|
1
|
Jubber I, Ong S, Bukavina L, Black PC,
Compérat E, Kamat AM, Kiemeney L, Lawrentschuk N, Lerner SP, Meeks
JJ, et al: Epidemiology of bladder cancer in 2023: A systematic
review of risk factors. Eur Urol. May 15–2023.(Epub ahead of
print). View Article : Google Scholar : PubMed/NCBI
|
|
2
|
World Cancer Research Fund (WCRF)
International, . Bladder cancer statistics. WCRF International,
London, 2020. https://www.wcrf.org/cancer-trends/bladder-cancer-statistics
|
|
3
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Warburg O, Wind F and Negelein E: The
metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Upadhyay M, Samal J, Kandpal M, Singh OV
and Vivekanandan P: The Warburg effect: Insights from the past
decade. Pharmacol Ther. 137:318–330. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pascale RM, Calvisi DF, Simile MM, Feo CF
and Feo F: The Warburg effect 97 years after its discovery. Cancers
(Basel). 12:28192020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Massari F, Ciccarese C, Santoni M,
Iacovelli R, Mazzucchelli R, Piva F, Scarpelli M, Berardi R,
Tortora G, Lopez-Beltran A, et al: Metabolic phenotype of bladder
cancer. Cancer Treat Rev. 45:46–57. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Adnane S, Marino A and Leucci E: LncRNAs
in human cancers: Signal from noise. Trends Cell Biol. 32:565–573.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang J, Zhu S, Meng N, He Y, Lu R and Yan
GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther.
27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Anastasiadou E, Jacob LS and Slack FJ:
Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li Y, Li G, Guo X, Yao H, Wang G and Li C:
Non-coding RNA in bladder cancer. Cancer Lett. 485:38–44. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chandra Gupta S and Nandan Tripathi Y:
Potential of long non-coding RNAs in cancer patients: From
biomarkers to therapeutic targets. Int J Cancer. 140:1955–1967.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Martens-Uzunova ES, Böttcher R, Croce CM,
Jenster G, Visakorpi T and Calin GA: Long noncoding RNA in
prostate, bladder, and kidney cancer. Eur Urol. 65:1140–1151. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hu QG, Yang Z, Chen JW, Kazobinka G, Tian
L and Li WC: MiR-183-5p-PNPT1 axis enhances cisplatin-induced
apoptosis in bladder cancer cells. Curr Med Sci Aug. 42:785–796.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liu Z, Yang Y, Yang Z, Xia S, Lin D, Xiao
B and Xiu Y: Novel circRNA_0071196/miRNA-19b-3p/CIT axis is
associated with proliferation and migration of bladder cancer. Int
J Oncol. 57:767–779. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zhang Y, Zhang D, Lv J, Wang S and Zhang
Q: MiR-125a-5p suppresses bladder cancer progression through
targeting FUT4. Biomed Pharmacother. 108:1039–1047. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu S, Chen Q and Wang Y: MiR-125b-5p
suppresses the bladder cancer progression via targeting HK2 and
suppressing PI3K/AKT pathway. Hum Cell. 33:185–194. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Luo W, Wang J, Xu W, Ma C, Wan F, Huang Y,
Yao M, Zhang H, Qu Y, Ye D and Zhu Y: LncRNA RP11-89 facilitates
tumorigenesis and ferroptosis resistance through PROM2-activated
iron export by sponging miR-129-5p in bladder cancer. Cell Death
Dis. 12:10432021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen C, Luo Y, He W, Zhao Y, Kong Y, Liu
H, Zhong G, Li Y, Li J, Huang J, et al: Exosomal long noncoding RNA
LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin
Invest. 130:404–421. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Logotheti S, Marquardt S, Gupta SK,
Richter C, Edelhäuser BAH, Engelmann D, Brenmoehl J, Söhnchen C,
Murr N, Alpers M, et al: LncRNA-SLC16A1-AS1 induces metabolic
reprogramming during Bladder Cancer progression as target and
co-activator of E2F1. Theranostics. 10:9620–9643. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
He W, Zhong G, Jiang N, Wang B, Fan X,
Chen C, Chen X, Huang J and Lin T: Long noncoding RNA BLACAT2
promotes bladder cancer-associated lymphangiogenesis and lymphatic
metastasis. J Clin Invest. 128:861–875. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lv J, Li K, Yu H, Han J, Zhuang J, Yu R,
Cheng Y, Song Q, Bai K, Cao Q, et al: HNRNPL induced circFAM13B
increased bladder cancer immunotherapy sensitivity via inhibiting
glycolysis through IGF2BP1/PKM2 pathway. J Exp Clin Cancer Res.
42:412023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y,
Chen X, Chen Y, Xu C, Hu Y, et al: Exosome-derived circTRPS1
promotes malignant phenotype and CD8+ T cell exhaustion in bladder
cancer microenvironments. Mol Ther. 30:1054–1070. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wei W, Sun J, Zhang H, Xiao X, Huang C,
Wang L, Zhong H, Jiang Y, Zhang X and Jiang G: Circ0008399
Interaction with WTAP promotes assembly and activity of the m6A
Methyltransferase complex and promotes cisplatin resistance in
bladder cancer. Cancer Res. 81:6142–6156. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
McConkey DJ and Choi W: Molecular subtypes
of bladder cancer. Curr Oncol Rep. 20:772018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ko YH, Verhoeven HA, Lee MJ, Corbin DJ,
Vogl TJ and Pedersen PL: A translational study ‘case report’ on the
small molecule ‘energy blocker’ 3-bromopyruvate (3BP) as a potent
anticancer agent: from bench side to bedside. J Bioenerg Biomembr.
44:163–170. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mattick JS: Challenging the dogma: The
hidden layer of non-proteincoding RNAs in complex organisms.
Bioessays. 25:930–939. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Mattick JS: The hidden genetic program of
complex organisms. Sci Am. 291:60–67. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hombach S and Kretz M: Non-coding RNAs:
Classification, biology and functioning. Adv Exp Med Biol.
937:3–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Heinrichs A: MicroRNAs get a boost. Nat
Rev Mol Cell Biol. 10:302–303. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Baumann K: Gene expression: RNAi as a
global transcriptional activator. Nat Rev Mol Cell Biol.
15:2982014.PubMed/NCBI
|
|
32
|
Sato K and Siomi MC: Piwi-interacting
RNAs: Biological functions and biogenesis. Essays Biochem.
54:39–52. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ross RJ, Weiner MM and Lin HF: PIWI
proteins and PIWI-interacting RNAs in the soma. Nature.
505:353–359. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kim VN, Han J and Siomi MC: Biogenesis of
small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bonasio R and Shiekhattar R: Regulation of
transcription by long noncoding RNAs. Annu Rev Genet. 48:433–455.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Brown JW, Marshall DF and Echeverria M:
Intronic noncoding RNAs and splicing. Trends Plant Sci. 13:335–342.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Shankaraiah RC, Veronese A, Sabbioni S and
Negrini M: Non-coding RNAs in the reprogramming of glucose
metabolism in cancer. Cancer Lett. 419:167–174. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Fu XD: Non-coding RNA: A new frontier in
regulatory biology. Natl Sci Rev. 1:190–204. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kugel JF and Goodrich JA: Non-coding RNAs:
Key regulators of mammalian transcription. Trends Biochem Sci.
37:144–151. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mondal T and Kanduri C: Maintenance of
epigenetic information: A noncoding RNA perspective. Chromosome
Res. 21:615–625. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chan B, Manley J, Lee J and Singh SR: The
emerging roles of microRNAs in cancer metabolism. Cancer Lett.
356:301–308. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pulito C, Donzelli S, Muti P, Puzzo L,
Strano S and Blandino G: MicroRNAs and cancer metabolism
reprogramming: The paradigm of metformin. Ann Transl Med.
2:582014.PubMed/NCBI
|
|
43
|
Zhao XY and Lin JD: Long non-coding RNAs:
A new regulatory code in metabolic control. Trends Biochem Sci.
40:586–596. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fei X, Qi M, Wu B, Song Y, Wang Y and Li
T: MicroRNA-195-5p suppresses glucose uptake and proliferation of
human bladder cancer T24 cells by regulating GLUT3 expression. FEBS
Lett. 586:392–397. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li HJ, Li X, Pang H, Pan JJ, Xie XJ and
Chen W: Long non-coding RNA UCA1 promotes glutamine metabolism by
targeting miR-16 in human bladder cancer. Jpn J Clin Oncol.
45:1055–1063. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sekar D: miRNA 21: A novel biomarker in
the treatment of bladder cancer. Biomark Med. 14:1065–1067. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Irlam-Jones JJ, Eustace A, Denley H,
Choudhury A, Harris AL, Hoskin PJ and West CM: Expression of
miR-210 in relation to other measures of hypoxia and prediction of
benefit from hypoxia modification in patients with bladder cancer.
Br J Cancer. 115:571–578. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhou Q, Zhan H, Lin F, Liu Y, Yang K, Gao
Q, Ding M, Liu Y, Huang W and Cai Z: LincRNA-p21 suppresses
glutamine catabolism and bladder cancer cell growth through
inhibiting glutaminase expression. Biosci Rep. 39:BSR201823722019.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhao H, Wu W, Li X and Chen W: Long
noncoding RNA UCA1 promotes glutamine-driven anaplerosis of bladder
cancer by interacting with hnRNP I/L to upregulate GPT2 expression.
Transl Oncol. 17:1013402022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu P, Fan B, Othmane B, Hu J, Li H, Cui
Y, Ou Z, Chen J and Zu X: m6A-induced lncDBET promotes the
malignant progression of bladder cancer through FABP5-mediated
lipid metabolism. Theranostics. 12:6291–6307. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
He J, Dong C, Zhang H, Jiang Y, Liu T and
Man X: The oncogenic role of TFAP2A in bladder urothelial carcinoma
via a novel long noncoding RNA TPRG1-AS1/DNMT3A/CRTAC1 axis. Cell
Signal. 102:1105272023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Salzman J: Circular RNA expression: Its
potential regulation and function. Trends Genet. 32:309–316. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jeck WR and Sharpless NE: Detecting and
characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Yang J, Qi M, Fei X, Wang X and Wang K:
Hsa_circRNA_0088036 acts as a ceRNA to promote bladder cancer
progression by sponging miR-140-3p. Cell Death Dis. 13:3222022.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Su Y, Feng W, Shi J, Chen L, Huang J and
Lin T: circRIP2 accelerates bladder cancer progression via
miR-1305/Tgf-β2/smad3 pathway. Mol Cancer. 19:232020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
An M, Zheng H, Huang J, Lin Y, Luo Y, Kong
Y, Pang M, Zhang D, Yang J, Chen J, et al: Aberrant nuclear export
of circNCOR1 underlies SMAD7-Mediated lymph node metastasis of
bladder cancer. Cancer Res. 82:2239–2253. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang L, Wu S, He H, Ai K, Xu R, Zhang L
and Zhu X: CircRNA-ST6GALNAC6 increases the sensitivity of bladder
cancer cells to erastin-induced ferroptosis by regulating the
HSPB1/P38 axis. Lab Invest. 102:1323–1334. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhu J, Luo Y, Zhao Y, Kong Y, Zheng H, Li
Y, Gao B, Ai L, Huang H, Huang J, et al: circEHBP1 promotes
lymphangiogenesis and lymphatic metastasis of bladder cancer via
miR-130a-3p/TGFβR1/VEGF-D signaling. Mol Ther. 29:1838–1852. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li G, Guo BY, Wang HD, Lin GT, Lan TJ,
Ying H and Xu J: CircRNA hsa_circ_0014130 function as a miR-132-3p
sponge for playing oncogenic roles in bladder cancer via
upregulating KCNJ12 expression. Cell Biol Toxicol. 38:1079–1096.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Du L, Zhang L and Sun F: Puerarin inhibits
the progression of bladder cancer by regulating
circ_0020394/miR-328-3p/NRBP1 axis. Cancer Biother Radiopharm.
37:435–450. 2022.PubMed/NCBI
|
|
63
|
Wei WS, Wang N, Deng MH, Dong P, Liu JY,
Xiang Z, Li XD, Li ZY, Liu ZH, Peng YL, et al: LRPPRC regulates
redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder
urothelial carcinoma tumorigenesis. Redox Biol. 48:1022012021.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Esteller M: Non-coding RNAs in human
disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Williams GT and Farzaneh F: Are snoRNAs
and snoRNA host genes new players in cancer? Nat Rev Cancer.
12:84–88. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Lee J, Harris AN, Holley CL, Mahadevan J,
Pyles KD, Lavagnino Z, Scherrer DE, Fujiwara H, Sidhu R, Zhang J,
et al: Rpl13a small nucleolar RNAs regulate systemic glucose
metabolism. J Clin Invest. 126:4616–4625. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dong W, Liu X, Yang C, Wang D, Xue Y, Ruan
X, Zhang M, Song J, Cai H, Zheng J and Liu Y: Glioma glycolipid
metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential
treatment target. Clin Transl Med. 11:e4112021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sletten AC, Davidson JW, Yagabasan B,
Moores S, Schwaiger-Haber M, Fujiwara H, Gale S, Jiang X, Sidhu R,
Gelman SJ, et al: Loss of SNORA73 reprograms cellular metabolism
and protects against steatohepatitis. Nat Commun. 12:52142021.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Farazi TA, Juranek SA and Tuschl T: The
growing catalog of small RNAs and their association with distinct
Argonaute/Piwi family members. Development. 135:1201–1214. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Luteijn MJ and Ketting RF:
PIWI-interacting RNAs: From generation to transgenerational
epigenetics. Nat Rev Genet. 14:523–534. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Siomi MC, Sato K, Pezic D and Aravin AA:
PIWIinteracting small RNAs: The vanguard of genome defence. Nat Rev
Mol Cell Biol. 12:246–258. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chu H, Hui G, Yuan L, Shi D, Wang Y, Du M,
Zhong D, Ma L, Tong N, Qin C, et al: Identification of novel piRNAs
in bladder cancer. Cancer Lett. 356:561–567. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hu S, Balakrishnan A, Bok RA, Anderton B,
Larson PE, Nelson SJ, Kurhanewicz J, Vigneron DB and Goga A:
13C-pyruvate imaging reveals alterations in glycolysis that precede
c-Myc-induced tumor formation and regression. Cell Metab.
14:131–142. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gao P, Sun L, He X, Cao Y and Zhang H:
MicroRNAs and the Warburg effect: New players in an old arena. Curr
Gene Ther. 12:285–291. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Guo J, Zhao P, Liu Z, Li Z, Yuan Y, Zhang
X, Yu Z, Fang J and Xiao K: MiR-204-3p inhibited the proliferation
of bladder cancer cells via modulating lactate
dehydrogenase-mediated glycolysis. Front Oncol. 9:12422019.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yang X, Cheng Y, Li P, Tao J, Deng X,
Zhang X, Gu M, Lu Q and Yin C: A lentiviral sponge for miRNA-21
diminishes aerobic glycolysis in bladder cancer T24 cells via the
PTEN/PI3K/AKT/mTOR axis. Tumour Biol. 36:383–391. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wu JH, Sun KN, Chen ZH, He YJ and Sheng L:
Exosome-mediated miR-4792 transfer promotes bladder cancer cell
proliferation via enhanced FOXC1/c-Myc signaling and Warburg
effect. J Oncol. 2022:56803532022.PubMed/NCBI
|
|
78
|
Yuan D, Zheng S, Wang L, Li J, Yang J,
Wang B, Chen X and Zhang X: MiR-200c inhibits bladder cancer
progression by targeting lactate dehydrogenase A. Oncotarget.
8:67663–67669. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cai W, Wei M and Su Z: MITF-Mediated
lncRNA CCDC183-As1 promotes the tumorigenic properties and aerobic
glycolysis of bladder cancer via upregulating TCF7L2. J Oncol.
2022:67859562022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang C, Li Y, Yan S, Wang H, Shao X, Xiao
M, Yang B, Qin G, Kong R, Chen R and Zhang N: Interactome analysis
reveals that lncRNA HULC promotes aerobic glycolysis through LDHA
and PKM2. Nat Commun. 11:31622020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ho KH, Huang TW, Shih CM, Lee YT, Liu AJ,
Chen PH and Chen KC: Glycolysis-associated lncRNAs identify a
subgroup of cancer patients with poor prognoses and a
high-infiltration immune microenvironment. BMC Med. 19:592021.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li Z, Li X, Wu S, Xue M and Chen W: Long
non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase
2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci.
105:951–955. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wei Y, Zhang Y, Meng Q, Cui L and Xu C:
Hypoxia-induced circular RNA has_circRNA_403658 promotes bladder
cancer cell growth through activation of LDHA. Am J Transl Res.
11:6838–6849. 2019.PubMed/NCBI
|
|
84
|
Fernandez-Hernando C, Suarez Y, Rayner KJ
and Moore KJ: MicroRNAs in lipid metabolism. Curr Opin Lipidol.
22:86–92. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Santos CR and Schulze A: Lipid metabolism
in cancer. FEBS J. 279:2610–2623. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Currie E, Schulze A, Zechner R, Walther TC
and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell
Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bian X, Liu R, Meng Y, Xing D, Xu D and Lu
Z: Lipid metabolism and cancer. J Exp Med. 218:e202016062021.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Vettore L, Westbrook RL and Tennant DA:
New aspects of amino acid metabolism in cancer. Br J Cancer.
122:150–156. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li Z and Zhang H: Reprogramming of
glucose, fatty acid and amino acid metabolism for cancer
progression. Cell Mol Life Sci. 73:377–392. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hu Q, Li Y, Li D, Yuan Y, Wang K, Yao L,
Cheng Z and Han T: Amino acid metabolism regulated by lncRNAs: The
propellant behind cancer metabolic reprogramming. Cell Commun
Signal. 21:872023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Xu Y, Xia Z, Sun X, Wei B, Fu Y, Shi D and
Zhu Y: Identification of a glutamine metabolism reprogramming
signature for predicting prognosis, immunotherapy efficacy, and
drug candidates in bladder cancer. Front Immunol. 14:11113192023.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chen CW: Comment on ‘Long noncoding RNA
UCA1 promotes glutamine-driven anaplerosis of bladder cancer by
interacting with hnRNP I/L to upregulate GPT2 expression’ by Chen
et al.’”. Transl Oncol. 18:1013722022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Roh J, Im M, Chae Y, Kang J and Kim W: The
involvement of long non-coding RNAs in glutamine-metabolic
reprogramming and therapeutic resistance in cancer. Int J Mol Sci.
23:148082022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ortiz-Pedraza Y, Muñoz-Bello JO,
Olmedo-Nieva L, Contreras-Paredes A, Martínez-Ramírez I, Langley E
and Lizano M: Non-coding RNAs as key regulators of glutaminolysis
in cancer. Int J Mol Sci. 21:28722020. View Article : Google Scholar : PubMed/NCBI
|