You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fidler MM, Bray F and Soerjomataram I: The global cancer burden and human development: A review. Scand J Public Health. 46:27–36. 2018. View Article : Google Scholar | |
|
Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar | |
|
Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al: Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 17:286–301. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Velcheti V and Schalper K: Basic overview of current immunotherapy approaches in cancer. Am Soc Clin Oncol Educ Book. 36:298–308. 2016. View Article : Google Scholar | |
|
Rodríguez Pérez Á, Campillo-Davo D, Van Tendeloo V and Benitez-Ribas D: Cellular immunotherapy: A clinical state-of-the-art of a new paradigm for cancer treatment. Clin Transl Oncol. 22:1923–1937. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenberg SA and Restifo NP: Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Schuster M, Nechansky A and Kircheis R: Cancer immunotherapy. Biotechnol. 1:138–147. 2006. | |
|
Bugler B, Caizergues-Ferrer M, Bouche G, Bourbon H and Amalric F: Detection and localization of a class of proteins immunologically related to a 100-kDa nucleolar protein. Eur J Biochem. 128:475–480. 1982. View Article : Google Scholar : PubMed/NCBI | |
|
Orrick LR, Olson MO and Busch H: Comparison of nucleolar proteins of normal rat liver and Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA. 70:1316–1320. 1973. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z and Xu X: Roles of nucleolin: Focus on cancer and anti-cancer therapy. Saudi Med J. 37:1312–1318. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jia W, Yao Z, Zhao J, Guan Q and Gao L: New perspectives of physiological and pathological functions of nucleolin (NCL). Life Sci. 186:1–10. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu W, Wang G, Sun X, Ye J, Wei F, Shi X and Lv G: The involvement of cell surface nucleolin in the initiation of CCR6 signaling in human hepatocellular carcinoma. Med Oncol. 32:752015. View Article : Google Scholar : PubMed/NCBI | |
|
Destouches D, El Khoury D, Hamma-Kourbali Y, Krust B, Albanese P, Katsoris P, Guichard G, Briand JP, Courty J and Hovanessian AG: Suppression of tumor growth and angiogenesis by a specific antagonist of the cell-surface expressed nucleolin. PLoS One. 3:e25182008. View Article : Google Scholar : PubMed/NCBI | |
|
Ugrinova I, Petrova M, Chalabi-Dchar M and Bouvet P: Multifaceted nucleolin protein and its molecular partners in oncogenesis. Adv Protein Chem Struct Biol. 111:133–164. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Gilles ME, Maione F, Cossutta M, Carpentier G, Caruana L, Di Maria S, Houppe C, Destouches D, Shchors K, Prochasson C, et al: Nucleolin targeting impairs the progression of pancreatic cancer and promotes the normalization of tumor vasculature. Cancer Res. 76:7181–7193. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ridley L, Rahman R, Brundler MA, Ellison D, Lowe J, Robson K, Prebble E, Luckett I, Gilbertson RJ, Parkes S, et al: Multifactorial analysis of predictors of outcome in pediatric intracranial ependymoma. Neuro Oncol. 10:675–689. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Modena P, Buttarelli FR, Miceli R, Piccinin E, Baldi C, Antonelli M, Morra I, Lauriola L, Di Rocco C, Garrè ML, et al: Predictors of outcome in an AIEOP series of childhood ependymomas: A multifactorial analysis. Neuro Oncol. 14:1346–1356. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Guo X, Xiong L, Yu L, Li R, Wang Z, Ren B, Dong J, Li B and Wang D: Increased level of nucleolin confers to aggressive tumor progression and poor prognosis in patients with hepatocellular carcinoma after hepatectomy. Diagn Pathol. 9:1752014. View Article : Google Scholar : PubMed/NCBI | |
|
Huang F, Wu Y, Tan H, Guo T, Zhang K, Li D and Tong Z: Phosphorylation of nucleolin is indispensable to its involvement in the proliferation and migration of non-small cell lung cancer cells. Oncol Rep. 41:590–598. 2019. | |
|
Qi J, Li H, Liu N, Xing Y, Zhou G, Wu Y, Liu Y, Chen W, Yue J, Han B, et al: The implications and mechanisms of the extra-nuclear nucleolin in the esophageal squamous cell carcinomas. Med Oncol. 32:452015. View Article : Google Scholar : PubMed/NCBI | |
|
Jain N, Zhu H, Khashab T, Ye Q, George B, Mathur R, Singh RK, Berkova Z, Wise JF, Braun FK, et al: Targeting nucleolin for better survival in diffuse large B-cell lymphoma. Leukemia. 32:663–674. 2018. View Article : Google Scholar : | |
|
Qiu W, Zhou F, Zhang Q, Sun X, Shi X, Liang Y, Wang X and Yue L: Overexpression of nucleolin and different expression sites both related to the prognosis of gastric cancer. APMIS. 121:919–925. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Q, Ma X, Hu S, Li R, Wei X, Han B, Ma Y, Liu P and Pang Y: Overexpression of nucleolin is a potential prognostic marker in endometrial carcinoma. Cancer Manag Res. 13:1955–1965. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yangngam S, Prasopsiri J, Hatthakarnkul P, Thongchot S, Thuwajit P, Yenchitsomanus PT, Edwards J and Thuwajit C: Cellular localization of nucleolin determines the prognosis in cancers: A meta-analysis. J Mol Med (Berl). 100:1145–1157. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Berger CM, Gaume X and Bouvet P: The roles of nucleolin subcellular localization in cancer. Biochimie. 113:78–85. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yenchitsomanus PT, Vasuvattakul S, Kirdpon S, Wasanawatana S, Susaengrat W, Sreethiphayawan S, Chuawatana D, Mingkum S, Sawasdee N, Thuwajit P, et al: Autosomal recessive distal renal tubular acidosis caused by G701D mutation of anion exchanger 1 gene. Am J Kidney Dis. 40:21–29. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Xu JY, Lu S, Xu XY, Hu SL, Li B, Li WX and Chang JY: Prognostic significance of nuclear or cytoplasmic nucleolin expression in human non-small cell lung cancer and its relationship with DNA-PKcs. Tumour Biol. 37:10349–10356. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Willmer T, Damerell V, Smyly S, Sims D, Du Toit M, Ncube S, Sinkala M, Govender D, Sturrock E, Blackburn JM and Prince S: Targeting the oncogenic TBX3: Nucleolin complex to treat multiple sarcoma subtypes. Am J Cancer Res. 11:5680–5700. 2021. | |
|
Palmieri D, Richmond T, Piovan C, Sheetz T, Zanesi N, Troise F, James C, Wernicke D, Nyei F, Gordon TJ, et al: Human anti-nucleolin recombinant immunoagent for cancer therapy. Proc Natl Acad Sci USA. 112:9418–9423. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dzhumashev D, Timpanaro A, Ali S, De Micheli AJ, Mamchaoui K, Cascone I, Rössler J and Bernasconi M: Quantum Dot-based screening identifies F3 peptide and reveals cell surface nucleolin as a therapeutic target for rhabdomyosarcoma. Cancers (Basel). 14:50482022. View Article : Google Scholar : PubMed/NCBI | |
|
Fujiki H, Watanabe T and Suganuma M: Cell-surface nucleolin acts as a central mediator for carcinogenic, anti-carcinogenic, and disease-related ligands. J Cancer Res Clin Oncol. 140:689–699. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Meng GZ, Xiao SJ, Zeng SE and Li YQ: Downregulation of cell-surface-expressed nucleolin inhibits the growth of hepatocellular carcinoma cells in vitro. Zhonghua Zhong Liu Za Zhi. 33:23–27. 2011.In Chinese. PubMed/NCBI | |
|
D'Avino C, Palmieri D, Braddom A, Zanesi N, James C, Cole S, Salvatore F, Croce CM and De Lorenzo C: A novel fully human anti-NCL immunoRNase for triple-negative breast cancer therapy. Oncotarget. 7:87016–87030. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Dawson MA and Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nebbioso A, Tambaro FP, Dell'Aversana C and Altucci L: Cancer epigenetics: Moving forward. PLoS Genet. 14:e10073622018. View Article : Google Scholar : PubMed/NCBI | |
|
Gougousis S, Petanidis S, Poutoglidis A, Tsetsos N, Vrochidis P, Skoumpas I, Argyriou N, Katopodi T and Domvri K: Epigenetic editing and tumor-dependent immunosuppressive signaling in head and neck malignancies. Oncol Lett. 23:1962022. View Article : Google Scholar : PubMed/NCBI | |
|
Toh TB, Lim JJ and Chow EKH: Epigenetics in cancer stem cells. Mol Cancer. 16:292017. View Article : Google Scholar : PubMed/NCBI | |
|
Shen N, Yan F, Pang J, Wu LC, Al-Kali A, Litzw MR and Liu S: A nucleolin-DNMT1 regulatory axis in acute myeloid leukemogenesis. Oncotarget. 5:5494–5509. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tuteja R and Tuteja N: Nucleolin: A multifunctional major nucleolar phosphoprotein. Crit Rev Biochem Mol Biol. 33:407–436. 1998. View Article : Google Scholar | |
|
Mamrack MD, Olson MO and Busch H: Amino acid sequence and sites of phosphorylation in a highly acidic region of nucleolar nonhistone protein C23. Biochemistry. 18:3381–3386. 1979. View Article : Google Scholar : PubMed/NCBI | |
|
Ginisty H, Sicard H, Roger B and Bouvet P: Structure and functions of nucleolin. J Cell Sci. 112:761–772. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Peter M, Nakagawa J, Dorée M, Labbé JC and Nigg EA: Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell. 60:791–801. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Caizergues-Ferrer M, Belenguer P, Lapeyre B, Amalric F, Wallace MO and Olson MO: Phosphorylation of nucleolin by a nucleolar type NII protein kinase. Biochemistry. 26:7876–7883. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Belenguer P, Caizergues-Ferrer M, Labbé JC, Doree M and Amalric F: Mitosis-specific phosphorylation of nucleolin by p34cdc2 protein kinase. Mol Cell Biol. 10:3607–3618. 1990.PubMed/NCBI | |
|
Romano S, Fonseca N, Simões S, Gonçalves J and Moreira JN: Nucleolin-based targeting strategies for cancer therapy: From targeted drug delivery to cytotoxic ligands. Drug Discov Today. 24:1985–2001. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ghisolfi-Nieto L, Joseph G, Puvion-Dutilleul F, Amalric F and Bouvet P: Nucleolin is a sequence-specific RNA-binding protein: Characterization of targets on pre-ribosomal RNA. J Mol Biol. 260:34–53. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Cong R, Das S, Ugrinova I, Kumar S, Mongelard F, Wong J and Bouvet P: Interaction of nucleolin with ribosomal RNA genes and its role in RNA polymerase I transcription. Nucleic Acids Res. 40:9441–9454. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Roger B, Moisand A, Amalric F and Bouvet P: Nucleolin provides a link between RNA polymerase I transcription and pre-ribosome assembly. Chromosoma. 111:399–407. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Serin G, Joseph G, Ghisolfi L, Bauzan M, Erard M, Amalric F and Bouvet P: Two RNA-binding domains determine the RNA-binding specificity of nucleolin. J Biol Chem. 272:13109–13116. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Allain FH, Bouvet P, Dieckmann T and Feigon J: Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J. 19:6870–6881. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Ishikawa F, Matunis MJ, Dreyfuss G and Cech TR: Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol Cell Biol. 13:4301–4310. 1993.PubMed/NCBI | |
|
Lapeyre B, Amalric F, Ghaffari SH, Rao SV, Dumbar TS and Olson MO: Protein and cDNA sequence of a glycine-rich, dimethylarginine-containing region located near the carboxyl-terminal end of nucleolin (C23 and 100 kDa). J Biol Chem. 261:9167–9173. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Ghisolfi L, Joseph G, Amalric F and Erard M: The glycine-rich domain of nucleolin has an unusual supersecondary structure responsible for its RNA-helix-destabilizing properties. J Biol Chem. 267:2955–2959. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Gaume X, Tassin AM, Ugrinova I, Mongelard F, Monier K and Bouvet P: Centrosomal nucleolin is required for microtubule network organization. Cell Cycle. 14:902–919. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Scherl A, Couté Y, Déon C, Callé A, Kindbeiter K, Sanchez JC, Greco A, Hochstrasser D and Diaz JJ: Functional proteomic analysis of human nucleolus. Mol Biol Cell. 13:4100–4109. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Schwab MS and Dreyer C: Protein phosphorylation sites regulate the function of the bipartite NLS of nucleolin. Eur J Cell Biol. 73:287–297. 1997.PubMed/NCBI | |
|
Shen EC, Henry MF, Weiss VH, Valentini SR, Silver PA and Lee MS: Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev. 12:679–691. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Butler EB and Tan M: Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 4:e5322013. View Article : Google Scholar : PubMed/NCBI | |
|
Hammoudi A, Song F, Reed KR, Jenkins RE, Meniel VS, Watson AJ, Pritchard DM, Clarke AR and Jenkins JR: Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC). Biochem Biophys Res Commun. 440:364–370. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pichiorri F, Palmieri D, De Luca L, Consiglio J, You J, Rocci A, Talabere T, Piovan C, Lagana A, Cascione L, et al: In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. J Exp Med. 210:951–968. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Borer RA, Lehner CF, Eppenberger HM and Nigg EA: Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 56:379–390. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Takagi M, Absalon MJ, McLure KG and Kastan MB: Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell. 123:49–63. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Guo K and Kastan MB: Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational control of human p53 mRNA. J Biol Chem. 287:16467–16476. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Otake Y, Soundararajan S, Sengupta TK, Kio EA, Smith JC, Pineda-Roman M, Stuart RK, Spicer EK and Fernandes DJ: Overexpression of nucleolin in chronic lymphocytic leukemia cells induces stabilization of bcl2 mRNA. Blood. 109:3069–3075. 2007. View Article : Google Scholar | |
|
Farin K, Di Segni A, Mor A and Pinkas-Kramarski R: Structure-function analysis of nucleolin and ErbB receptors interactions. PLoS One. 4:e61282009. View Article : Google Scholar : PubMed/NCBI | |
|
Koutsioumpa M and Papadimitriou E: Cell surface nucleolin as a target for anti-cancer therapies. Recent Pat Anticancer Drug Discov. 9:137–152. 2014. View Article : Google Scholar | |
|
Watanabe T, Hirano K, Takahashi A, Yamaguchi K, Beppu M, Fujiki H and Suganuma M: Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull. 33:796–803. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wise JF, Berkova Z, Mathur R, Zhu H, Braun FK, Tao RH, Sabichi AL, Ao X, Maeng H and Samaniego F: Nucleolin inhibits Fas ligand binding and suppresses Fas-mediated apoptosis in vivo via a surface nucleolin-Fas complex. Blood. 121:4729–4739. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Schokoroy S, Juster D, Kloog Y and Pinkas-Kramarski R: Disrupting the oncogenic synergism between nucleolin and Ras results in cell growth inhibition and cell death. PLoS One. 8:e752692013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Wang H, Jiang B, Liang P, Liu M, Deng G and Xiao X: Nucleolin/C23 is a negative regulator of hydrogen peroxide-induced apoptosis in HUVECs. Cell Stress Chaperones. 15:249–257. 2010. View Article : Google Scholar : | |
|
Kirman DC, Renganathan B, Chui WK, Chen MW, Kaya NA and Ge R: Cell surface nucleolin is a novel ADAMTS5 receptor mediating endothelial cell apoptosis. Cell Death Dis. 13:1722022. View Article : Google Scholar : PubMed/NCBI | |
|
Semenkovich CF, Ostlund RE Jr, Olson MO and Yang JW: A protein partially expressed on the surface of HepG2 cells that binds lipoproteins specifically is nucleolin. Biochemistry. 29:9708–9713. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Deng JS, Ballou B and Hofmeister JK: Internalization of anti-nucleolin antibody into viable HEp-2 cells. Mol Biol Rep. 23:191–195. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Hovanessian AG, Puvion-Dutilleul F, Nisole S, Svab J, Perret E, Deng JS and Krust B: The cell-surface-expressed nucleolin is associated with the actin cytoskeleton. Exp Cell Res. 261:312–328. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Fonseca NA, Rodrigues AS, Rodrigues-Santos P, Alves V, Gregório AC, Valério-Fernandes Â, Gomes-da-Silva LC, Rosa MS, Moura V, Ramalho-Santos J, et al: Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination. Biomaterials. 69:76–88. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Chen L, Yao Y, Qin Z and Chen H: Nucleolin overexpression is associated with an unfavorable outcome for ependymoma: A multifactorial analysis of 176 patients. J Neurooncol. 127:43–52. 2016. View Article : Google Scholar | |
|
Liu J, Wei T, Zhao J, Huang Y, Deng H, Kumar A, Wang C, Liang Z, Ma X and Liang XJ: Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials. 91:44–56. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mosafer J and Mokhtarzadeh A: Cell surface nucleolin as a promising receptor for effective AS1411 aptamer-mediated targeted drug delivery into cancer cells. Curr Drug Deliv. 15:1323–1329. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ke J, Gu C, Zhang H, Liu Y, Zhang W, Rao H, Li S and Wu F: Nucleolin promotes cisplatin resistance in cervical cancer by the YB1-MDR1 pathway. J Oncol. 2021:99922182021. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Z and Fenselau C: Proteomic evidence for roles for nucleolin and poly[ADP-ribosyl] transferase in drug resistance. J Proteome Res. 4:1583–1591. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hu J, Chen Y, Wu Z, Wang L, Wen J, Jiang P, Zhang Y and Lin M: Targeting nucleolin for reversal of chemotherapy resistance in acute lymphoblastic leukemia. Blood. 134:50582019. View Article : Google Scholar | |
|
Cornelissen B, Waller A, Target C, Kersemans V, Smart S and Vallis KA: 111In-BnDTPA-F3: An Auger electron-emitting radiotherapeutic agent that targets nucleolin. EJNMMI Res. 2:92012. View Article : Google Scholar : PubMed/NCBI | |
|
Porkka K, Laakkonen P, Hoffman JA, Bernasconi M and Ruoslahti E: A fragment of the HMGN2 protein homes to the nuclei of tumor cells and tumor endothelial cells in vivo. Proc Natl Acad Sci USA. 99:7444–7449. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P and Ruoslahti E: Nucleolin expressed at the cell surface is a marker of endothelial cells in angiogenic blood vessels. J Cell Biol. 163:871–878. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Balça-Silva J, do Carmo A, Tão H, Rebelo O, Barbosa M, Moura-Neto V, Sarmento-Ribeiro AB, Lopes MC and Moreira JN: Nucleolin is expressed in patient-derived samples and glioblastoma cells, enabling improved intracellular drug delivery and cytotoxicity. Exp Cell Res. 370:68–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Moura V, Lacerda M, Figueiredo P, Corvo ML, Cruz MEM, Soares R, de Lima MCP, Simoes S and Moreira JN: Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: Impact on the treatment of breast cancer. Breast Cancer Res Treat. 133:61–73. 2012. View Article : Google Scholar | |
|
Winer I, Wang S, Lee YEK, Fan W, Gong Y, Burgos-Ojeda D, Spahlinger G, Kopelman R and Buckanovich RJ: F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo. Cancer Res. 70:8674–8683. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Fonseca NA, Gomes-da-Silva LC, Moura V, Simões S and Moreira JN: Simultaneous active intracellular delivery of doxorubicin and C6-ceramide shifts the additive/antagonistic drug interaction of non-encapsulated combination. J Control Release. 196:122–131. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YEL, Woolliscroft MJ, Sugai JV, et al: Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res. 12:6677–6686. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Drecoll E, Gaertner FC, Miederer M, Blechert B, Vallon M, Müller JM, Alke A, Seidl C, Bruchertseifer F, Morgenstern A, et al: Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide 213Bi-DTPA-[F3]2 into the nucleus of tumor cells. PLoS One. 4:e57152009. View Article : Google Scholar | |
|
Brignole C, Bensa V, Fonseca NA, Del Zotto G, Bruno S, Cruz AF, Malaguti F, Carlini B, Morandi F, Calarco E, et al: Cell surface nucleolin represents a novel cellular target for neuroblastoma therapy. J Exp Clin Cancer Res. 40:1802021. View Article : Google Scholar : PubMed/NCBI | |
|
Cai Y, Xu Z, Shuai Q, Zhu F, Xu J, Gao X and Sun X: Tumor-targeting peptide functionalized PEG-PLA micelles for efficient drug delivery. Biomater Sci. 8:2274–2282. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chariou PL, Wang L, Desai C, Park J, Robbins LK, von Recum HA, Ghiladi RA and Steinmetz NF: Let there be light: Targeted photodynamic therapy using high aspect ratio plant viral nanoparticles. Macromol Biosci. 19:18004072019. View Article : Google Scholar | |
|
Chen D, Yang D, Dougherty CA, Lu W, Wu H, He X, Cai T, Van Dort ME, Ross BD and Hong H: In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal-organic frameworks nanomaterials. ACS Nano. 11:4315–4327. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cruz AF, Caleiras MB, Fonseca NA, Gonçalves N, Mendes VM, Sampaio SF, Moura V, Melo JB, Almeida RD, Manadas B, et al: The enhanced efficacy of intracellular delivery of doxorubicin/C6-ceramide combination mediated by the F3 peptide/nucleolin system is supported by the downregulation of the PI3K/Akt pathway. Cancers (Basel). 13:30522021. View Article : Google Scholar : PubMed/NCBI | |
|
Essler M, Gärtner FC, Neff F, Blechert B, Senekowitsch-Schmidtke R, Bruchertseifer F, Morgenstern A and Seidl C: Therapeutic efficacy and toxicity of 225Ac-labelled vs. 213Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis. Eur J Nucl Med Mol Imaging. 39:602–612. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I and Courty J: Cell surface nucleolin as active bait for nanomedicine in cancer therapy: A promising option. Nanotechnology. 32:3220012021. View Article : Google Scholar | |
|
Gomes-da-Silva LC, Santos AO, Bimbo LM, Moura V, Ramalho JS, Pedroso de Lima MC, Simões S and Moreira JN: Toward a siRNA-containing nanoparticle targeted to breast cancer cells and the tumor microenvironment. Int J Pharm. 434:9–19. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Q, Gu G, Liu Z, Jiang M, Kang T, Miao D, Tu Y, Pang Z, Song Q, Yao L, et al: F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyp-1 peptide for anti-glioma drug delivery. Biomaterials. 34:1135–1145. 2013. View Article : Google Scholar | |
|
Karamchand L, Kim G, Wang S, Hah HJ, Ray A, Jiddou R, Koo Lee YE, Philbert MA and Kopelman R: Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide. Nanoscale. 5:10327–10344. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lam PYH, Hillyar CRT, Able S and Vallis KA: Synthesis and evaluation of an 18 F-labeled derivative of F3 for targeting surface-expressed nucleolin in cancer and tumor endothelial cells. J Labelled Comp Radiopharm. 59:492–499. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lopes R, Shi K, Fonseca NA, Gama A, Ramalho JS, Almeida L, Moura V, Simões S, Tidor B and Moreira JN: Modelling the impact of nucleolin expression level on the activity of F3 peptide-targeted pH-sensitive pegylated liposomes containing doxorubicin. Drug Deliv Transl Res. 12:629–646. 2022. View Article : Google Scholar | |
|
Mäkelä AR, Närvänen A and Oker-Blom C: Peptide-mediated interference with baculovirus transduction. J Biotechnol. 134:20–32. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Orringer DA, Koo YEL, Chen T, Kim G, Hah HJ, Xu H, Wang S, Keep R, Philbert MA, Kopelman R and Sagher O: In vitro characterization of a targeted, dye-loaded nanodevice for intraoperative tumor delineation. Neurosurgery. 64:965–972. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Pesarrodona M, Sánchez-García L, Seras-Franzoso J, Sánchez-Chardi A, Baltá-Foix R, Cámara-Sánchez P, Gener P, Jara JJ, Pulido D, Serna N, et al: Engineering a nanostructured nucleolin-binding peptide for intracellular drug delivery in triple-negative breast cancer stem cells. ACS Appl Mater Interfaces. 12:5381–5388. 2020. View Article : Google Scholar | |
|
Pozdniakova NV, Ryabaya OV, Semkina AS, Skribitsky VA and Shevelev AB: Using ELP repeats as a scaffold for de novo construction of gadolinium-binding domains within multifunctional recombinant proteins for targeted delivery of gadolinium to tumour cells. Int J Mol Sci. 23:32972022. View Article : Google Scholar : PubMed/NCBI | |
|
Prickett WM, Van Rite BD, Resasco DE and Harrison RG: Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer. Nanotechnology. 22:4551012011. View Article : Google Scholar : PubMed/NCBI | |
|
Qin M, Zong H and Kopelman R: Click conjugation of peptide to hydrogel nanoparticles for tumor-targeted drug delivery. Biomacromolecules. 15:3728–3734. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Romano S, Moura V, Simões S, Moreira JN and Gonçalves J: Anticancer activity and antibody-dependent cell-mediated cytotoxicity of novel anti-nucleolin antibodies. Sci Rep. 8:74502018. View Article : Google Scholar : PubMed/NCBI | |
|
Valério-Fernandes Â, Fonseca NA, Gonçalves N, Cruz AF, Pereira MI, Gregório AC, Moura V, Ladeirinha AF, Alarcão A, Gonçalves J, et al: Nucleolin overexpression predicts patient prognosis while providing a framework for targeted therapeutic intervention in lung cancer. Cancers (Basel). 14:22172022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu G, Qin M, Mukundan A, Siddiqui J, Takada M, Vilar-Saavedra P, Tomlins SA, Kopelman R and Wang X: Prostate cancer characterization by optical contrast enhanced photoacoustics. Proc SPIE Int Soc Opt Eng. 9708:97080I2016.PubMed/NCBI | |
|
Yang J, Lu W, Xiao J, Zong Q, Xu H, Yin Y, Hong H and Xu W: A positron emission tomography image-guidable unimolecular micelle nanoplatform for cancer theranostic applications. Acta Biomater. 79:306–316. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Y, Xiao J, Cong Y, Liu J, He Y, Ross BD, Xu H, Yin Y, Hong H and Xu W: PEGylated nanoscale metal-organic frameworks for targeted cancer imaging and drug delivery. Bioconjug Chem. 32:2195–2204. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Ingham ES, Gagnon MKJ, Mahakian LM, Liu J, Foiret JL, Willmann JK and Ferrara KW: In vitro characterization and in vivo ultrasound molecular imaging of nucleolin-targeted microbubbles. Biomaterials. 118:63–73. 2017. View Article : Google Scholar : | |
|
Zhang Y, Yang M, Park JH, Singelyn J, Ma H, Sailor MJ, Ruoslahti E, Ozkan M and Ozkan C: A surface-charge study on cellular-uptake behavior of F3-peptide-conjugated iron oxide nanoparticles. Small. 5:1990–1996. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Henke E, Perk J, Vider J, De Candia P, Chin Y, Solit DB, Ponomarev V, Cartegni L, Manova K, Rosen N and Benezra R: Peptide-conjugated antisense oligonucleotides for targeted inhibition of a transcriptional regulator in vivo. Nat Biotechnol. 26:91–100. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ireson CR and Kelland LR: Discovery and development of anticancer aptamers. Mol Cancer Ther. 5:2957–2962. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Morita Y, Leslie M, Kameyama H, Volk DE and Tanaka T: Aptamer therapeutics in cancer: Current and future. Cancers (Basel). 10:802018. View Article : Google Scholar : PubMed/NCBI | |
|
Gomes-da-Silva LC, Ramalho JS, Pedroso de Lima MC, Simões S and Moreira JN: Impact of anti-PLK1 siRNA-containing F3-targeted liposomes on the viability of both cancer and endothelial cells. Eur J Pharm Biopharm. 85:356–364. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Drecoll E, Gaertner FC, Miederer M, Blechert B, Vallon M, Müller JM, Alke A, Seidl C, Bruchertseifer F, Morgenstern A, et al: Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide bi-DTPA-[F3]2 into the nucleus of tumor cells. PLoS One. 4:e57152009. View Article : Google Scholar : PubMed/NCBI | |
|
Ayatollahi S, Salmasi Z, Hashemi M, Askarian S, Oskuee RK, Abnous K and Ramezani M: Aptamer-targeted delivery of Bcl-xL shRNA using alkyl modified PAMAM dendrimers into lung cancer cells. Int J Biochem Cell Biol. 92:210–217. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tong X, Ga L, Ai J and Wang Y: Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology. 20:572022. View Article : Google Scholar : PubMed/NCBI | |
|
Trinh TL, Zhu G, Xiao X, Puszyk W, Sefah K, Wu Q, Tan W and Liu C: A Synthetic aptamer-drug adduct for targeted liver cancer therapy. PLoS One. 10:e01366732015. View Article : Google Scholar : PubMed/NCBI | |
|
Lohlamoh W, Soontornworajit B and Rotkrua P: Anti-proliferative effect of doxorubicin-loaded AS1411 aptamer on colorectal cancer cell. Asian Pac J Cancer Prev. 22:2209–2219. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Zhao G, Zhang S, Nigim F, Zhou G, Yu Z, Song Y, Chen Y and Li Y: AS1411-induced growth inhibition of glioma cells by up-regulation of p53 and down-regulation of Bcl-2 and Akt1 via nucleolin. PLoS One. 11:e01670942016. View Article : Google Scholar : PubMed/NCBI | |
|
Ishimaru D, Zuraw L, Ramalingam S, Sengupta TK, Bandyopadhyay S, Reuben A, Fernandes DJ and Spicer EK: Mechanism of regulation of bcl-2 mRNA by nucleolin and A+ U-rich element-binding factor 1 (AUF1). J Biol Chem. 285:27182–27191. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wu J, Song C, Jiang C, Shen X, Qiao Q and Hu Y: Nucleolin targeting AS1411 modified protein nanoparticle for antitumor drugs delivery. Mol Pharm. 10:3555–3563. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ai J, Xu Y, Lou B, Li D and Wang E: Multifunctional AS1411-functionalized fluorescent gold nanoparticles for targeted cancer cell imaging and efficient photodynamic therapy. Talanta. 118:54–60. 2014. View Article : Google Scholar | |
|
Mongelard F and Bouvet P: AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia. Curr Opin Mol Ther. 12:107–114. 2010.PubMed/NCBI | |
|
Soundararajan S, Wang L, Sridharan V, Chen W, Courtenay-Luck N, Jones D, Spicer EK and Fernandes DJ: Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol Pharmacol. 76:984–991. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Reyes-Reyes EM, Teng Y and Bates PJ: A new paradigm for aptamer therapeutic AS1411 action: Uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res. 70:8617–8629. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Laber DA, Sharma VR, Bhupalam L, Taft B, Hendler FJ and Barnhart KM: Update on the first phase I study of AGRO100 in advanced cancer. J Clin Oncol. 23(Suppl): S30642005. View Article : Google Scholar | |
|
Storck S, Shukla M, Dimitrov S and Bouvet P: Functions of the histone chaperone nucleolin in diseases. Subcell Biochem. 41:125–144. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Stuart RK and Acton G: Relapsed and refractory acute myeloid leukemia (AML) treated with AS1411 and cytarabine: A randomized phase II trial. Blood. 112:19352008. View Article : Google Scholar | |
|
Rizzieri D, Stockerl-Goldstein K, Wei A, Herzig RH, Erlandsson F and Stuart RK: Long-term outcomes of responders in a randomized, controlled phase II trial of aptamer AS1411 in AML. J Clin Oncol. 28(Suppl): S65572010. View Article : Google Scholar | |
|
Stuart R, Stockerl-Goldstein K, Cooper M, Devetten M, Herzig R, Medeiros B, Schiller G, Wei A, Acton G and Rizzieri D: Randomized phase II trial of the nucleolin targeting aptamer AS1411 combined with high-dose cytarabine in relapsed/refractory acute myeloid leukemia (AML). J Clin Oncol. 27(Suppl): S70192009. View Article : Google Scholar | |
|
Rosenberg JE, Bambury RM, Van Allen EM, Drabkin HA, Lara PN Jr, Harzstark AL, Wagle N, Figlin RA, Smith GW, Garraway LA, et al: A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs. 32:178–187. 2014. View Article : Google Scholar | |
|
Medicine NLo: Phase I open label study of AS1411 in advanced solid tumours. https://clinicaltrials.gov/ct2/show/NCT00881244. Accessed June 3, 2022 | |
|
Medicine NLo: An open label randomized controlled dose escalating phase II study of AS1411 combined with cytarabine in the treatment of patients with primary refractory or relapsed acute myeloid leukemia. https://clinicaltrials.gov/ct2/show/NCT00512083. Accessed June 3, 2022 | |
|
Medicine NLo: A phase II, open label, single arm study of AS1411 in patients with metastatic renal cell carcinoma. https://clinicaltrials.gov/ct2/show/NCT00740441. Accessed June 3, 2022 | |
|
Medicine NLo: An open-label randomized controlled phase II study of AS1411 combined with cytarabine in the treatment of patients with primary refractory or relapsed acute myeloid leukemia. https://clinicaltrials.gov/ct2/show/NCT01034410. Accessed June 3, 2022 | |
|
Malik MT, O'Toole MG, Casson LK, Thomas SD, Bardi GT, Reyes-Reyes EM, Ng CK, Kang KA and Bates PJ: AS1411-conjugated gold nanospheres and their potential for breast cancer therapy. Oncotarget. 6:22270–22281. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Alibolandi M, Ramezani M, Abnous K and Hadizadeh F: AS1411 aptamer-decorated biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanopolymersomes for the targeted delivery of gemcitabine to non-small cell lung cancer in vitro. J Pharm Sci. 105:1741–1750. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lale SV, R G A, Aravind A, Kumar DS and Koul V: AS1411 aptamer and folic acid functionalized pH-responsive ATRP fabricated pPEGMA-PCL-pPEGMA polymeric nanoparticles for targeted drug delivery in cancer therapy. Biomacromolecules. 15:1737–1752. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Teng Y, Girvan AC, Casson LK, Pierce WM Jr, Qian M, Thomas SD and Bates PJ: AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res. 67:10491–10500. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Abdelmohsen K and Gorospe M: RNA-binding protein nucleolin in disease. RNA Biol. 9:799–808. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Vigneron N: Human tumor antigens and cancer immunotherapy. Biomed Res Int. 2015:9485012015. View Article : Google Scholar : PubMed/NCBI | |
|
Decker WK and Safdar A: Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: Coley's legacy revisited. Cytokine Growth Factor Rev. 20:271–281. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wojtukiewicz MZ, Rek MM, Karpowicz K, Górska M, Polityńska B, Wojtukiewicz AM, Moniuszko M, Radziwon P, Tucker SC and Honn KV: Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 40:949–982. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, Li Z, Li JQ, Xiao YP, Fan YY, et al: Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol Immunother. 69:1375–1387. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CM, Chiang SY and Yeh NH: Increased stability of nucleolin in proliferating cells by inhibition of its self-cleaving activity. J Biol Chem. 266:7754–7758. 1991. View Article : Google Scholar : PubMed/NCBI | |
|
Fogal V, Sugahara KN, Ruoslahti E and Christian S: Cell surface nucleolin antagonist causes endothelial cell apoptosis and normalization of tumor vasculature. Angiogenesis. 12:91–100. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandes DJ and Tholanikunnel BG: Abstract 1488: Development of anti-nucleolin antibodies with broad spectrum anticancer activity and negligible toxicity to normal cells. Cancer Res. 76(14 Suppl): S14882016. View Article : Google Scholar | |
|
De Greve H, Virdi V, Bakshi S and Depicker A: Simplified monomeric VHH-Fc antibodies provide new opportunities for passive immunization. Curr Opin Biotechnol. 61:96–101. 2020. View Article : Google Scholar | |
|
Callebaut C, Blanco J, Benkirane N, Krust B, Jacotot E, Guichard G, Seddiki N, Svab J, Dam E, Muller S, et al: Identification of V3 loop-binding proteins as potential receptors implicated in the binding of HIV particles to CD4(+) cells. J Biol Chem. 273:21988–21997. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Nisole S, Krust B, Callebaut C, Guichard G, Muller S, Briand JP and Hovanessian AG: The anti-HIV pseudopeptide HB-19 forms a complex with the cell-surface-expressed nucleolin independent of heparan sulfate proteoglycans. J Biol Chem. 274:27875–27884. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Nisole S, Krust B, Dam E, Bianco A, Seddiki N, Loaec S, Callebaut C, Guichard G, Muller S, Briand JP and Hovanessian AG: The HB-19 pseudopeptide 5[Kpsi(CH2N) PR]-TASP inhibits attachment of T lymophocyte- and macrophage-tropic HIV to permissive cells. AIDS Res Hum Retroviruses. 16:237–249. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Nisole S, Said EA, Mische C, Prevost MC, Krust B, Bouvet P, Bianco A, Briand JP and Hovanessian AG: The anti-HIV pentameric pseudopeptide HB-19 binds the C-terminal end of nucleolin and prevents anchorage of virus particles in the plasma membrane of target cells. J Biol Chem. 277:20877–20886. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Said EA, Krust B, Nisole S, Svab J, Briand JP and Hovanessian AG: The anti-HIV cytokine midkine binds the cell surface-expressed nucleolin as a low affinity receptor. J Biol Chem. 277:37492–37502. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Legrand D, Vigié K, Said EA, Elass E, Masson M, Slomianny MC, Carpentier M, Briand JP, Mazurier J and Hovanessian AG: Surface nucleolin participates in both the binding and endocytosis of lactoferrin in target cells. Eur J Biochem. 271:303–317. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Said EA, Courty J, Svab J, Delbé J, Krust B and Hovanessian AG: Pleiotrophin inhibits HIV infection by binding the cell surface-expressed nucleolin. FEBS J. 272:4646–4659. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Hovanessian AG: Midkine, a cytokine that inhibits HIV infection by binding to the cell surface expressed nucleolin. Cell Res. 16:174–181. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Barel M, Hovanessian AG, Meibom K, Briand JP, Dupuis M and Charbit A: A novel receptor-ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: Interaction between surface nucleolin and bacteria elongation factor Tu. BMC Microbiol. 8:1452008. View Article : Google Scholar | |
|
Losfeld ME, Khoury DE, Mariot P, Carpentier M, Krust B, Briand JP, Mazurier J, Hovanessian AG and Legrand D: The cell surface expressed nucleolin is a glycoprotein that triggers calcium entry into mammalian cells. Exp Cell Res. 315:357–369. 2009. View Article : Google Scholar | |
|
El Khoury D, Destouches D, Lengagne R, Krust B, Hamma-Kourbali Y, Garcette M, Niro S, Kato M, Briand JP, Courty J, et al: Targeting surface nucleolin with a multivalent pseudopeptide delays development of spontaneous melanoma in RET transgenic mice. BMC Cancer. 10:3252010. View Article : Google Scholar : PubMed/NCBI | |
|
Destouches D, Page N, Hamma-Kourbali Y, Machi V, Chaloin O, Frechault S, Birmpas C, Katsoris P, Beyrath J, Albanese P, et al: A simple approach to cancer therapy afforded by multivalent pseudopeptides that target cell-surface nucleoproteins. Cancer Res. 71:3296–3305. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Krust B, El Khoury D, Soundaramourty C, Nondier I and Hovanessian AG: Suppression of tumorigenicity of rhabdoid tumor derived G401 cells by the multivalent HB-19 pseudopeptide that targets surface nucleolin. Biochimie. 93:426–433. 2011. View Article : Google Scholar | |
|
Birmpas C, Briand JP, Courty J and Katsoris P: Nucleolin mediates the antiangiogenesis effect of the pseudopeptide N6L. BMC Cell Biol. 13:322012. View Article : Google Scholar : PubMed/NCBI | |
|
Birmpas C, Briand JP, Courty J and Katsoris P: The pseudopeptide HB-19 binds to cell surface nucleolin and inhibits angiogenesis. Vasc Cell. 4:212012. View Article : Google Scholar : PubMed/NCBI | |
|
Destouches D, Huet E, Sader M, Frechault S, Carpentier G, Ayoul F, Briand JP, Menashi S and Courty J: Multivalent pseudopeptides targeting cell surface nucleoproteins inhibit cancer cell invasion through tissue inhibitor of metalloproteinases 3 (TIMP-3) release. J Biol Chem. 287:43685–43693. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Koutsioumpa M, Polytarchou C, Courty J, Zhang Y, Kieffer N, Mikelis C, Skandalis SS, Hellman U, Iliopoulos D and Papadimitriou E: Interplay between αvβ3 integrin and nucleolin regulates human endothelial and glioma cell migration. J Biol Chem. 288:343–354. 2013. View Article : Google Scholar | |
|
Benedetti E, Antonosante A, d'Angelo M, Cristiano L, Galzio R, Destouches D, Florio TM, Dhez AC, Astarita C, Cinque B, et al: Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model. Oncotarget. 6:420912015. View Article : Google Scholar : PubMed/NCBI | |
|
Diamantopoulou Z, Gilles ME, Sader M, Cossutta M, Vallée B, Houppe C, Habert D, Brissault B, Leroy E, Maione F, et al: Multivalent cationic pseudopeptide polyplexes as a tool for cancer therapy. Oncotarget. 8:90108–90122. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
De Cola A, Franceschini M, Di Matteo A, Colotti G, Celani R, Clemente E, Ippoliti R, Cimini A, Dhez A, Vallée B, et al: N6L pseudopeptide interferes with nucleophosmin protein-protein interactions and sensitizes leukemic cells to chemotherapy. Cancer Lett. 412:272–282. 2018. View Article : Google Scholar | |
|
Dhez AC, Benedetti E, Antonosante A, Panella G, Ranieri B, Florio TM, Cristiano L, Angelucci F, Giansanti F, Di Leandro L, et al: Targeted therapy of human glioblastoma via delivery of a toxin through a peptide directed to cell surface nucleolin. J Cell Physiol. 233:4091–4105. 2018. View Article : Google Scholar | |
|
Darche M, Cossutta M, Caruana L, Houppe C, Gilles ME, Habert D, Guilloneau X, Vignaud L, Paques M, Courty J and Cascone I: Antagonist of nucleolin, N6L, inhibits neovascularization in mouse models of retinopathies. FASEB J. 34:5851–5862. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chalabi-Dchar M, Cruz E, Mertani HC, Diaz JJ, Courty J, Cascone I and Bouvet P: Nucleolin aptamer N6L reprograms the translational machinery and acts synergistically with mTORi to inhibit pancreatic cancer proliferation. Cancers (Basel). 13:49572021. View Article : Google Scholar : PubMed/NCBI | |
|
Lamprou M, Koutsioumpa M, Kaspiris A, Zompra K, Tselios T and Papadimitriou E: Binding of pleiotrophin to cell surface nucleolin mediates prostate cancer cell adhesion to osteoblasts. Tissue Cell. 76:1018012022. View Article : Google Scholar : PubMed/NCBI | |
|
Thongchot S, Jirapongwattana N, Luangwattananun P, Chiraphapphaiboon W, Chuangchot N, Sa-Nguanraksa D, O-Charoenrat P, Thuwajit P, Yenchitsomanus PT and Thuwajit C: Adoptive transfer of anti-nucleolin T cells combined with PD-L1 inhibition against triple-negative breast cancer. Mol Cancer Ther. 21:727–739. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Pincha M, Sundarasetty BS, Salguero G, Gutzmer R, Garritsen H, Macke L, Schneider A, Lenz D, Figueiredo C, Blasczyk R, et al: Identity, potency, in vivo viability, and scaling up production of lentiviral vector-induced dendritic cells for melanoma immunotherapy. Hum Gene Ther Methods. 23:38–55. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Nakayama M: Antigen presentation by MHC-dressed cells. Front Immunol. 5:6722015. View Article : Google Scholar : PubMed/NCBI | |
|
Mangare C, Tischer-Zimmermann S, Riese SB, Dragon AC, Prinz I, Blasczyk R, Maecker-Kolhoff B and Eiz-Vesper B: Robust identification of suitable T-cell subsets for personalized CMV-specific T-cell immunotherapy using CD45RA and CD62L microbeads. Int J Mol Sci. 20:14152019. View Article : Google Scholar : PubMed/NCBI | |
|
Li ZL, Zhang HL, Huang Y, Huang JH, Sun P, Zhou NN, Chen YH, Mai J, Wang Y, Yu Y, et al: Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat Commun. 11:38062020. View Article : Google Scholar : PubMed/NCBI | |
|
Gurung S, Khan F, Gunassekaran GR, Yoo JD, Poongkavithai Vadevoo SM, Permpoon U, Kim SH, Kim HJ, Kim IS, Han H, et al: Phage display-identified PD-L1-binding peptides reinvigorate T-cell activity and inhibit tumor progression. Biomaterials. 247:1199842020. View Article : Google Scholar : PubMed/NCBI | |
|
Liao F, Liu L, Luo E and Hu J: Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma. Arch Oral Biol. 92:32–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Dang F, Ren J and Wei W: Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends Biochem Sci. 43:1014–1032. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Wu WKK, Gao J, Li Z, Dong B, Lin X, Li Y, Li Y, Gong J, Qi C, et al: Autophagy inhibition enhances PD-L1 expression in gastric cancer. J Exp Clin Cancer Res. 38:1402019. View Article : Google Scholar : PubMed/NCBI | |
|
Abreu TR, Godinho-Santos A, Moreira J and Gonçalves J: P06. 02 Anti-nucleolin CAR (chimeric antigen receptor)-T cell targeting triple-negative breast cancer-critical parameters in CAR-T cells generation. J Immunother Cancer. 10(Suppl 1): A232022. | |
|
Vigneron N, Stroobant V, Van den Eynde BJ and van der Bruggen P: Database of T cell-defined human tumor antigens: The 2013 update. Cancer Immun. 13:152013.PubMed/NCBI | |
|
Wu D, Gao Y, Qi Y, Chen L, Ma Y and Li Y: Peptide-based cancer therapy: opportunity and challenge. Cancer Lett. 351:13–22. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JH, Bae C, Kim MJ, Song IH, Ryu JH, Choi JH, Lee CJ, Nam JS and Kim JI: A novel nucleolin-binding peptide for cancer theranostics. Theranostics. 10:9153–9171. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Shadidi M and Sioud M: Selective targeting of cancer cells using synthetic peptides. Drug Resist Updat. 6:363–371. 2003. View Article : Google Scholar | |
|
Knutson KL, Schiffman K and Disis ML: Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest. 107:477–484. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Tobias J, Garner-Spitzer E, Drinić M and Wiedermann U: Vaccination against Her-2/neu, with focus on peptide-based vaccines. ESMO Open. 7:1003612022. View Article : Google Scholar : PubMed/NCBI | |
|
Carmichael MG, Benavides LC, Holmes JP, Gates JD, Mittendorf EA, Ponniah S and Peoples GE: Results of the first phase 1 clinical trial of the HER-2/neu peptide (GP2) vaccine in disease-free breast cancer patients: United States military cancer institute clinical trials group study I-04. Cancer. 116:292–301. 2010. View Article : Google Scholar | |
|
Abbaspour M and Akbari V: Cancer vaccines as a targeted immunotherapy approach for breast cancer: An update of clinical evidence. Expert Rev Vaccines. 21:337–353. 2022. View Article : Google Scholar | |
|
Mitchell MS, Lund TA, Sewell AK, Marincola FM, Paul E, Schroder K, Wilson DB and Kan-Mitchell J: The cytotoxic T cell response to peptide analogs of the HLA-A*0201-restricted MUC1 signal sequence epitope, M1.2. Cancer Immunol Immunother. 56:287–301. 2007. View Article : Google Scholar | |
|
Thueng-in K, Thanongsaksrikul J, Jittavisutthikul S, Seesuay W, Chulanetra M, Sakolvaree Y, Srimanote P and Chaicumpa W: Interference of HCV replication by cell penetrable human monoclonal scFv specific to NS5B polymerase. MAbs. 6:1327–1339. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Medicine NLo: A non-randomized, open-label, multi-centric dose-finding adaptive phase I/IIa study to assess safety, tolerability, pharmacokinetics and preliminary efficacy of repeated intravenous IPP-204106N administrations in adult patients with advanced solid tumors. Available online: https://clinicaltrials.gov/ct2/show/NCT01711398. Accessed June 3, 2022 | |
|
Ramos KS, Moore S, Runge I, Tavera-Garcia MA, Cascone I, Courty J and Rayes-Reyes EM: The nucleolin antagonist N6L inhibits LINE1 retrotransposon activity in non-small cell lung carcinoma cells. J Cancer. 11:733–740. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hovanessian AG, Soundaramourty C, El Khoury D, Nondier I, Svab J and Krust B: Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS One. 5:e157872010. View Article : Google Scholar |