|
1
|
Li S, Kuo HC, Yin R, Wu R, Liu X, Wang L,
Hudlikar R, Peter RM and Kong AN: Epigenetics/epigenomics of
triterpenoids in cancer prevention and in health. Biochem
Pharmacol. 175:1138902020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Goel A and Boland CR: Epigenetics of
colorectal cancer. Gastroenterology. 143:1442–1460.e1. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhou S, Treloar AE and Lupien M: Emergence
of the noncoding cancer genome: A target of genetic and epigenetic
alterationsthe noncoding cancer genome. Cancer Discov. 6:1215–1229.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhao Y, Shi Y, Shen H and Xie W:
m6A-binding proteins: The emerging crucial performers in
epigenetics. J Hematol Oncol. 13:352020. View Article : Google Scholar
|
|
5
|
Ghavami S, Zamani M, Ahmadi M, Erfani M,
Dastghaib S, Darbandi M, Darbandi S, Vakili O, Siri M, Grabarek BO,
et al: Epigenetic regulation of autophagy in gastrointestinal
cancers. Biochim Biophys Acta Mol Basis Dis. 1868:1665122022.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jiang X, Liu B, Nie Z, Duan L, Xiong Q,
Jin Z, Yang C and Chen Y: The role of m6A modification in the
biological functions and diseases. Signal Transduct Target Ther.
6:742021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jones PA, Issa JP and Baylin S: Targeting
the cancer epigenome for therapy. Nat Rev Genet. 17:630–641. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bird A: Perceptions of epigenetics.
Nature. 447:396–398. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu X, Wang P, Teng X, Zhang Z and Song S:
Comprehensive analysis of expression regulation for RNA m6A
regulators with clinical significance in human cancers. Front
Oncol. 11:6243952021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Song N, Cui K, Zhang K, Yang J, Liu J,
Miao Z, Zhao F, Meng H, Chen L, Chen C, et al: The role of m6A RNA
methylation in cancer: Implication for nature products anti-cancer
research. Front Pharmacol. 13:9333322022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen DH, Zhang JG, Wu CX and Li Q:
Non-Coding RNA m6A modification in cancer: Mechanisms and
therapeutic targets. Front Cell Dev Biol. 9:7785822021. View Article : Google Scholar
|
|
12
|
Roundtree IA, Evans ME, Pan T and He C:
Dynamic RNA modifications in gene expression regulation. Cell.
169:1187–1200. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang
Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in
nuclear RNA is a major substrate of the obesity-associated FTO. Nat
Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yi YC, Chen XY, Zhang J and Zhu JS: Novel
insights into the interplay between m6A modification and
noncoding RNAs in cancer. Mol Cancer. 19:1212020. View Article : Google Scholar
|
|
15
|
Li H, Wu H, Wang Q, Ning S, Xu S and Pang
D: Dual effects of N6-methyladenosine on cancer
progression and immunotherapy. Mol Ther Nucleic Acids. 24:25–39.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cheng Y, Xie W, Pickering BF, Chu KL,
Savino AM, Yang X, Luo H, Nguyen DT, Mo S, Barin E, et al:
N6-Methyladenosine on mRNA facilitates a phase-separated
nuclear body that suppresses myeloid leukemic differentiation.
Cancer Cell. 39:958–972.e8. 2021. View Article : Google Scholar
|
|
17
|
Dominissini D, Moshitch-Moshkovitz S,
Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K,
Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human
and mouse m6A RNA methylomes revealed by m6A-seq. Nature.
485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Meyer KD, Saletore Y, Zumbo P, Elemento O,
Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation
reveals enrichment in 3' UTRs and near stop codons. Cell.
149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen Y, Peng C, Chen J, Chen D, Yang B, He
B, Hu W, Zhang Y, Liu H, Dai L, et al: WTAP facilitates progression
of hepatocellular carcinoma via m6A-HuR-dependent epigenetic
silencing of ETS1. Mol Cancer. 18:1272019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen Y, Zhao Y, Chen J, Peng C, Zhang Y,
Tong R, Cheng Q, Yang B, Feng X, Lu Y, et al: ALKBH5 suppresses
malignancy of hepatocellular carcinoma via m6A-guided epigenetic
inhibition of LYPD1. Mol Cancer. 19:1232020. View Article : Google Scholar :
|
|
21
|
Fu Y, Dominissini D, Rechavi G and He C:
Gene expression regulation mediated through reversible m6A RNA
methylation. Nat Rev Genet. 15:293–306. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ke S, Alemu EA, Mertens C, Gantman EC, Fak
JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al:
A majority of m6A residues are in the last exons, allowing the
potential for 3' UTR regulation. Genes Dev. 29:2037–2053. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
He PC and He C: m6A RNA
methylation: From mechanisms to therapeutic potential. EMBO J.
40:e1059772021. View Article : Google Scholar
|
|
24
|
Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang
Z, Cheng T, Gao M, Shu X, Ma H, et al: VIRMA mediates preferential
m6A mRNA methylation in 3' UTR and near stop codon and
associates with alternative polyadenylation. Cell Discov. 4:102018.
View Article : Google Scholar
|
|
25
|
Wei CM and Moss B: Nucleotide sequences at
the N6-methyladenosine sites of HeLa cell messenger ribonucleic
acid. Biochemistry. 16:1672–1676. 1977. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen XY, Zhang J and Zhu JS: The role of
m6A RNA methylation in human cancer. Mol Cancer.
18:1032019. View Article : Google Scholar
|
|
27
|
Wang N, Huo X, Zhang B, Chen X, Zhao S,
Shi X, Xu H and Wei X: METTL3-Mediated ADAMTS9 suppression
facilitates angiogenesis and carcinogenesis in gastric cancer.
Front Oncol. 12:8618072022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yu T, Liu J, Wang Y, Chen W, Liu Z, Zhu L
and Zhu W: METTL3 promotes colorectal cancer metastasis by
stabilizing PLAU mRNA in an m6A-dependent manner. Biochem Biophys
Res Commun. 614:9–16. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang Q, Chen C, Ding Q, Zhao Y, Wang Z,
Chen J, Jiang Z, Zhang Y, Xu G, Zhang J, et al: METTL3-mediated
m6A modification of HDGF mRNA promotes gastric cancer
progression and has prognostic significance. Gut. 69:1193–1205.
2020. View Article : Google Scholar
|
|
30
|
Zhou H, Yin K, Zhang Y, Tian J and Wang S:
The RNA m6A writer METTL14 in cancers: Roles, structures, and
applications. Biochim Biophys Acta Rev Cancer. 1876:1886092021.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sun T, Wu Z, Wang X, Wang Y, Hu X, Qin W,
Lu S, Xu D, Wu Y, Chen Q, et al: LNC942 promoting METTL14-mediated
m6A methylation in breast cancer cell proliferation and
progression. Oncogene. 39:5358–5372. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ruszkowska A: METTL16,
methyltransferase-like protein 16: Current insights into structure
and function. Int J Mol Sci. 22:21762021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Su R, Dong L, Li Y, Gao M, He PC, Liu W,
Wei J, Zhao Z, Gao L, Han L, et al: METTL16 exerts an
m6A-independent function to facilitate translation and
tumorigenesis. Nat Cell Biol. 24:205–216. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Trindade F, Tellechea Ó, Torrelo A,
Requena L and Colmenero I: Wilms tumor 1 expression in vascular
neoplasms and vascular malformations. Am J Dermatopathol.
33:569–572. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang LJ, Xue Y, Li H, Huo R, Yan Z, Wang
J, Xu H, Wang J, Cao Y and Zhao JZ: Wilms' tumour 1-associating
protein inhibits endothelial cell angiogenesis by m6A-dependent
epigenetic silencing of desmoplakin in brain arteriovenous
malformation. J Cell Mol Med. 24:4981–4991. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhu W, Wang JZ, Wei JF and Lu C: Role of
m6A methyltransferase component VIRMA in multiple human cancers.
Cancer Cell Int. 21:1722021. View Article : Google Scholar
|
|
37
|
Panneerdoss S, Eedunuri VK, Yadav P,
Timilsina S, Rajamanickam S, Viswanadhapalli S, Abdelfattah N,
Onyeagucha BC, Cui X, Lai Z, et al: Cross-talk among writers,
readers, and erasers of m6A regulates cancer growth and
progression. Sci Adv. 4:eaar82632018. View Article : Google Scholar
|
|
38
|
Choe J, Lin S, Zhang W, Liu Q, Wang L,
Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, et al: mRNA
circularization by METTL3-eIF3h enhances translation and promotes
oncogenesis. Nature. 561:556–560. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shan K, Zhou RM, Xiang J, Sun YN, Liu C,
Lv MW and Xu JJ: FTO regulates ocular angiogenesis via
m6A-YTHDF2-dependent mechanism. Exp Eye Res. 197:1081072020.
View Article : Google Scholar
|
|
40
|
Mathiyalagan P, Adamiak M, Mayourian J,
Sassi Y, Liang Y, Agarwal N, Jha D, Zhang S, Kohlbrenner E,
Chepurko E, et al: FTO-dependent N6-methyladenosine
regulates cardiac function during remodeling and repair.
Circulation. 139:518–532. 2019. View Article : Google Scholar :
|
|
41
|
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E,
He J and Cai Z: RNA demethylase ALKBH5 in cancer: From mechanisms
to therapeutic potential. J Hematol Oncol. 15:82022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhao Y, Hu J, Sun X, Yang K, Yang L, Kong
L, Zhang B, Li F, Li C, Shi B, et al: Loss of m6A Demethylase
ALKBH5 Promotes post-ischemic Angiogenesis via post-transcriptional
Stabilization of WNT5A. Clin Transl Med. 11:e4022021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pendleton KE, Chen B, Liu K, Hunter OV,
Xie Y, Tu BP and Conrad NK: The U6 snRNA m6A methyltransferase
METTL16 regulates SAM synthetase intron retention. Cell.
169:824–835.e14. 2017. View Article : Google Scholar :
|
|
44
|
Yan H, Zhang L, Cui X, Zheng S and Li R:
Roles and mechanisms of the m6A reader YTHDC1 in
biological processes and diseases. Cell Death Discov. 8:2372022.
View Article : Google Scholar
|
|
45
|
Dai XY, Shi L, Li Z, Yang HY, Wei JF and
Ding Q: Main N6-methyladenosine readers: YTH family proteins in
cancers. Front Oncol. 11:6353292021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gao LB, Zhu XL, Shi JX, Yang L, Xu ZQ and
Shi SL: HnRNPA2B1 promotes the proliferation of breast cancer MCF-7
cells via the STAT3 pathway. J Cell Biochem. 122:472–484. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li J, Xie H, Ying Y, Chen H, Yan H, He L,
Xu M, Xu X, Liang Z Liu B, et al: YTHDF2 mediates the mRNA
degradation of the tumor suppressors to induce AKT phosphorylation
in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer.
19:1522020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Schöller E, Weichmann F, Treiber T, Ringle
S, Treiber N, Flatley A, Feederle R, Bruckmann A and Meister G:
Interactions, localization, and phosphorylation of the
m6A generating METTL3-METTL14-WTAP complex. RNA.
24:499–512. 2018. View Article : Google Scholar
|
|
49
|
Śledź P and Jinek M: Structural insights
into the molecular mechanism of the m(6)A writer complex. Elife.
5:e184342016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang P, Doxtader KA and Nam Y: Structural
basis for cooperative function of Mettl3 and Mettl14
methyltransferases. Mol Cell. 63:306–317. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lin S, Choe J, Du P, Triboulet R and
Gregory RI: The m(6)A methyltransferase METTL3 promotes translation
in human cancer cells. Mol Cell. 62:335–345. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang
L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3–METTL14 complex
mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem
Biol. 10:93–95. 2014. View Article : Google Scholar
|
|
53
|
Bujnicki JM, Feder M, Radlinska M and
Blumenthal RM: Structure prediction and phylogenetic analysis of a
functionally diverse family of proteins homologous to the MT-A70
subunit of the human mRNA: m(6)A methyltransferase. J Mol Evol.
55:431–444. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Han SH and Choe J: Diverse molecular
functions of m6A mRNA modification in cancer. Exp Mol
Med. 52:738–749. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wen J, Lv R, Ma H, Shen H, He C, Wang J,
Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA
m6A methylation and mouse embryonic stem cell
self-renewal. Mol Cell. 69:1028–1038.e6. 2018. View Article : Google Scholar
|
|
56
|
Liu X, Qin J, Gao T, Li C, Chen X, Zeng K,
Zeng K, Xu M, He B, Pan B, et al: Analysis of METTL3 and METTL14 in
hepatocellular carcinoma. Aging (albany NY). 12:21638–21659. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou
Q, Zhang KJ, Zhang X, Zhou Y, Zhang T, et al:
Mettl3-/Mettl14-mediated mRNA N6-methyladenosine
modulates murine spermatogenesis. Cell Res. 27:1216–1230. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han
D, Fu Y, Parisien M, Dai Q, Jia G, et al:
N6-methyladenosine-dependent regulation of messenger RNA stability.
Nature. 505:117–120. 2014. View Article : Google Scholar
|
|
59
|
Lin R, Zhan M, Yang L, Wang H, Shen H,
Huang S, Huang X, Xu S, Zhang Z, Li W, et al: Deoxycholic acid
modulates the progression of gallbladder cancer through
N6-methyladenosine-dependent microRNA maturation.
Oncogene. 39:4983–5000. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang Y, Qian Cai Q, Sheng Fu L, Wei Dong
Y, Fan F and Zhong Wu X: Reduced N6-Methyladenosine Mediated by
METTL3 Acetylation Promotes MTF1 expression and hepatocellular
carcinoma cell growth. Chem Biodivers. 19:e2022003332022.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang N, Zuo Y, Peng Y and Zuo L: Function
of N6-methyladenosine modification in tumors. J Oncol.
2021:64615522021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Lan Q, Liu PY, Haase J, Bell JL,
Hüttelmaier S and Liu T: The critical role of RNA m6A
methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Deng X, Su R, Weng H, Huang H, Li Z and
Chen J: RNA N6-methyladenosine modification in cancers:
Current status and perspectives. Cell Res. 28:507–517. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hu BE, Wang XY, Gu XY, Zou C, Gao ZJ,
Zhang H and Fan Y: N6-methyladenosine (m6A) RNA
modification in gastrointestinal tract cancers: Roles, mechanisms,
and applications. Mol Cancer. 18:1782019. View Article : Google Scholar
|
|
67
|
Zhang C, Zhang M, Ge S, Huang W, Lin X,
Gao J, Gong J and Shen L: Reduced m6A modification predicts
malignant phenotypes and augmented Wnt/PI3K-Akt signaling in
gastric cancer. Cancer Med. 8:4766–4781. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liu X, Xiao M, Zhang L, Li L, Zhu G, Shen
E, Lv M, Lu X and Sun Z: The m6A methyltransferase METTL14 inhibits
the proliferation, migration, and invasion of gastric cancer by
regulating the PI3K/AKT/mTOR signaling pathway. J Clin Lab Anal.
35:e236552021.
|
|
69
|
Yao Q, He L, Gao X, Tang N, Lin L, Yu X
and Wang D: The m6A methyltransferase METTL14-mediated
N6-methyladenosine modification of PTEN mRNA inhibits tumor growth
and metastasis in stomach adenocarcinoma. Front Oncol.
11:6997492021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Fan HN, Chen ZY, Chen XY, Chen M, Yi YC,
Zhu JS and Zhang J: METTL14-mediated m6A modification of circORC5
suppresses gastric cancer progression by regulating
miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 21:512022. View Article : Google Scholar :
|
|
71
|
Lin JX, Lian NZ, Gao YX, Zheng QL, Yang
YH, Ma YB, Xiu ZS, Qiu QZ, Wang HG, Zheng CH, et al: m6A
methylation mediates LHPP acetylation as a tumour aerobic
glycolysis suppressor to improve the prognosis of gastric cancer.
Cell Death Dis. 13:4632022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jin H, Wu Z, Tan B, Liu Z, Zu Z, Wu X, Bi
Y and Hu X: Ibuprofen promotes p75 neurotrophin receptor expression
through modifying promoter methylation and
N6-methyladenosine-RNA-methylation in human gastric cancer cells.
Bioengineered. 13:14595–14604. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hu N and Ji H: N6-methyladenosine
(m6A)-mediated up-regulation of long noncoding RNA LINC01320
promotes the proliferation, migration, and invasion of gastric
cancer via miR495-5p/RAB19 axis. Bioengineered. 12:4081–4091. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Balogh J, Victor D III, Asham EH,
Burroughs SG, Boktour M, Saharia A, Li X, Ghobrial RM and Monsour
HP Jr: Hepatocellular carcinoma: A review. J Hepatocell Carcinoma.
3:41–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Raoul JL and Edeline J: Systemic treatment
of hepatocellular carcinoma: Standard of care in China and
elsewhere. Lancet Oncol. 21:479–481. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li ZL, Yan WT, Zhang J, Zhao YJ, Lau WY,
Mao XH, Zeng YY, Zhou YH, Gu WM, Wang H, et al: Identification of
actual 10-year survival after hepatectomy of HBV-related
hepatocellular carcinoma: A multicenter study. J Gastrointest Surg.
23:288–296. 2019. View Article : Google Scholar
|
|
77
|
Ferlay J, Colombet M, Soerjomataram I,
Mathers C, Parkin DM, Piñeros M, Znaor A and Bray F: Estimating the
global cancer incidence and mortality in 2018: GLOBOCAN sources and
methods. Int J Cancer. 144:1941–1953. 2019. View Article : Google Scholar
|
|
78
|
Zhou T, Ren Z and Chen C: METTL14 as a
predictor of postoperative survival outcomes of patients with
hepatocellular carcinoma. Nan Fang Yi Ke Da Xue Xue Bao.
40:567–572. 2020.In Chinese. PubMed/NCBI
|
|
79
|
Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH,
Wang F, Wang TT, Xu QG, Zhou WP and Sun SH: METTL14 suppresses the
metastatic potential of hepatocellular carcinoma by modulating
N6-methyladenosine-dependent primary MicroRNA
processing. Hepatology. 65:529–543. 2017. View Article : Google Scholar
|
|
80
|
Laptenko O and Prives C: Transcriptional
regulation by p53: One protein, many possibilities. Cell Death
Differ. 13:951–961. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ghazi T, Nagiah S and Chuturgoon AA:
Fusaric acid decreases p53 expression by altering promoter
methylation and m6A RNA methylation in human hepatocellular
carcinoma (HepG2) cells. Epigenetics. 16:79–91. 2021. View Article : Google Scholar :
|
|
82
|
Shi Y, Zhuang Y, Zhang J, Chen M and Wu S:
METTL14 inhibits hepatocellular carcinoma metastasis through
regulating EGFR/PI3K/AKT signaling pathway in an m6A-dependent
manner. Cancer Manag Res. 12:13173–13184. 2020. View Article : Google Scholar :
|
|
83
|
Zhou T, Li S, Xiang D, Liu J, Sun W, Cui
X, Ning B, Li X, Cheng Z, Jiang W, et al: m6A RNA
methylation-mediated HNF3γ reduction renders hepatocellular
carcinoma dedifferentiation and sorafenib resistance. Signal
Transduct Target Ther. 5:2962020. View Article : Google Scholar
|
|
84
|
Du L, Li Y, Kang M, Feng M, Ren Y, Dai H,
Wang Y, Wang Y and Tang B: USP48 is upregulated by Mettl14 to
attenuate hepatocellular carcinoma via regulating SIRT6
stabilization. Cancer Res. 81:3822–3834. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Fan Z, Yang G, Zhang W, Liu Q, Liu G, Liu
P, Xu L, Wang J, Yan Z, Han H, et al: Hypoxia blocks ferroptosis of
hepatocellular carcinoma via suppression of METTL14 triggered
YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med.
25:10197–10212. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yang Y, Cai J, Yang X, Wang K, Sun K, Yang
Z, Zhang L, Yang L, Gu C, Huang X, et al: Dysregulated m6A
modification promotes lipogenesis and development of non-alcoholic
fatty liver disease and hepatocellular carcinoma. Mol Ther.
30:2342–2353. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Peng L, Pan B, Zhang X, Wang Z, Qiu J,
Wang X and Tang N: Lipopolysaccharide facilitates immune escape of
hepatocellular carcinoma cells via m6A modification of lncRNA
MIR155HG to upregulate PD-L1 expression. Cell Biol Toxicol.
38:1159–1173. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu J, Zhang N, Zeng J, Wang T, Shen Y, Ma
C and Yang M: N6-methyladenosine-modified lncRNA
ARHGAP5-AS1 stabilises CSDE1 and coordinates oncogenic RNA regulons
in hepatocellular carcinoma. Clin Transl Med. 12:e11072022.
View Article : Google Scholar
|
|
89
|
Wang L, Yi X, Xiao X, Zheng Q, Ma L and Li
B: Exosomal miR-628-5p from M1 polarized macrophages hinders m6A
modification of circFUT8 to suppress hepatocellular carcinoma
progression. Cell Mol Biol Lett. 27:1062022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Teng S, Li YE, Yang M, Qi R, Huang Y, Wang
Q, Zhang Y, Chen S, Li S, Lin K, et al: Tissue-specific
transcription reprogramming promotes liver metastasis of colorectal
cancer. Cell Res. 30:34–49. 2020. View Article : Google Scholar :
|
|
92
|
Tian J, Ying P, Ke J, Zhu Y, Yang Y, Gong
Y, Zou D, Peng X, Yang N, Wang X, et al: ANKLE1
N6-Methyladenosine-related variant is associated with
colorectal cancer risk by maintaining the genomic stability. Int J
Cancer. 146:3281–3293. 2020. View Article : Google Scholar
|
|
93
|
Yang X, Zhang S, He C, Xue P, Zhang L, He
Z, Zang L, Feng B, Sun J and Zheng M: METTL14 suppresses
proliferation and metastasis of colorectal cancer by
down-regulating oncogenic long non-coding RNA XIST. Mol Cancer.
19:462020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B,
Li C, Sun L, Qin J, Xu T, et al: METTL14-mediated
N6-methyladenosine modification of SOX4 mRNA inhibits tumor
metastasis in colorectal cancer. Mol Cancer. 19:1062020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang S, Gan M, Chen C, Zhang Y, Kong J,
Zhang H and Lai M: Methyl CpG binding protein 2 promotes colorectal
cancer metastasis by regulating N6-methyladenosine
methylation through methyltransferase-like 14. Cancer Sci.
112:3243–3254. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang H, Wei W, Zhang ZY, Liu Y, Shi B,
Zhong W, Zhang HS, Fang X, Sun CL, Wang JB and Liu LX: TCF4 and HuR
mediated-METTL14 suppresses dissemination of colorectal cancer via
N6-methyladenosine-dependent silencing of ARRDC4. Cell Death Dis.
13:32021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang L, Hui H, Agrawal K, Kang Y, Li N,
Tang R, Yuan J and Rana TM: m6A RNA methyltransferases
METTL3/14 regulate immune responses to anti-PD-1 therapy. EMBO J.
39:e1045142020. View Article : Google Scholar
|
|
98
|
Dong L, Chen C, Zhang Y, Guo P, Wang Z, Li
J, Liu Y, Liu J, Chang R, Li Y, et al: The loss of RNA
N6-adenosine methyltransferase Mettl14 in
tumor-associated macrophages promotes CD8+ T cell
dysfunction and tumor growth. Cancer Cell. 39:945–957.e10. 2021.
View Article : Google Scholar
|
|
99
|
Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B,
Shen C, Ma Y, Jiang S, Ma D, et al: Enterotoxigenic Bacteroides
fragilis promotes intestinal inflammation and malignancy by
inhibiting exosome-packaged miR-149-3p. Gastroenterology.
161:1552–1566.e12. 2021. View Article : Google Scholar
|
|
100
|
Luo M, Huang Z, Yang X, Chen Y, Jiang J,
Zhang L, Zhou L, Qin S, Jin P, Fu S, et al: PHLDB2 mediates
cetuximab resistance via interacting with EGFR in latent metastasis
of colorectal cancer. Cell Mol Gastroenterol Hepatol. 13:1223–1242.
2022. View Article : Google Scholar :
|
|
101
|
Kamisawa T, Wood LD, Itoi T and Takaori K:
Pancreatic cancer. Lancet. 388:73–85. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wolfgang CL, Herman JM, Laheru DA, Klein
AP, Erdek MA, Fishman EK and Hruban RH: Recent progress in
pancreatic cancer. CA Cancer J Clin. 63:318–348. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hidalgo M, Cascinu S, Kleeff J, Labianca
R, Löhr JM, Neoptolemos J, Real FX, Van Laethem JL and Heinemann V:
Addressing the challenges of pancreatic cancer: Future directions
for improving outcomes. Pancreatology. 15:8–18. 2015. View Article : Google Scholar
|
|
104
|
Wang M, Liu J, Zhao Y, He R, Xu X, Guo X,
Li X, Xu S, Miao J, Guo J, et al: Upregulation of METTL14 mediates
the elevation of PERP mRNA N6 adenosine methylation
promoting the growth and metastasis of pancreatic cancer. Mol
Cancer. 19:1302020. View Article : Google Scholar
|
|
105
|
Jiang Z, Song X, Wei Y, Li Y, Kong D and
Sun J: N(6)-methyladenosine-mediated miR-380-3p maturation and
upregulation promotes cancer aggressiveness in pancreatic cancer.
Bioengineered. 13:14460–14471. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kong F, Liu X, Zhou Y, Hou X, He J, Li Q,
Miao X and Yang L: Downregulation of METTL14 increases apoptosis
and autophagy induced by cisplatin in pancreatic cancer cells. Int
J Biochem Cell Biol. 122:1057312020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Nabors LB, Portnow J, Ahluwalia M,
Baehring J, Brem H, Brem S, Butowski N, Campian JL, Clark SW,
Fabiano AJ, et al: Central nervous system cancers, version 3.2020,
NCCN clinical practice guidelines in oncology. J Natl Compr Canc
Netw. 18:1537–1570. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang C, Ou S, Zhou Y, Liu P, Zhang P, Li
Z, Xu R and Li Y: m6A Methyltransferase METTL14-Mediated
upregulation of cytidine deaminase promoting gemcitabine resistance
in pancreatic cancer. Front Oncol. 11:6963712021. View Article : Google Scholar
|
|
109
|
Tian J, Zhu Y, Rao M, Cai Y, Lu Z, Zou D,
Peng X, Ying P, Zhang M, Niu S, et al:
N6-methyladenosine mRNA methylation of PIK3CB regulates
AKT signalling to promote PTEN-deficient pancreatic cancer
progression. Gut. 69:2180–2192. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Chen S, Yang C, Wang ZW, Hu JF, Pan JJ,
Liao CY, Zhang JQ, Chen JZ, Huang Y, Huang L, et al: CLK1/SRSF5
pathway induces aberrant exon skipping of METTL14 and Cyclin L2 and
promotes growth and metastasis of pancreatic cancer. J Hematol
Oncol. 14:602021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chen FQ, Zheng H, Gu T, Hu YH, Yang L,
Huang ZP, Qiao GL and Li HJ: Modification of STIM2 by
m6A RNA methylation inhibits metastasis of
cholangiocarcinoma. Ann Transl Med. 10:402022. View Article : Google Scholar
|
|
112
|
Tomczak K, Czerwińska P and Wiznerowicz M:
The Cancer Genome Atlas (TCGA): An immeasurable source of
knowledge. Contemp Oncol (Pozn). 19(1A): A68–A77. 2015.PubMed/NCBI
|
|
113
|
Kong F, Wang K and Wang L: Systematic
analysis of the expression profile and prognostic significance of
m6A regulators and PD-L1 in hepatocellular carcinoma. Discov Oncol.
13:1312022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Li Z, Li F, Peng Y, Fang J and Zhou J:
Identification of three m6A-related mRNAs signature and risk score
for the prognostication of hepatocellular carcinoma. Cancer Med.
9:1877–1889. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Xu F, Zhang Z, Yuan M, Zhao Y, Zhou Y, Pei
H and Bai L: M6A regulatory genes play an important role in the
prognosis, progression and immune microenvironment of pancreatic
adenocarcinoma. Cancer Invest. 39:39–54. 2021. View Article : Google Scholar
|
|
116
|
Zhang T, Sheng P and Jiang Y: m6A
regulators are differently expressed and correlated with immune
response of pancreatic adenocarcinoma. J Cancer Res Clin Oncol.
149:2805–2822. 2023. View Article : Google Scholar
|
|
117
|
Cai C, Long J, Huang Q, Han Y, Peng Y, Guo
C, Liu S, Chen Y, Shen E, Long K, et al: M6A 'Writer' gene METTL14:
A favorable prognostic biomarker and correlated with immune
infiltrates in rectal cancer. Front Oncol. 11:6152962021.
View Article : Google Scholar
|
|
118
|
Chen Y, Wang S, Cho WC, Zhou X and Zhang
Z: Prognostic Implication of the m6A RNA Methylation
Regulators in Rectal Cancer. Front Genet. 12:6042292021. View Article : Google Scholar
|
|
119
|
Xu Z, Chen Q, Shu L, Zhang C, Liu W and
Wang P: Expression profiles of m6A RNA methylation regulators,
PD-L1 and immune infiltrates in gastric cancer. Front Oncol.
12:9703672022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wang H, Zhang Y, Chen L, Liu Y, Xu C,
Jiang D, Song Q, Wang H, Wang L, Lin Y, et al: Identification of
clinical prognostic features of esophageal cancer based on m6A
regulators. Front Immunol. 13:9503652022. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Du Y, Hou G, Zhang H, Dou J, He J, Guo Y,
Li L, Chen R, Wang Y, Deng R, et al: SUMOylation of the m6A-RNA
methyltransferase METTL3 modulates its function. Nucleic Acids Res.
46:5195–5208. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Chen HM, Li H, Lin MX, Fan WJ, Zhang Y,
Lin YT and Wu SX: Research progress for RNA modifications in
physiological and pathological angiogenesis. Front Genet.
13:9526672022. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Chen Y, Lu Z, Qi C, Yu C, Li Y, Huan W,
Wang R, Luo W, Shen D, Ding L, et al:
N6-methyladenosine-modified TRAF1 promotes sunitinib
resistance by regulating apoptosis and angiogenesis in a
METTL14-dependent manner in renal cell carcinoma. Mol Cancer.
21:1112022. View Article : Google Scholar
|
|
124
|
Wen H, Tang J, Cui Y, Hou M and Zhou J:
m6A modification-mediated BATF2 suppresses metastasis and
angiogenesis of tongue squamous cell carcinoma through inhibiting
VEGFA. Cell Cycle. 22:100–116. 2023. View Article : Google Scholar
|