DK: TREM-1, HMGB1 and RAGE in the shoulder tendon: Dual mechanisms for inflammation based on the coincidence of glenohumeral arthritis. PLoS One. 11:e01654922016. View Article : Google Scholar : PubMed/NCBI

122 

Voloshin I, Gelinas J, Maloney MD, O'Keefe RJ, Bigliani LU and Blaine TA: Proinflammatory cytokines and metalloproteases are expressed in the subacromial bursa in patients with rotator cuff disease. Arthroscopy. 21:1076.e1–1076.e9. 2005. View Article : Google Scholar : PubMed/NCBI

123 

Eming SA, Wynn TA and Martin P: Inflammation and metabolism in tissue repair and regeneration. Science. 356:1026–1030. 2017. View Article : Google Scholar

124 

Jin R, Xu J, Gao Q, Mao X, Yin J, Lu K, Guo Y, Zhang M and Cheng R: IL-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia. Cell Death Discov. 6:332020. View Article : Google Scholar : PubMed/NCBI

125 

Gause WC, Wynn TA and Allen JE: Type 2 immunity and wound healing: Evolutionary refinement of adaptive immunity by helminths. Nat Rev Immunol. 13:607–614. 2013. View Article : Google Scholar : PubMed/NCBI

126 

Shi Y and Wang Y, Li Q, Liu K, Hou J, Shao C and Wang Y: Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 14:493–507. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, et al: Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+regulatory T cells. Stem Cells. 26:212–222. 2008. View Article : Google Scholar

128 

Shen H, Yoneda S, Abu-Amer Y, Guilak F and Gelberman RH: Stem cell-derived extracellular vesicles attenuate the early inflammatory response after tendon injury and repair. J Orthop Res. 38:117–127. 2019. View Article : Google Scholar : PubMed/NCBI

129 

Huang Y, He B, Wang L, Yuan B, Shu H, Zhang F and Sun L: Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther. 11:4962020. View Article : Google Scholar : PubMed/NCBI

130 

Challoumas D, Biddle M and Millar NL: Recent advances in tendinopathy. Fac Rev. 9:162020. View Article : Google Scholar

131 

Zhang K, Asai S, Yu B and Enomoto-Iwamoto M: IL-1β irreversibly inhibits tenogenic differentiation and alters metabolism in injured tendon-derived progenitor cells in vitro. Biochem Biophys Res Commun. 463:667–672. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Tohyama H, Yasuda K, Uchida H and Nishihira J: The responses of extrinsic fibroblasts infiltrating the devitalised patellar tendon to IL-1beta are different from those of normal tendon fibroblasts. J Bone Joint Surg Br. 89:1261–1267. 2007. View Article : Google Scholar : PubMed/NCBI

133 

Guerquin MJ, Charvet B, Nourissat G, Havis E, Ronsin O, Bonnin MA, Ruggiu M, Olivera-Martinez I, Robert N, Lu Y, et al: Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest. 123:3564–3576. 2013. View Article : Google Scholar : PubMed/NCBI

134 

Yang G, Im HJ and Wang JHC: Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene. 363:166–172. 2005. View Article : Google Scholar : PubMed/NCBI

135 

Lawrence T: The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 1:a0016512009. View Article : Google Scholar

136 

Gohda J, Matsumura T and Inoue JI: Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol. 173:2913–2917. 2004. View Article : Google Scholar : PubMed/NCBI

137 

Striz I, Brabcova E, Kolesar L and Sekerkova A: Cytokine networking of innate immunity cells: A potential target of therapy. Clin Sci (Lond). 126:593–612. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Schottelius AJ, Mayo MW, Sartor RB and Baldwin AS Jr: Interleukin-10 signaling blocks inhibitor of kappaB kinase activity and nuclear factor kappaB DNA binding. J Biol Chem. 274:31868–31874. 1999. View Article : Google Scholar : PubMed/NCBI

139 

Karin M and Delhase M: The I kappa B kinase (IKK) and NF-kappa B: Key elements of proinflammatory signalling. Semin Immunol. 12:85–98. 2000. View Article : Google Scholar : PubMed/NCBI

140 

Oeckinghaus A and Ghosh S: The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 1:a0000342009. View Article : Google Scholar

141 

Xie F, Teng L, Xu J, Lu J, Zhang C, Yang L, Ma X and Zhao M: Interleukin-10 modified bone marrow mesenchymal stem cells prevent hypertrophic scar formation by inhibiting inflammation. Pharmazie. 75:571–575. 2020.PubMed/NCBI

142 

Best KT, Nichols AEC, Knapp E, Hammert WC, Ketonis C, Jonason JH, Awad HA and Loiselle AE: NF-κB activation persists into the remodeling phase of tendon healing and promotes myofibroblast survival. Sci Signal. 13:eabb72092020. View Article : Google Scholar

143 

Li Z, Li Q, Tong K, Zhu J, Wang H, Chen B and Chen L: BMSC-derived exosomes promote tendon-bone healing after anterior cruciate ligament reconstruction by regulating M1/M2 macrophage polarization in rats. Stem Cell Res Ther. 13:2952022. View Article : Google Scholar : PubMed/NCBI

144 

Gumina S, Natalizi S, Melaragni F, Leopizzi M, Carbone S, Postacchini F, Milani A and Della Rocca C: The possible role of the transcription factor nuclear factor-κB on evolution of rotator cuff tear and on mechanisms of cuff tendon healing. J Shoulder Elbow Surg. 22:673–680. 2013. View Article : Google Scholar

145 

Kirkham AM, Bailey AJM, Tieu A, Maganti HB, Montroy J, Shorr R, Campbell TM, Fergusson DA, Lalu MM, Elmoazzen H and Allan DS: MSC-derived extracellular vesicles in preclinical animal models of bone injury: A systematic review and meta-analysis. Stem Cell Rev Rep. 18:1054–1066. 2022. View Article : Google Scholar

146 

Tardito S, Martinelli G, Soldano S, Paolino S, Pacini G, Patane M, Alessandri E, Smith V and Cutolo M: Macrophage M1/M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev. 18:1023972019. View Article : Google Scholar : PubMed/NCBI

147 

Chamberlain CS, Clements AEB, Kink JA, Choi U, Baer GS, Halanski MA, Hematti P and Vanderby R: Extracellular vesicle-educated macrophages promote early achilles tendon healing. Stem Cells. 37:652–662. 2019. View Article : Google Scholar : PubMed/NCBI

148 

Andia I, Sanchez M and Maffulli N: Tendon healing and platelet-rich plasma therapies. Expert Opin Biol Ther. 10:1415–1426. 2010. View Article : Google Scholar : PubMed/NCBI

149 

Durgam S and Stewart M: Cellular and molecular factors influencing tendon repair. Tissue Eng Part B Rev. 23:307–317. 2017. View Article : Google Scholar : PubMed/NCBI

150 

Pufe T, Petersen W, Tillmann B and Mentlein R: The angiogenic peptide vascular endothelial growth factor is expressed in foetal and ruptured tendons. Virchows Arch. 439:579–585. 2001. View Article : Google Scholar : PubMed/NCBI

151 

Kannus P: Etiology and pathophysiology of chronic tendon disorders in sports. Scand J Med Sci Sports. 7:78–85. 1997. View Article : Google Scholar : PubMed/NCBI

152 

Taylor CT: Interdependent roles for hypoxia inducible factor and nuclear factor-kappaB in hypoxic inflammation. J Physiol. 586:4055–4059. 2008. View Article : Google Scholar : PubMed/NCBI

153 

Berse B, Hunt JA, Diegel RJ, Morganelli P, Yeo K, Brown F and Fava RA: Hypoxia augments cytokine (transforming growth factor-beta (TGF-beta) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin Exp Immunol. 115:176–182. 1999. View Article : Google Scholar : PubMed/NCBI

154 

Semenza GL: Hydroxylation of HIF-1: Oxygen sensing at the molecular level. Physiology (Bethesda). 19:176–182. 2004.PubMed/NCBI

155 

Cummins EP and Taylor CT: Hypoxia-responsive transcription factors. Pflugers Arch. 450:363–371. 2005. View Article : Google Scholar : PubMed/NCBI

156 

Wezenbeek E, Willems T, Mahieu N, De Muynck M, Vanden Bossche L, Steyaert A, De Clercq D and Witvrouw E: The role of the vascular and structural response to activity in the development of achilles tendinopathy: A prospective study. Am J Sports Med. 46:947–954. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Kaigler D, Krebsbach PH, Polverini PJ and Mooney DJ: Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng. 9:95–103. 2003. View Article : Google Scholar : PubMed/NCBI

158 

Furumatsu T, Shen ZN, Kawai A, Nishida K, Manabe H, Oohashi T, Inoue H and Ninomiya Y: Vascular endothelial growth factor principally acts as the main angiogenic factor in the early stage of human osteoblastogenesis. J Biochem. 133:633–639. 2003. View Article : Google Scholar : PubMed/NCBI

159 

Al-Khaldi A, Eliopoulos N, Martineau D, Lejeune L, Lachapelle K and Galipeau J: Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther. 10:621–629. 2003. View Article : Google Scholar : PubMed/NCBI

160 

Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ and Holash J: Vascular-specific growth factors and blood vessel formation. Nature. 407:242–248. 2000. View Article : Google Scholar : PubMed/NCBI

161 

Rauniyar K, Jha SK and Jeltsch M: Biology of vascular endothelial growth factor C in the morphogenesis of lymphatic vessels. Front Bioeng Biotechnol. 6:72018. View Article : Google Scholar : PubMed/NCBI

162 

Boyer MI, Watson JT, Lou J, Manske PR, Gelberman RH and Cai SR: Quantitative variation in vascular endothelial growth factor mRNA expression during early flexor tendon healing: An investigation in a canine model. J Orthop Res. 19:869–872. 2001. View Article : Google Scholar : PubMed/NCBI

163 

Conway EM, Collen D and Carmeliet P: Molecular mechanisms of blood vessel growth. Cardiovasc Res. 49:507–521. 2001. View Article : Google Scholar : PubMed/NCBI

164 

Karamysheva AF: Mechanisms of angiogenesis. Biochemistry (Mosc). 73:751–762. 2008. View Article : Google Scholar : PubMed/NCBI

165 

Ferrara N: Molecular and biological properties of vascular endothelial growth factor. J Mol Med (Berl). 77:527–543. 1999. View Article : Google Scholar : PubMed/NCBI

166 

Ge L, Xun C, Li W, Jin S, Liu Z, Zhuo Y, Duan D, Hu Z, Chen P and Lu M: Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612. J Nanobiotechnology. 19:3802021. View Article : Google Scholar : PubMed/NCBI

167 

Hou J, Zhong T, Guo T, Miao C, Zhou C, Long H, Wu H, Zheng S, Wang L and Wang T: Apelin promotes mesenchymal stem cells survival and vascularization under hypoxic-ischemic condition in vitro involving the upregulation of vascular endothelial growth factor. Exp Mol Pathol. 102:203–209. 2017. View Article : Google Scholar : PubMed/NCBI

168 

Chen G, Zhang W, Zhang K, Wang S, Gao Y, Gu J, He L, Li W, Zhang C, Zhang W, et al: Hypoxia-induced mesenchymal stem cells exhibit stronger tenogenic differentiation capacities and promote patellar tendon repair in rabbits. Stem Cells Int. 2020:88226092020. View Article : Google Scholar : PubMed/NCBI

169 

Haque N, Rahman MT, Abu Kasim NH and Alabsi AM: Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal. 2013:6329722013. View Article : Google Scholar : PubMed/NCBI

170 

Qu Q, Wang L, Bing W, Bi Y, Zhang C, Jing X and Liu L: miRNA-126-3p carried by human umbilical cord mesenchymal stem cell enhances endothelial function through exosome-mediated mechanisms in vitro and attenuates vein graft neointimal formation in vivo. Stem Cell Res Ther. 11:4642020. View Article : Google Scholar : PubMed/NCBI

171 

Gong M, Yu B, Wang J, Wang Y, Liu M, Paul C, Millard RW, Xiao DS, Ashraf M and Xu M: Mesenchymal stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget. 8:45200–45212. 2017. View Article : Google Scholar : PubMed/NCBI

172 

Liang X, Zhang L, Wang S, Han Q and Zhao RC: Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 129:2182–2189. 2016. View Article : Google Scholar : PubMed/NCBI

173 

Wu F, Nerlich M and Docheva D: Tendon injuries: Basic science and new repair proposals. EFORT Open Rev. 2:332–342. 2017. View Article : Google Scholar : PubMed/NCBI

174 

Thomopoulos S, Parks WC, Rifkin DB and Derwin KA: Mechanisms of tendon injury and repair. J Orthop Res. 33:832–839. 2015. View Article : Google Scholar : PubMed/NCBI

175 

Walia B and Huang AH: Tendon stem progenitor cells: Understanding the biology to inform therapeutic strategies for tendon repair. J Orthop Res. 37:1270–1280. 2019. View Article : Google Scholar :

176 

Lovati AB, Corradetti B, Lange Consiglio A, Recordati C, Bonacina E, Bizzaro D and Cremonesi F: Characterization and differentiation of equine tendon-derived progenitor cells. J Biol Regul Homeost Agents. 25(2 Suppl): S75–S84. 2011.PubMed/NCBI

177 

Qin S, Wang W, Liu Z, Hua X, Fu S, Dong F, Li A, Liu Z, Wang P, Dai L, et al: Fibrochondrogenic differentiation potential of tendon-derived stem/progenitor cells from human patellar tendon. J Orthop Translat. 22:101–108. 2020. View Article : Google Scholar : PubMed/NCBI

178 

Al-Ani MKH, Xu K, Sun Y, Pan L, Xu Z and Yang L: Study of bone marrow mesenchymal and tendon-derived stem cells transplantation on the regenerating effect of achilles tendon ruptures in rats. Stem Cells Int. 2015:9841462015. View Article : Google Scholar : PubMed/NCBI

179 

Leong DJ and Sun HB: Mesenchymal stem cells in tendon repair and regeneration: Basic understanding and translational challenges. Ann N Y Acad Sci. 1383:88–96. 2016. View Article : Google Scholar : PubMed/NCBI

180 

Vermeulen S, Vasilevich A, Tsiapalis D, Roumans N, Vroemen P, Beijer NRM, Dede Eren A, Zeugolis D and de Boer J: Identification of topographical architectures supporting the phenotype of rat tenocytes. Acta Biomater. 83:277–290. 2019. View Article : Google Scholar

181 

Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H and Mao JJ: Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study. Lancet. 376:440–448. 2010. View Article : Google Scholar : PubMed/NCBI

182 

Sun Y, Liu WZ, Liu T, Feng X, Yang N and Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI

183 

Seuntjens E, Umans L, Zwijsen A, Sampaolesi M, Verfaillie CM and Huylebroeck D: Transforming growth factor type beta and Smad family signaling in stem cell function. Cytokine Growth Factor Rev. 20:449–458. 2009. View Article : Google Scholar : PubMed/NCBI

184 

Liu H, Zhang C, Zhu S, Lu P, Zhu T, Gong X, Zhang Z, Hu J, Yin Z, Heng BC, et al: Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFβ signaling pathway. Stem Cells. 33:443–455. 2015. View Article : Google Scholar

185 

Kim HM, Galatz LM, Das R, Havlioglu N, Rothermich SY and Thomopoulos S: The role of transforming growth factor beta isoforms in tendon-to-bone healing. Connect Tissue Res. 52:87–98. 2011. View Article : Google Scholar

186 

Lee CH, Shah B, Moioli EK and Mao JJ: CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest. 125:39922015. View Article : Google Scholar : PubMed/NCBI

187 

Li X, Pongkitwitoon S, Lu H, Lee C, Gelberman R and Thomopoulos S: CTGF induces tenogenic differentiation and proliferation of adipose-derived stromal cells. J Orthop Res. 37:574–582. 2019. View Article : Google Scholar : PubMed/NCBI

188 

Lee CH, Lee FY, Tarafder S, Kao K, Jun Y, Yang G and Mao JJ: Harnessing endogenous stem/progenitor cells for tendon regeneration. J Clin Invest. 125:2690–2701. 2015. View Article : Google Scholar : PubMed/NCBI

189 

Zhang B, Luo Q, Chen Z, Shi Y, Ju Y, Yang L and Song G: Increased nuclear stiffness via FAK-ERK1/2 signaling is necessary for synthetic mechano-growth factor E peptide-induced tenocyte migration. Sci Rep. 6:188092016. View Article : Google Scholar : PubMed/NCBI

190 

Shen H, Gelberman RH, Silva MJ, Sakiyama-Elbert SE and Thomopoulos S: BMP12 induces tenogenic differentiation of adipose-derived stromal cells. PLoS One. 8:e776132013. View Article : Google Scholar : PubMed/NCBI

191 

Violini S, Ramelli P, Pisani LF, Gorni C and Mariani P: Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol. 10:292009. View Article : Google Scholar : PubMed/NCBI

192 

Gonçalves AI, Rodrigues MT, Lee SJ, Atala A, Yoo JJ, Reis RL and Gomes ME: Understanding the role of growth factors in modulating stem cell tenogenesis. PLoS One. 8:e837342013. View Article : Google Scholar

193 

Wu T, Liu Y, Wang B, Sun Y, Xu J, Yuk-Wai LW, Xu L, Zhang J and Li G: The use of cocultured mesenchymal stem cells with tendon-derived stem cells as a better cell source for tendon repair. Tissue Eng Part A. 22:1229–1240. 2016. View Article : Google Scholar : PubMed/NCBI

194 

Kuo CK, Marturano JE and Tuan RS: Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs. Sports Med Arthrosc Rehabil Ther Technol. 2:202010.PubMed/NCBI

195 

Park SA, Kim IA, Lee YJ and Shin JW, Kim CR, Kim JK, Yang YI and Shin JW: Biological responses of ligament fibroblasts and gene expression profiling on micropatterned silicone substrates subjected to mechanical stimuli. J Biosci Bioeng. 102:402–412. 2006. View Article : Google Scholar : PubMed/NCBI

196 

Riboh J, Chong AK, Pham H, Longaker M, Jacobs C and Chang J: Optimization of flexor tendon tissue engineering with a cyclic strain bioreactor. J Hand Surg Am. 33:1388–1396. 2008. View Article : Google Scholar : PubMed/NCBI

197 

Yang G, Crawford RC and Wang JH: Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech. 37:1543–1550. 2004. View Article : Google Scholar : PubMed/NCBI

198 

Costa-Almeida R, Calejo I and Gomes ME: Mesenchymal stem cells empowering tendon regenerative therapies. Int J Mol Sci. 20:30022019. View Article : Google Scholar : PubMed/NCBI

199 

Crovace A, Lacitignola L, Rossi G and Francioso E: Histological and immunohistochemical evaluation of autologous cultured bone marrow mesenchymal stem cells and bone marrow mononucleated cells in collagenase-induced tendinitis of equine superficial digital flexor tendon. Vet Med Int. 2010:2509782010. View Article : Google Scholar : PubMed/NCBI

200 

Bramono DS, Richmond JC, Weitzel PP, Kaplan DL and Altman GH: Matrix metalloproteinases and their clinical applications in orthopaedics. Clin Orthop Relat Res. 272–285. 2004. View Article : Google Scholar : PubMed/NCBI

201 

Oshiro W, Lou J, Xing X, Tu Y and Manske PR: Flexor tendon healing in the rat: A histologic and gene expression study. J Hand Surg Am. 28:814–823. 2003. View Article : Google Scholar : PubMed/NCBI

202 

Gruber R, Kandler B, Holzmann P, Vögele-Kadletz M, Losert U, Fischer MB and Watzek G: Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells. Tissue Eng. 11:896–903. 2005. View Article : Google Scholar : PubMed/NCBI

203 

Zhang X, Cai Z, Wu M, Huangfu X, Li J and Liu X: Adipose stem cell-derived exosomes recover impaired matrix metabolism of torn human rotator cuff tendons by maintaining tissue homeostasis. Am J Sports Med. 49:899–908. 2021. View Article : Google Scholar : PubMed/NCBI

204 

Katzel EB, Wolenski M, Loiselle AE, Basile P, Flick LM, Langstein HN, Hilton MJ, Awad HA, Hammert WC and O'Keefe RJ: Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. J Orthop Res. 29:684–693. 2011. View Article : Google Scholar

205 

Brown KA, Pietenpol JA and Moses HL: A tale of two proteins: Differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem. 101:9–33. 2007. View Article : Google Scholar : PubMed/NCBI

206 

Li F, Zeng B, Chai Y, Cai P, Fan C and Cheng T: The linker region of Smad2 mediates TGF-beta-dependent ERK2-induced collagen synthesis. Biochem Biophys Res Commun. 386:289–293. 2009. View Article : Google Scholar : PubMed/NCBI

207 

Moustakas A, Pardali K, Gaal A and Heldin CH: Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 82:85–91. 2002. View Article : Google Scholar : PubMed/NCBI

208 

Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C and Shi Y: The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther. 7:922022. View Article : Google Scholar : PubMed/NCBI

209 

Almalki SG: Adipose-derived mesenchymal stem cells and wound healing: Potential clinical applications in wound repair. Saudi Med J. 43:1075–1086. 2022. View Article : Google Scholar : PubMed/NCBI

210 

Chen X, Song XH, Yin Z, Zou XH, Wang LL, Hu H, Cao T, Zheng M and Ouyang HW: Stepwise differentiation of human embryonic stem cells promotes tendon regeneration by secreting fetal tendon matrix and differentiation factors. Stem Cells. 27:1276–1287. 2009. View Article : Google Scholar : PubMed/NCBI

211 

Chen X, Zou XH, Yin GL and Ouyang HW: Tendon tissue engineering with mesenchymal stem cells and biografts: An option for large tendon defects? Front Biosci (Schol Ed). 1:23–32. 2009. View Article : Google Scholar : PubMed/NCBI

212 

Wang XT, Liu PY and Tang JB: Tendon healing in vitro: Modification of tenocytes with exogenous vascular endothelial growth factor gene increases expression of transforming growth factor beta but minimally affects expression of collagen genes. J Hand Surg Am. 30:222–229. 2005. View Article : Google Scholar : PubMed/NCBI

213 

Wang QW, Chen ZL and Piao YJ: Mesenchymal stem cells differentiate into tenocytes by bone morphogenetic protein (BMP) 12 gene transfer. J Biosci Bioeng. 100:418–422. 2005. View Article : Google Scholar : PubMed/NCBI

214 

Kraus A, Woon C, Raghavan S, Megerle K, Pham H and Chang J: Co-culture of human adipose-derived stem cells with tenocytes increases proliferation and induces differentiation into a tenogenic lineage. Plast Reconstr Surg. 132:754e–766e. 2013. View Article : Google Scholar : PubMed/NCBI

215 

Sugimoto Y, Takimoto A, Akiyama H, Kist R, Scherer G, Nakamura T, Hiraki Y and Shukunami C: Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development. 140:2280–2288. 2013. View Article : Google Scholar : PubMed/NCBI

216 

Liu H, Xu J, Lan Y, Lim HW and Jiang R: The scleraxis transcription factor directly regulates multiple distinct molecular and cellular processes during early tendon cell differentiation. Front Cell Dev Biol. 9:6543972021. View Article : Google Scholar : PubMed/NCBI

217 

Oshita T, Tobita M, Tajima S and Mizuno H: Adipose-derived stem cells improve collagenase-induced tendinopathy in a rat model. Am J Sports Med. 44:1983–1989. 2016. View Article : Google Scholar : PubMed/NCBI

218 

Aicale R, Tarantino D and Maffulli N: Overuse injuries in sport: A comprehensive overview. J Orthop Surg Res. 13:3092018. View Article : Google Scholar : PubMed/NCBI

219 

Steinmann S, Pfeifer CG, Brochhausen C and Docheva D: Spectrum of tendon pathologies: Triggers, trails and end-state. Int J Mol Sci. 21:8442020. View Article : Google Scholar : PubMed/NCBI

220 

Canapp SO Jr, Canapp DA, Ibrahim V, Carr BJ, Cox C and Barrett JG: The use of adipose-derived progenitor cells and platelet-rich plasma combination for the treatment of supraspinatus tendinopathy in 55 dogs: A retrospective study. Front Vet Sci. 3:612016. View Article : Google Scholar : PubMed/NCBI

221 

Bruns J, Kampen J, Kahrs J and Plitz W: Achilles tendon rupture: Experimental results on spontaneous repair in a sheep-model. Knee Surg Sports Traumatol Arthrosc. 8:364–369. 2000. View Article : Google Scholar

222 

Im GI and Kim TK: Stem cells for the regeneration of tendon and ligament: A perspective. Int J Stem Cells. 13:335–341. 2020. View Article : Google Scholar : PubMed/NCBI

223 

Arnhold S, Elashry MI, Klymiuk MC and Wenisch S: Biological macromolecules and mesenchymal stem cells: Basic research for regenerative therapies in veterinary medicine. Int J Biol Macromol. 123:889–899. 2019. View Article : Google Scholar

224 

Harman RM, Patel RS, Fan JC, Park JE, Rosenberg BR and Van de Walle GR: Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Res Ther. 11:5242020. View Article : Google Scholar : PubMed/NCBI

225 

Gonçalves AI, Gershovich PM, Rodrigues MT, Reis RL and Gomes ME: Human adipose tissue-derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells. J Tissue Eng Regen Med. 12:762–774. 2018. View Article : Google Scholar

226 

Dias IE, Cardoso DF, Soares CS, Barros LC, Viegas CA, Carvalho PP and Dias IR: Clinical application of mesenchymal stem cells therapy in musculoskeletal injuries in dogs-a review of the scientific literature. Open Vet J. 11:188–202. 2021. View Article : Google Scholar : PubMed/NCBI

227 

Loebel C and Burdick JA: Engineering stem and stromal cell therapies for musculoskeletal tissue repair. Cell Stem Cell. 22:325–339. 2018. View Article : Google Scholar : PubMed/NCBI

228 

Lui PPY: Mesenchymal stem cell-derived extracellular vesicles for the promotion of tendon repair-an update of literature. Stem Cell Rev Rep. 17:379–389. 2021. View Article : Google Scholar

229 

Brennan MÁ, Layrolle P and Mooney DJ: Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Adv Funct Mater. 30:19091252020. View Article : Google Scholar : PubMed/NCBI

230 

Peroni JF and Borjesson DL: Anti-inflammatory and immunomodulatory activities of stem cells. Vet Clin North Am Equine Pract. 27:351–362. 2011. View Article : Google Scholar : PubMed/NCBI

231 

Shojaee A and Parham A: Strategies of tenogenic differentiation of equine stem cells for tendon repair: Current status and challenges. Stem Cell Res Ther. 10:1812019. View Article : Google Scholar : PubMed/NCBI

232 

Gugjoo MB, Pal Amar, Makhdoomi DM and Sharma GT: Equine mesenchymal stem cells: Properties, sources, characterization, and potential therapeutic applications. J Equine Vet Sci. 72:16–27. 2019. View Article : Google Scholar : PubMed/NCBI

233 

Iacono E, Pascucci L, Rossi B, Bazzucchi C, Lanci A, Ceccoli M and Merlo B: Ultrastructural characteristics and immune profile of equine MSCs from fetal adnexa. Reproduction. 154:509–519. 2017. View Article : Google Scholar : PubMed/NCBI

234 

Ikehara S: A novel BMT technique for treatment of various currently intractable diseases. Best Pract Res Clin Haematol. 24:477–483. 2011. View Article : Google Scholar : PubMed/NCBI

235 

De Becker A and Riet IV: Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells. 8:73–87. 2016. View Article : Google Scholar : PubMed/NCBI

236 

Zhao T, Qi Y, Xiao S, Ran J, Wang J, Ghamor-Amegavi EP, Zhou X, Li H, He T, Gou Z, et al: Integration of mesenchymal stem cell sheet and bFGF-loaded fibrin gel in knitted PLGA scaffolds favorable for tendon repair. J Mater Chem B. 7:2201–2211. 2019. View Article : Google Scholar

237 

Supokawej A, Korchunjit W and Wongtawan T: The combination of BMP12 and KY02111 enhances tendon differentiation in bone marrow-derived equine mesenchymal stromal cells (BM-eMSCs). J Equine Sci. 33:19–26. 2022. View Article : Google Scholar : PubMed/NCBI

238 

Huang TF, Yew TL, Chiang ER, Ma HL, Hsu CY, Hsu SH, Hsu YT and Hung SC: Mesenchymal stem cells from a hypoxic culture improve and engraft Achilles tendon repair. Am J Sports Med. 41:1117–1125. 2013. View Article : Google Scholar : PubMed/NCBI

239 

Han P, Cui Q, Yang S, Wang H, Gao P and Li Z: Tumor necrosis factor-α and transforming growth factor-β1 facilitate differentiation and proliferation of tendon-derived stem cells in vitro. Biotechnol Lett. 39:711–719. 2017. View Article : Google Scholar : PubMed/NCBI

240 

Ouyang HW, Goh JCH and Lee EH: Use of bone marrow stromal cells for tendon graft-to-bone healing: Histological and immunohistochemical studies in a rabbit model. Am J Sports Med. 32:321–327. 2004. View Article : Google Scholar : PubMed/NCBI

241 

Yao Z, Li J, Xiong H, Cui H, Ning J, Wang S, Ouyang X, Qian Y and Fan C: MicroRNA engineered umbilical cord stem cell-derived exosomes direct tendon regeneration by mTOR signaling. J Nanobiotechnology. 19:1692021. View Article : Google Scholar : PubMed/NCBI

242 

Shen H, Kormpakis I, Havlioglu N, Linderman SW, Sakiyama-Elbert SE, Erickson IE, Zarembinski T, Silva MJ, Gelberman RH and Thomopoulos S: The effect of mesenchymal stromal cell sheets on the inflammatory stage of flexor tendon healing. Stem Cell Res Ther. 7:1442016. View Article : Google Scholar : PubMed/NCBI

243 

Li J, Yao Z, Xiong H, Cui H, Wang X, Zheng W, Qian Y and Fan C: Extracellular vesicles from hydroxycamptothecin primed umbilical cord stem cells enhance anti-adhesion potential for treatment of tendon injury. Stem Cell Res Ther. 11:5002020. View Article : Google Scholar : PubMed/NCBI

244 

Geburek F, Mundle K, Conrad S, Hellige M, Walliser U, van Schie HT, van Weeren R, Skutella T and Stadler PM: Tracking of autologous adipose tissue-derived mesenchymal stromal cells with in vivo magnetic resonance imaging and histology after intralesional treatment of artificial equine tendon lesions-a pilot study. Stem Cell Res Ther. 7:212016. View Article : Google Scholar

245 

Yea JH, Park JK, Kim IJ, Sym G, Bae TS and Jo CH: Regeneration of a full-thickness defect of rotator cuff tendon with freshly thawed umbilical cord-derived mesenchymal stem cells in a rat model. Stem Cell Res Ther. 11:3872020. View Article : Google Scholar : PubMed/NCBI

246 

Xue Y, Kim HJ, Lee J, Liu Y, Hoffman T, Chen Y, Zhou X, Sun W, Zhang S, Cho HJ, et al: Co-electrospun silk fibroin and gelatin methacryloyl sheet seeded with mesenchymal stem cells for tendon regeneration. Small. 18:e21077142022. View Article : Google Scholar : PubMed/NCBI

247 

Uyar İ, Altuntaş Z, Fındık S, Yıldırım MEC, Yarar S, Aktan M and Avcı A: The effects of a combination treatment with mesenchymal stem cell and platelet-rich plasma on tendon healing: An experimental study. Turk J Med Sci. 52:237–247. 2022.PubMed/NCBI

248 

Kang K, Geng Q, Cui L, Wu L, Zhang L, Li T, Zhang Q and Gao S: Upregulation of Runt related transcription factor 1 (RUNX1) contributes to tendon-bone healing after anterior cruciate ligament reconstruction using bone mesenchymal stem cells. J Orthop Surg Res. 17:2662022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiang L, Lu J, Chen Y, Lyu K, Long L, Wang X, Liu T and Li S: Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review). Int J Mol Med 52: 70, 2023.
APA
Jiang, L., Lu, J., Chen, Y., Lyu, K., Long, L., Wang, X. ... Li, S. (2023). Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review). International Journal of Molecular Medicine, 52, 70. https://doi.org/10.3892/ijmm.2023.5273
MLA
Jiang, L., Lu, J., Chen, Y., Lyu, K., Long, L., Wang, X., Liu, T., Li, S."Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review)". International Journal of Molecular Medicine 52.2 (2023): 70.
Chicago
Jiang, L., Lu, J., Chen, Y., Lyu, K., Long, L., Wang, X., Liu, T., Li, S."Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review)". International Journal of Molecular Medicine 52, no. 2 (2023): 70. https://doi.org/10.3892/ijmm.2023.5273
Copy and paste a formatted citation
x
Spandidos Publications style
Jiang L, Lu J, Chen Y, Lyu K, Long L, Wang X, Liu T and Li S: Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review). Int J Mol Med 52: 70, 2023.
APA
Jiang, L., Lu, J., Chen, Y., Lyu, K., Long, L., Wang, X. ... Li, S. (2023). Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review). International Journal of Molecular Medicine, 52, 70. https://doi.org/10.3892/ijmm.2023.5273
MLA
Jiang, L., Lu, J., Chen, Y., Lyu, K., Long, L., Wang, X., Liu, T., Li, S."Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review)". International Journal of Molecular Medicine 52.2 (2023): 70.
Chicago
Jiang, L., Lu, J., Chen, Y., Lyu, K., Long, L., Wang, X., Liu, T., Li, S."Mesenchymal stem cells: An efficient cell therapy for tendon repair (Review)". International Journal of Molecular Medicine 52, no. 2 (2023): 70. https://doi.org/10.3892/ijmm.2023.5273
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team