Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2023 Volume 52 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2023 Volume 52 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review)

  • Authors:
    • Bin Zhang
    • Liming Yang
    • Yang He
    • Dali Han
    • Peng Qi
    • Panfeng Shang
  • View Affiliations / Copyright

    Affiliations: Department of Urology, Institute of Urology, Gansu Nephro‑Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China, Department of Skin and Venereal Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
  • Article Number: 79
    |
    Published online on: July 19, 2023
       https://doi.org/10.3892/ijmm.2023.5282
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Bladder cancer (BLCA) is the most common type of urothelial cancer. The role of metabolic reprogramming in tumors is gradually gaining more attention and being investigated. Recent studies have shown that noncoding RNAs (ncRNAs) are strongly related to BLCA metabolic reprogramming. ncRNAs are able to directly regulate the expression and function of metabolic enzymes, or indirectly regulate them through a number of important pathways to regulate metabolism in BLCA cells. The mechanism of the development of BLCA has not yet, to the best of the authors' knowledge, been studied and identifying how ncRNAs act in metabolic reprogramming in BLCA may assist with developing BLCA treatments. In the present review, a summary of the ncRNAs participating in the metabolic reprogramming of BLCA was provided. The regulation of ncRNAs in glucose, lipid and amino acid metabolism was also detailed. Furthermore, the molecular mechanisms underlying the regulation of ncRNAs in the metabolic reprogramming of BLCA and potential treatment strategies that track cancer cell metabolism by regulating the expression of particular ncRNAs were discussed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Jubber I, Ong S, Bukavina L, Black PC, Compérat E, Kamat AM, Kiemeney L, Lawrentschuk N, Lerner SP, Meeks JJ, et al: Epidemiology of bladder cancer in 2023: A systematic review of risk factors. Eur Urol. May 15–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

2 

World Cancer Research Fund (WCRF) International, . Bladder cancer statistics. WCRF International, London, 2020. https://www.wcrf.org/cancer-trends/bladder-cancer-statistics

3 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

4 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI

5 

Upadhyay M, Samal J, Kandpal M, Singh OV and Vivekanandan P: The Warburg effect: Insights from the past decade. Pharmacol Ther. 137:318–330. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Pascale RM, Calvisi DF, Simile MM, Feo CF and Feo F: The Warburg effect 97 years after its discovery. Cancers (Basel). 12:28192020. View Article : Google Scholar : PubMed/NCBI

7 

Massari F, Ciccarese C, Santoni M, Iacovelli R, Mazzucchelli R, Piva F, Scarpelli M, Berardi R, Tortora G, Lopez-Beltran A, et al: Metabolic phenotype of bladder cancer. Cancer Treat Rev. 45:46–57. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Adnane S, Marino A and Leucci E: LncRNAs in human cancers: Signal from noise. Trends Cell Biol. 32:565–573. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Wang J, Zhu S, Meng N, He Y, Lu R and Yan GR: ncRNA-encoded peptides or proteins and cancer. Mol Ther. 27:1718–1725. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Li Y, Li G, Guo X, Yao H, Wang G and Li C: Non-coding RNA in bladder cancer. Cancer Lett. 485:38–44. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Chandra Gupta S and Nandan Tripathi Y: Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer. 140:1955–1967. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T and Calin GA: Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 65:1140–1151. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Hu QG, Yang Z, Chen JW, Kazobinka G, Tian L and Li WC: MiR-183-5p-PNPT1 axis enhances cisplatin-induced apoptosis in bladder cancer cells. Curr Med Sci Aug. 42:785–796. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Liu Z, Yang Y, Yang Z, Xia S, Lin D, Xiao B and Xiu Y: Novel circRNA_0071196/miRNA-19b-3p/CIT axis is associated with proliferation and migration of bladder cancer. Int J Oncol. 57:767–779. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Zhang Y, Zhang D, Lv J, Wang S and Zhang Q: MiR-125a-5p suppresses bladder cancer progression through targeting FUT4. Biomed Pharmacother. 108:1039–1047. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Liu S, Chen Q and Wang Y: MiR-125b-5p suppresses the bladder cancer progression via targeting HK2 and suppressing PI3K/AKT pathway. Hum Cell. 33:185–194. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Luo W, Wang J, Xu W, Ma C, Wan F, Huang Y, Yao M, Zhang H, Qu Y, Ye D and Zhu Y: LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2-activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Dis. 12:10432021. View Article : Google Scholar : PubMed/NCBI

19 

Chen C, Luo Y, He W, Zhao Y, Kong Y, Liu H, Zhong G, Li Y, Li J, Huang J, et al: Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest. 130:404–421. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Logotheti S, Marquardt S, Gupta SK, Richter C, Edelhäuser BAH, Engelmann D, Brenmoehl J, Söhnchen C, Murr N, Alpers M, et al: LncRNA-SLC16A1-AS1 induces metabolic reprogramming during Bladder Cancer progression as target and co-activator of E2F1. Theranostics. 10:9620–9643. 2020. View Article : Google Scholar : PubMed/NCBI

21 

He W, Zhong G, Jiang N, Wang B, Fan X, Chen C, Chen X, Huang J and Lin T: Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. J Clin Invest. 128:861–875. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Lv J, Li K, Yu H, Han J, Zhuang J, Yu R, Cheng Y, Song Q, Bai K, Cao Q, et al: HNRNPL induced circFAM13B increased bladder cancer immunotherapy sensitivity via inhibiting glycolysis through IGF2BP1/PKM2 pathway. J Exp Clin Cancer Res. 42:412023. View Article : Google Scholar : PubMed/NCBI

23 

Yang C, Wu S, Mou Z, Zhou Q, Dai X, Ou Y, Chen X, Chen Y, Xu C, Hu Y, et al: Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Mol Ther. 30:1054–1070. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Wei W, Sun J, Zhang H, Xiao X, Huang C, Wang L, Zhong H, Jiang Y, Zhang X and Jiang G: Circ0008399 Interaction with WTAP promotes assembly and activity of the m6A Methyltransferase complex and promotes cisplatin resistance in bladder cancer. Cancer Res. 81:6142–6156. 2021. View Article : Google Scholar : PubMed/NCBI

25 

McConkey DJ and Choi W: Molecular subtypes of bladder cancer. Curr Oncol Rep. 20:772018. View Article : Google Scholar : PubMed/NCBI

26 

Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ and Pedersen PL: A translational study ‘case report’ on the small molecule ‘energy blocker’ 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr. 44:163–170. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Mattick JS: Challenging the dogma: The hidden layer of non-proteincoding RNAs in complex organisms. Bioessays. 25:930–939. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Mattick JS: The hidden genetic program of complex organisms. Sci Am. 291:60–67. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Hombach S and Kretz M: Non-coding RNAs: Classification, biology and functioning. Adv Exp Med Biol. 937:3–17. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Heinrichs A: MicroRNAs get a boost. Nat Rev Mol Cell Biol. 10:302–303. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Baumann K: Gene expression: RNAi as a global transcriptional activator. Nat Rev Mol Cell Biol. 15:2982014.PubMed/NCBI

32 

Sato K and Siomi MC: Piwi-interacting RNAs: Biological functions and biogenesis. Essays Biochem. 54:39–52. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Ross RJ, Weiner MM and Lin HF: PIWI proteins and PIWI-interacting RNAs in the soma. Nature. 505:353–359. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Kim VN, Han J and Siomi MC: Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Bonasio R and Shiekhattar R: Regulation of transcription by long noncoding RNAs. Annu Rev Genet. 48:433–455. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Brown JW, Marshall DF and Echeverria M: Intronic noncoding RNAs and splicing. Trends Plant Sci. 13:335–342. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Shankaraiah RC, Veronese A, Sabbioni S and Negrini M: Non-coding RNAs in the reprogramming of glucose metabolism in cancer. Cancer Lett. 419:167–174. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Fu XD: Non-coding RNA: A new frontier in regulatory biology. Natl Sci Rev. 1:190–204. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Kugel JF and Goodrich JA: Non-coding RNAs: Key regulators of mammalian transcription. Trends Biochem Sci. 37:144–151. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Mondal T and Kanduri C: Maintenance of epigenetic information: A noncoding RNA perspective. Chromosome Res. 21:615–625. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Chan B, Manley J, Lee J and Singh SR: The emerging roles of microRNAs in cancer metabolism. Cancer Lett. 356:301–308. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Pulito C, Donzelli S, Muti P, Puzzo L, Strano S and Blandino G: MicroRNAs and cancer metabolism reprogramming: The paradigm of metformin. Ann Transl Med. 2:582014.PubMed/NCBI

43 

Zhao XY and Lin JD: Long non-coding RNAs: A new regulatory code in metabolic control. Trends Biochem Sci. 40:586–596. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Fei X, Qi M, Wu B, Song Y, Wang Y and Li T: MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett. 586:392–397. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Li HJ, Li X, Pang H, Pan JJ, Xie XJ and Chen W: Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Jpn J Clin Oncol. 45:1055–1063. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Sekar D: miRNA 21: A novel biomarker in the treatment of bladder cancer. Biomark Med. 14:1065–1067. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Irlam-Jones JJ, Eustace A, Denley H, Choudhury A, Harris AL, Hoskin PJ and West CM: Expression of miR-210 in relation to other measures of hypoxia and prediction of benefit from hypoxia modification in patients with bladder cancer. Br J Cancer. 115:571–578. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Zhou Q, Zhan H, Lin F, Liu Y, Yang K, Gao Q, Ding M, Liu Y, Huang W and Cai Z: LincRNA-p21 suppresses glutamine catabolism and bladder cancer cell growth through inhibiting glutaminase expression. Biosci Rep. 39:BSR201823722019. View Article : Google Scholar : PubMed/NCBI

49 

Zhao H, Wu W, Li X and Chen W: Long noncoding RNA UCA1 promotes glutamine-driven anaplerosis of bladder cancer by interacting with hnRNP I/L to upregulate GPT2 expression. Transl Oncol. 17:1013402022. View Article : Google Scholar : PubMed/NCBI

50 

Liu P, Fan B, Othmane B, Hu J, Li H, Cui Y, Ou Z, Chen J and Zu X: m6A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Theranostics. 12:6291–6307. 2022. View Article : Google Scholar : PubMed/NCBI

51 

He J, Dong C, Zhang H, Jiang Y, Liu T and Man X: The oncogenic role of TFAP2A in bladder urothelial carcinoma via a novel long noncoding RNA TPRG1-AS1/DNMT3A/CRTAC1 axis. Cell Signal. 102:1105272023. View Article : Google Scholar : PubMed/NCBI

52 

Salzman J: Circular RNA expression: Its potential regulation and function. Trends Genet. 32:309–316. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Yang J, Qi M, Fei X, Wang X and Wang K: Hsa_circRNA_0088036 acts as a ceRNA to promote bladder cancer progression by sponging miR-140-3p. Cell Death Dis. 13:3222022. View Article : Google Scholar : PubMed/NCBI

57 

Su Y, Feng W, Shi J, Chen L, Huang J and Lin T: circRIP2 accelerates bladder cancer progression via miR-1305/Tgf-β2/smad3 pathway. Mol Cancer. 19:232020. View Article : Google Scholar : PubMed/NCBI

58 

An M, Zheng H, Huang J, Lin Y, Luo Y, Kong Y, Pang M, Zhang D, Yang J, Chen J, et al: Aberrant nuclear export of circNCOR1 underlies SMAD7-Mediated lymph node metastasis of bladder cancer. Cancer Res. 82:2239–2253. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Wang L, Wu S, He H, Ai K, Xu R, Zhang L and Zhu X: CircRNA-ST6GALNAC6 increases the sensitivity of bladder cancer cells to erastin-induced ferroptosis by regulating the HSPB1/P38 axis. Lab Invest. 102:1323–1334. 2022. View Article : Google Scholar : PubMed/NCBI

60 

Zhu J, Luo Y, Zhao Y, Kong Y, Zheng H, Li Y, Gao B, Ai L, Huang H, Huang J, et al: circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling. Mol Ther. 29:1838–1852. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Li G, Guo BY, Wang HD, Lin GT, Lan TJ, Ying H and Xu J: CircRNA hsa_circ_0014130 function as a miR-132-3p sponge for playing oncogenic roles in bladder cancer via upregulating KCNJ12 expression. Cell Biol Toxicol. 38:1079–1096. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Du L, Zhang L and Sun F: Puerarin inhibits the progression of bladder cancer by regulating circ_0020394/miR-328-3p/NRBP1 axis. Cancer Biother Radiopharm. 37:435–450. 2022.PubMed/NCBI

63 

Wei WS, Wang N, Deng MH, Dong P, Liu JY, Xiang Z, Li XD, Li ZY, Liu ZH, Peng YL, et al: LRPPRC regulates redox homeostasis via the circANKHD1/FOXM1 axis to enhance bladder urothelial carcinoma tumorigenesis. Redox Biol. 48:1022012021. View Article : Google Scholar : PubMed/NCBI

64 

Esteller M: Non-coding RNAs in human disease. Nat Rev Genet. 12:861–874. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Williams GT and Farzaneh F: Are snoRNAs and snoRNA host genes new players in cancer? Nat Rev Cancer. 12:84–88. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Lee J, Harris AN, Holley CL, Mahadevan J, Pyles KD, Lavagnino Z, Scherrer DE, Fujiwara H, Sidhu R, Zhang J, et al: Rpl13a small nucleolar RNAs regulate systemic glucose metabolism. J Clin Invest. 126:4616–4625. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Dong W, Liu X, Yang C, Wang D, Xue Y, Ruan X, Zhang M, Song J, Cai H, Zheng J and Liu Y: Glioma glycolipid metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential treatment target. Clin Transl Med. 11:e4112021. View Article : Google Scholar : PubMed/NCBI

68 

Sletten AC, Davidson JW, Yagabasan B, Moores S, Schwaiger-Haber M, Fujiwara H, Gale S, Jiang X, Sidhu R, Gelman SJ, et al: Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nat Commun. 12:52142021. View Article : Google Scholar : PubMed/NCBI

69 

Farazi TA, Juranek SA and Tuschl T: The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development. 135:1201–1214. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Luteijn MJ and Ketting RF: PIWI-interacting RNAs: From generation to transgenerational epigenetics. Nat Rev Genet. 14:523–534. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Siomi MC, Sato K, Pezic D and Aravin AA: PIWIinteracting small RNAs: The vanguard of genome defence. Nat Rev Mol Cell Biol. 12:246–258. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Chu H, Hui G, Yuan L, Shi D, Wang Y, Du M, Zhong D, Ma L, Tong N, Qin C, et al: Identification of novel piRNAs in bladder cancer. Cancer Lett. 356:561–567. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE, Nelson SJ, Kurhanewicz J, Vigneron DB and Goga A: 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab. 14:131–142. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Gao P, Sun L, He X, Cao Y and Zhang H: MicroRNAs and the Warburg effect: New players in an old arena. Curr Gene Ther. 12:285–291. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Guo J, Zhao P, Liu Z, Li Z, Yuan Y, Zhang X, Yu Z, Fang J and Xiao K: MiR-204-3p inhibited the proliferation of bladder cancer cells via modulating lactate dehydrogenase-mediated glycolysis. Front Oncol. 9:12422019. View Article : Google Scholar : PubMed/NCBI

76 

Yang X, Cheng Y, Li P, Tao J, Deng X, Zhang X, Gu M, Lu Q and Yin C: A lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis. Tumour Biol. 36:383–391. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Wu JH, Sun KN, Chen ZH, He YJ and Sheng L: Exosome-mediated miR-4792 transfer promotes bladder cancer cell proliferation via enhanced FOXC1/c-Myc signaling and Warburg effect. J Oncol. 2022:56803532022.PubMed/NCBI

78 

Yuan D, Zheng S, Wang L, Li J, Yang J, Wang B, Chen X and Zhang X: MiR-200c inhibits bladder cancer progression by targeting lactate dehydrogenase A. Oncotarget. 8:67663–67669. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Cai W, Wei M and Su Z: MITF-Mediated lncRNA CCDC183-As1 promotes the tumorigenic properties and aerobic glycolysis of bladder cancer via upregulating TCF7L2. J Oncol. 2022:67859562022. View Article : Google Scholar : PubMed/NCBI

80 

Wang C, Li Y, Yan S, Wang H, Shao X, Xiao M, Yang B, Qin G, Kong R, Chen R and Zhang N: Interactome analysis reveals that lncRNA HULC promotes aerobic glycolysis through LDHA and PKM2. Nat Commun. 11:31622020. View Article : Google Scholar : PubMed/NCBI

81 

Ho KH, Huang TW, Shih CM, Lee YT, Liu AJ, Chen PH and Chen KC: Glycolysis-associated lncRNAs identify a subgroup of cancer patients with poor prognoses and a high-infiltration immune microenvironment. BMC Med. 19:592021. View Article : Google Scholar : PubMed/NCBI

82 

Li Z, Li X, Wu S, Xue M and Chen W: Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci. 105:951–955. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Wei Y, Zhang Y, Meng Q, Cui L and Xu C: Hypoxia-induced circular RNA has_circRNA_403658 promotes bladder cancer cell growth through activation of LDHA. Am J Transl Res. 11:6838–6849. 2019.PubMed/NCBI

84 

Fernandez-Hernando C, Suarez Y, Rayner KJ and Moore KJ: MicroRNAs in lipid metabolism. Curr Opin Lipidol. 22:86–92. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Santos CR and Schulze A: Lipid metabolism in cancer. FEBS J. 279:2610–2623. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Currie E, Schulze A, Zechner R, Walther TC and Farese RV Jr: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Bian X, Liu R, Meng Y, Xing D, Xu D and Lu Z: Lipid metabolism and cancer. J Exp Med. 218:e202016062021. View Article : Google Scholar : PubMed/NCBI

88 

Vettore L, Westbrook RL and Tennant DA: New aspects of amino acid metabolism in cancer. Br J Cancer. 122:150–156. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Li Z and Zhang H: Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci. 73:377–392. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Hu Q, Li Y, Li D, Yuan Y, Wang K, Yao L, Cheng Z and Han T: Amino acid metabolism regulated by lncRNAs: The propellant behind cancer metabolic reprogramming. Cell Commun Signal. 21:872023. View Article : Google Scholar : PubMed/NCBI

91 

Xu Y, Xia Z, Sun X, Wei B, Fu Y, Shi D and Zhu Y: Identification of a glutamine metabolism reprogramming signature for predicting prognosis, immunotherapy efficacy, and drug candidates in bladder cancer. Front Immunol. 14:11113192023. View Article : Google Scholar : PubMed/NCBI

92 

Chen CW: Comment on ‘Long noncoding RNA UCA1 promotes glutamine-driven anaplerosis of bladder cancer by interacting with hnRNP I/L to upregulate GPT2 expression’ by Chen et al.’”. Transl Oncol. 18:1013722022. View Article : Google Scholar : PubMed/NCBI

93 

Roh J, Im M, Chae Y, Kang J and Kim W: The involvement of long non-coding RNAs in glutamine-metabolic reprogramming and therapeutic resistance in cancer. Int J Mol Sci. 23:148082022. View Article : Google Scholar : PubMed/NCBI

94 

Ortiz-Pedraza Y, Muñoz-Bello JO, Olmedo-Nieva L, Contreras-Paredes A, Martínez-Ramírez I, Langley E and Lizano M: Non-coding RNAs as key regulators of glutaminolysis in cancer. Int J Mol Sci. 21:28722020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang B, Yang L, He Y, Han D, Qi P and Shang P: Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review). Int J Mol Med 52: 79, 2023.
APA
Zhang, B., Yang, L., He, Y., Han, D., Qi, P., & Shang, P. (2023). Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review). International Journal of Molecular Medicine, 52, 79. https://doi.org/10.3892/ijmm.2023.5282
MLA
Zhang, B., Yang, L., He, Y., Han, D., Qi, P., Shang, P."Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review)". International Journal of Molecular Medicine 52.3 (2023): 79.
Chicago
Zhang, B., Yang, L., He, Y., Han, D., Qi, P., Shang, P."Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review)". International Journal of Molecular Medicine 52, no. 3 (2023): 79. https://doi.org/10.3892/ijmm.2023.5282
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang B, Yang L, He Y, Han D, Qi P and Shang P: Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review). Int J Mol Med 52: 79, 2023.
APA
Zhang, B., Yang, L., He, Y., Han, D., Qi, P., & Shang, P. (2023). Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review). International Journal of Molecular Medicine, 52, 79. https://doi.org/10.3892/ijmm.2023.5282
MLA
Zhang, B., Yang, L., He, Y., Han, D., Qi, P., Shang, P."Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review)". International Journal of Molecular Medicine 52.3 (2023): 79.
Chicago
Zhang, B., Yang, L., He, Y., Han, D., Qi, P., Shang, P."Role and mechanisms of noncoding RNAs in the regulation of metabolic reprogramming in bladder cancer (Review)". International Journal of Molecular Medicine 52, no. 3 (2023): 79. https://doi.org/10.3892/ijmm.2023.5282
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team