Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October-2023 Volume 52 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 52 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells

  • Authors:
    • Songzhu Zou
    • Xiaomei Gou
    • Kunming Wen
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
    Copyright: © Zou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 93
    |
    Published online on: August 23, 2023
       https://doi.org/10.3892/ijmm.2023.5296
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

DNA damage and repair play a crucial role in the development, progression and treatment of cancer. In response to various types of DNA damage, the organism initiates a series of DNA damage responses that trigger post‑DNA damage repair processes. Among the most severe forms of DNA damage are DNA double‑strand breaks (DSBs), which can be repaired by the body through two pathways: Homologous recombination and non‑homologous end joining. The repair of DNA damage, particularly DNA DSBs, significantly influences the sensitivity and resistance of cancer cells to chemotherapy and radiotherapy. Numerous studies have demonstrated that long non‑coding RNAs (lncRNAs) can exert multiple regulatory effects on cancer cells by binding to RNA binding proteins (RBPs), thereby influencing DNA damage repair. Based on a comprehensive literature search, the existing research on the regulation of DNA damage repair by lncRNAs interacting with RBPs has primarily focused on the repair of DNA DSBs. Therefore, the present review discusses the regulatory effects of the interaction between lncRNAs and RBPs on DNA damage repair in cancer cells, with a specific focus on the repair of DNA DSBs and its implications in cancer. It is hoped that comprehensive analysis may enhance the current understanding of the molecular mechanisms underlying DNA damage repair in cancer and may lead to the identification of novel diagnostic biomarkers and potential therapeutic targets.
View Figures

Figure 1

Figure 2

View References

1 

Ragunathan K, Upfold NLE and Oksenych V: Interaction between fibroblasts and immune cells following DNA Damage induced by ionizing radiation. Int J Mol Sci. 21:86352020. View Article : Google Scholar : PubMed/NCBI

2 

Marshall CJ and Santangelo TJ: Archaeal DNA repair mechanisms. Biomolecules. 10:14722020. View Article : Google Scholar : PubMed/NCBI

3 

Maremonti E, Brede DA, Olsen AK, Eide DM and Berg ES: Ionizing radiation, genotoxic stress, and mitochondrial DNA copy-number variation in Caenorhabditis elegans: Droplet digital PCR analysis. Mutat Res Genet Toxicol Environ Mutagen. 858-860:5032772020. View Article : Google Scholar : PubMed/NCBI

4 

Pariset E, Malkani S, Cekanaviciute E and Costes SV: Ionizing radiation-induced risks to the central nervous system and countermeasures in cellular and rodent models. Int J Radiat Biol. 97(Suppl): S132–S150. 2021. View Article : Google Scholar

5 

Wu R, Hogberg J, Adner M, Ramos-Ramirez P, Stenius U and Zheng H: Crystalline silica particles cause rapid NLRP3-dependent mitochondrial depolarization and DNA damage in airway epithelial cells. Part Fibre Toxicol. 17:392020. View Article : Google Scholar : PubMed/NCBI

6 

Dussert F, Arthaud PA, Arnal ME, Dalzon B, Torres A, Douki T, Herlin N, Rabilloud T and Carriere M: Toxicity to RAW264.7 macrophages of silica nanoparticles and the E551 food additive, in combination with genotoxic agents. Nanomaterials (Basel). 10:14182020. View Article : Google Scholar : PubMed/NCBI

7 

Huang R, Yu T, Li Y and Hu J: Upregulated has-miR-4516 as a potential biomarker for early diagnosis of dust-induced pulmonary fibrosis in patients with pneumoconiosis. Toxicol Res (Camb). 7:415–422. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Gupta N, Khetan D, Chaudhary R and Shukla JS: Prospective cohort study to assess the effect of storage duration, Leuko-filtration, and gamma irradiation on cell-free DNA in red cell components. Transfus Med Hemother. 47:409–419. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Lindahl T and Barnes DE: Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol. 65:127–133. 2000. View Article : Google Scholar

10 

Jackson SP and Bartek J: The DNA-damage response in human biology and disease. Nature. 461:1071–1078. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Aguilera A and Garcia-Muse T: Causes of genome instability. Annu Rev Genet. 47:1–32. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Aguilera A and Gomez-Gonzalez B: Genome instability: A mechanistic view of its causes and consequences. Nat Rev Genet. 9:204–217. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Li J, Sun H, Huang Y, Wang Y, Liu Y and Chen X: Pathways and assays for DNA double-strand break repair by homologous recombination. Acta Biochim Biophys Sin (Shanghai). 51:879–889. 2019. View Article : Google Scholar : PubMed/NCBI

14 

O'Connor MJ: Targeting the DNA damage response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Lord CJ and Ashworth A: The DNA damage response and cancer therapy. Nature. 481:287–294. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Pilie PG, Tang C, Mills GB and Yap TA: State-of-the-art strategies for targeting the DNA damage response in cancer. Nat Rev Clin Oncol. 16:81–104. 2019. View Article : Google Scholar

17 

Marchese FP, Raimondi I and Huarte M: The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 18:2062017. View Article : Google Scholar : PubMed/NCBI

18 

Huarte M: The emerging role of lncRNAs in cancer. Nat Med. 21:1253–1261. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Fanale D, Castiglia M, Bazan V and Russo A: Involvement of Non-coding RNAs in Chemo- and Radioresistance of colorectal Cancer. Adv Exp Med Biol. 937:207–228. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Zhou XL, Wang WW, Zhu WG, Yu CH, Tao GZ, Wu QQ, Song YQ, Pan P and Tong YS: High expression of long non-coding RNA AFAP1-AS1 predicts chemoradioresistance and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Mol Carcinog. 55:2095–2105. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Haemmig S, Yang D, Sun X, Das D, Ghaffari S, Molinaro R, Chen L, Deng Y, Freeman D, Moullan N, et al: Long noncoding RNA SNHG12 integrates a DNA-PK-mediated DNA damage response and vascular senescence. Sci Transl Med. 12:eaaw18682020. View Article : Google Scholar : PubMed/NCBI

22 

Zhang Y, Tao Y, Li Y, Zhao J, Zhang L, Zhang X, Dong C, Xie Y, Dai X, Zhang X and Liao Q: The regulatory network analysis of long noncoding RNAs in human colorectal cancer. Funct Integr Genomics. 18:261–275. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Wang Y and Wang Y, Luo W, Song X, Huang L, Xiao J, Jin F, Ren Z and Wang Y: Roles of long non-coding RNAs and emerging RNA-binding proteins in innate antiviral responses. Theranostics. 10:9407–9424. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Ciccia A and Elledge SJ: The DNA damage response: Making it safe to play with knives. Mol Cell. 40:179–204. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Michelini F, Pitchiaya S, Vitelli V, Sharma S, Gioia U, Pessina F, Cabrini M, Wang Y, Capozzo I, Iannelli F, et al: Damage-induced lncRNAs control the DNA damage response through interaction with DDRNAs at individual double-strand breaks. Nat Cell Biol. 19:1400–1411. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Surova O and Zhivotovsky B: Various modes of cell death induced by DNA damage. Oncogene. 32:3789–3797. 2013. View Article : Google Scholar

27 

Roos WP, Thomas AD and Kaina B: DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 16:20–33. 2016. View Article : Google Scholar

28 

Sun X, Wang Y, Ji K, Liu Y, Kong Y, Nie S, Li N, Hao J, Xie Y, Xu C, et al: NRF2 preserves genomic integrity by facilitating ATR activation and G2 cell cycle arrest. Nucleic Acids Res. 48:9109–9123. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Yu R, Hu Y, Zhang S, Li X, Tang M, Yang M, Wu X, Li Z, Liao X, Xu Y, et al: LncRNA CTBP1-DT-encoded microprotein DDUP sustains DNA damage response signalling to trigger dual DNA repair mechanisms. Nucleic Acids Res. 50:8060–8079. 2022. View Article : Google Scholar : PubMed/NCBI

30 

Wu CH, Chen CY, Yeh CT and Lin KH: Radiosensitization of hepatocellular carcinoma through targeting radio-associated MicroRNA. Int J Mol Sci. 21:18592020. View Article : Google Scholar : PubMed/NCBI

31 

Kitagawa R and Kastan MB: The ATM-dependent DNA damage signaling pathway. Cold Spring Harb Symp Quant Biol. 70:99–109. 2005. View Article : Google Scholar

32 

Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER III, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, et al: ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 316:1160–1166. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Bartek J and Lukas J: DNA damage checkpoints: From initiation to recovery or adaptation. Curr Opin Cell Biol. 19:238–245. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Shiloh Y: ATM and related protein kinases: Safeguarding genome integrity. Nat Rev Cancer. 3:155–168. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Wan G, Mathur R, Hu X, Liu Y, Zhang X, Peng G and Lu X: Long non-coding RNA ANRIL (CDKN2B-AS) is induced by the ATM-E2F1 signaling pathway. Cell Signal. 25:1086–1095. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Wan G, Hu X, Liu Y, Han C, Sood AK, Calin GA, Zhang X and Lu X: A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation. EMBO J. 32:2833–2847. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Schoeftner S and Blasco MA: Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol. 10:228–236. 2008. View Article : Google Scholar

38 

Xu Y and Komiyama M: Structure, function and targeting of human telomere RNA. Methods. 57:100–105. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Karlseder J, Broccoli D, Dai Y, Hardy S and de Lange T: p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science. 283:1321–1325. 1999. View Article : Google Scholar : PubMed/NCBI

40 

Okamoto K, Bartocci C, Ouzounov I, Diedrich JK, Yates JR III and Denchi EL: A two-step mechanism for TRF2-mediated chromosome-end protection. Nature. 494:502–505. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Zhang Y, Zeng D, Cao J, Wang M, Shu B, Kuang G, Ou TM, Tan JH, Gu LQ, Huang ZS and Li D: Interaction of Quindoline derivative with telomeric repeat-containing RNA induces telomeric DNA-damage response in cancer cells through inhibition of telomeric repeat factor 2. Biochim Biophys Acta Gen Subj. 1861:3246–3256. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, Lu Z, Bai C, Watabe K and Mo YY: The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res. 23:340–350. 2013. View Article : Google Scholar :

43 

Meek DW and Anderson CW: Posttranslational modification of p53: Cooperative integrators of function. Cold Spring Harb Perspect Biol. 1:a0009502009. View Article : Google Scholar

44 

Zilfou JT and Lowe SW: Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol. 1:a0018832009. View Article : Google Scholar :

45 

Vousden KH and Prives C: Blinded by the light: The growing complexity of p53. Cell. 137:413–431. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Zhang A, Xu M and Mo YY: Role of the lncRNA-p53 regulatory network in cancer. J Mol Cell Biol. 6:181–191. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Shihabudeen Haider Ali MS, Cheng X, Moran M, Haemmig S, Naldrett MJ, Alvarez S, Feinberg MW and Sun X: LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res. 47:1505–1522. 2019. View Article : Google Scholar :

48 

Wen D, Huang Z, Li Z, Tang X, Wen X, Liu J and Li M: LINC02535 co-functions with PCBP2 to regulate DNA damage repair in cervical cancer by stabilizing RRM1 mRNA. J Cell Physiol. 235:7592–7603. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Li N and Richard S: Sam68 functions as a transcriptional coactivator of the p53 tumor suppressor. Nucleic Acids Res. 44:8726–8741. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, et al: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 106:11667–11672. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M, et al: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 142:409–419. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, et al: Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. 43:621–629. 2011. View Article : Google Scholar : PubMed/NCBI

53 

van Gent DC, Hoeijmakers JH and Kanaar R: Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet. 2:196–206. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K and Linn S: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 73:39–85. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Sharma V, Khurana S, Kubben N, Abdelmohsen K, Oberdoerffer P, Gorospe M and Misteli T: A BRCA1-interacting lncRNA regulates homologous recombination. EMBO Rep. 16:1520–1534. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Deng B, Xu W, Wang Z, Liu C, Lin P, Li B, Huang Q, Yang J, Zhou H and Qu L: An LTR retrotransposon-derived lncRNA interacts with RNF169 to promote homologous recombination. EMBO Rep. 20:e476502019. View Article : Google Scholar : PubMed/NCBI

57 

Branzei D and Foiani M: Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 9:297–308. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Lieber MR: The mechanism of human nonhomologous DNA end joining. J Biol Chem. 283:1–5. 2008. View Article : Google Scholar

59 

San Filippo J, Sung P and Klein H: Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 77:229–257. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Kumar A, Purohit S and Sharma NK: Aberrant DNA Double-strand break repair threads in breast carcinoma: Orchestrating genomic insult survival. J Cancer Prev. 21:227–234. 2016. View Article : Google Scholar

61 

Yao Y, Li X, Chen W, Liu H, Mi L, Ren D, Mo A and Lu P: ATM promotes RAD51-mediated meiotic DSB repair by inter-sister-chromatid recombination in Arabidopsis. Front Plant Sci. 11:8392020. View Article : Google Scholar : PubMed/NCBI

62 

Trenner A and Sartori AA: Harnessing DNA Double-strand break repair for cancer treatment. Front Oncol. 9:13882019. View Article : Google Scholar

63 

Gomez-Mejiba SE and Ramirez DC: Trapping of DNA radicals with the nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide and genotoxic damage: Recent advances using the immuno-spin trapping technology. Mutat Res Rev Mutat Res. 782:1082832019. View Article : Google Scholar : PubMed/NCBI

64 

Dasika GK, Lin SC, Zhao S, Sung P, Tomkinson A and Lee EY: DNA damage-induced cell cycle checkpoints and DNA strand break repair in development and tumorigenesis. Oncogene. 18:7883–7899. 1999. View Article : Google Scholar

65 

Zhao Y, Li H, Fang S, Kang Y, Wu W, Hao Y, Li Z, Bu D, Sun N, Zhang MQ and Chen R: NONCODE 2016: An informative and valuable data source of long non-coding RNAs. Nucleic Acids Res. 44:D203–D208. 2016. View Article : Google Scholar :

66 

Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, Ward AJ, Raj A, Lee JT, Sharp PA and Jacks T: LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 54:777–790. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Schmitt AM, Garcia JT, Hung T, Flynn RA, Shen Y, Qu K, Payumo AY, Peres-da-Silva A, Broz DK, Baum R, et al: An inducible long noncoding RNA amplifies DNA damage signaling. Nat Genet. 48:1370–1376. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Liu X, Li D, Zhang W, Guo M and Zhan Q: Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J. 31:4415–4427. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Shen L, Wang Q, Liu R, Chen Z, Zhang X, Zhou P and Wang Z: LncRNA lnc-RI regulates homologous recombination repair of DNA double-strand breaks by stabilizing RAD51 mRNA as a competitive endogenous RNA. Nucleic Acids Res. 46:717–729. 2018. View Article : Google Scholar :

70 

Huang R and Zhou PK: DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther. 6:2542021. View Article : Google Scholar : PubMed/NCBI

71 

Thapar R, Wang JL, Hammel M, Ye R, Liang K, Sun C, Hnizda A, Liang S, Maw SS, Lee L, et al: Mechanism of efficient double-strand break repair by a long non-coding RNA. Nucleic Acids Res. 48:10953–10972. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Zhang Y, He Q, Hu Z, Feng Y, Fan L, Tang Z, Yuan J, Shan W, Li C, Hu X, et al: Long noncoding RNA LINP1 regulates repair of DNA double-strand breaks in triple-negative breast cancer. Nat Struct Mol Biol. 23:522–530. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Wang X, Liu H, Shi L, Yu X, Gu Y and Sun X: LINP1 facilitates DNA damage repair through non-homologous end joining (NHEJ) pathway and subsequently decreases the sensitivity of cervical cancer cells to ionizing radiation. Cell Cycle. 17:439–447. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Soutoglou E and Misteli T: Activation of the cellular DNA damage response in the absence of DNA lesions. Science. 320:1507–1510. 2008. View Article : Google Scholar : PubMed/NCBI

75 

Downs JA and Jackson SP: A means to a DNA end: The many roles of Ku. Nat Rev Mol Cell Biol. 5:367–378. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Wang D, Zhou Z, Wu E, Ouyang C, Wei G, Wang Y, He D, Cui Y, Zhang D, Chen X, et al: LRIK interacts with the Ku70-Ku80 heterodimer enhancing the efficiency of NHEJ repair. Cell Death Differ. 27:3337–3353. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Guo Z, Wang YH, Xu H, Yuan CS, Zhou HH, Huang WH, Wang H and Zhang W: LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma. Cell Death Dis. 12:692021. View Article : Google Scholar : PubMed/NCBI

78 

Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L and Shiloh Y: Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22:5612–5621. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Prakash R, Zhang Y, Feng W and Jasin M: Homologous recombination and human health: The roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol. 7:a0166002015. View Article : Google Scholar : PubMed/NCBI

80 

Gorgoulis VG, Pefani DE, Pateras IS and Trougakos IP: Integrating the DNA damage and protein stress responses during cancer development and treatment. J Pathol. 246:12–40. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Heyer WD, Ehmsen KT and Liu J: Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 44:113–139. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Maréchal A and Zou L: DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 5:a0127162013. View Article : Google Scholar : PubMed/NCBI

83 

Renkawitz J, Lademann CA and Jentsch S: Mechanisms and principles of homology search during recombination. Nat Rev Mol Cell Biol. 15:369–383. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Ranjha L, Howard SM and Cejka P: Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma. 127:187–214. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Yu N, Qin H, Zhang F, Liu T, Cao K, Yang Y, Chen Y and Cai J: The role and mechanism of long non-coding RNAs in homologous recombination repair of radiation-induced DNA damage. J Gene Med. 25:e34702023. View Article : Google Scholar

86 

Ohta T, Sato K and Wu W: The BRCA1 ubiquitin ligase and homologous recombination repair. FEBS Lett. 585:2836–2844. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Kim H, Chen J and Yu X: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science. 316:1202–1205. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Hu Y, Scully R, Sobhian B, Xie A, Shestakova E and Livingston DM: RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev. 25:685–700. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Coleman KA and Greenberg RA: The BRCA1-RAP80 complex regulates DNA repair mechanism utilization by restricting end resection. J Biol Chem. 286:13669–13680. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Hu Y, Petit SA, Ficarro SB, Toomire KJ, Xie A, Lim E, Cao SA, Park E, Eck MJ, Scully R, et al: PARP1-driven poly-ADP-ribosylation regulates BRCA1 function in homologous recombination-mediated DNA repair. Cancer Discov. 4:1430–1447. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Hu Z, Mi S, Zhao T, Peng C, Peng Y, Chen L, Zhu W, Yao Y, Song Q, Li X, et al: BGL3 lncRNA mediates retention of the BRCA1/BARD1 complex at DNA damage sites. EMBO J. 39:e1041332020. View Article : Google Scholar : PubMed/NCBI

92 

Wang ZW, Pan JJ, Hu JF, Zhang JQ, Huang L, Huang Y, Liao CY, Yang C, Chen ZW, Wang YD, et al: SRSF3-mediated regulation of N6-methyladenosine modification-related lncRNA ANRIL splicing promotes resistance of pancreatic cancer to gemcitabine. Cell Rep. 39:1108132022. View Article : Google Scholar : PubMed/NCBI

93 

Syed A and Tainer JA: The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu Rev Biochem. 87:263–294. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Stracker TH and Petrini JH: The MRE11 complex: Starting from the ends. Nat Rev Mol Cell Biol. 12:90–103. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Xu A, Huang MF, Zhu D, Gingold JA, Bazer DA, Chang B, Wang D, Lai CC, Lemischka IR, Zhao R and Lee DF: LncRNA H19 suppresses Osteosarcomagenesis by regulating snoRNAs and DNA repair protein complexes. Front Genet. 11:6118232020. View Article : Google Scholar

96 

Wu C, Chen W, Yu F, Yuan Y, Chen Y, Hurst DR, Li Y, Li L and Liu Z: Long noncoding RNA HITTERS protects oral squamous cell carcinoma cells from endoplasmic reticulum stress-induced apoptosis via promoting MRE11-RAD50-NBS1 complex formation. Adv Sci (Weinh). 7:20027472020. View Article : Google Scholar : PubMed/NCBI

97 

Paull TT: Mechanisms of ATM Activation. Annu Rev Biochem. 84:711–738. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Zhao K, Wang X, Xue X, Li L and Hu Y: A long noncoding RNA sensitizes genotoxic treatment by attenuating ATM activation and homologous recombination repair in cancers. PLoS Biol. 18:e30006662020. View Article : Google Scholar : PubMed/NCBI

99 

Bunting SF, Callén E, Wong N, Chen HT, Polato F, Gunn A, Bothmer A, Feldhahn N, Fernandez-Capetillo O, Cao L, et al: 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 141:243–254. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkáč J, Cook MA, Rosebrock AP, Munro M, Canny MD, et al: A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell. 49:872–883. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Zimmermann M, Lottersberger F, Buonomo SB, Sfeir A and de Lange T: 53BP1 regulates DSB repair using Rif1 to control 5' end resection. Science. 339:700–704. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Poulsen M, Lukas C, Lukas J, Bekker-Jensen S and Mailand N: Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks. J Cell Biol. 197:189–199. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Hu Q, Botuyan MV, Cui G, Zhao D and Mer G: Mechanisms of Ubiquitin-nucleosome recognition and regulation of 53BP1 chromatin recruitment by RNF168/169 and RAD18. Mol Cell. 66:473–487.e479. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Muvarak N, Kelley S, Robert C, Baer MR, Perrotti D, Gambacorti-Passerini C, Civin C, Scheibner K and Rassool FV: c-MYC generates repair errors via increased transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in tyrosine kinase-activated leukemias. Mol Cancer Res. 13:699–712. 2015. View Article : Google Scholar : PubMed/NCBI

105 

Ahrabi S, Sarkar S, Pfister SX, Pirovano G, Higgins GS, Porter AC and Humphrey TC: A role for human homologous recombination factors in suppressing microhomology-mediated end joining. Nucleic Acids Res. 44:5743–5757. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Leppard JB, Dong Z, Mackey ZB and Tomkinson AE: Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol Cell Biol. 23:5919–5927. 2003. View Article : Google Scholar : PubMed/NCBI

107 

Chiruvella KK, Liang Z and Wilson TE: Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol. 5:a0127572013. View Article : Google Scholar : PubMed/NCBI

108 

Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, Liu S, Ondrejka S, Gong Z, Reu F, et al: Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia. 32:2250–2262. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Langelier MF, Ruhl DD, Planck JL, Kraus WL and Pascal JM: The Zn3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem. 285:18877–18887. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Huang J, Lin C, Dong H, Piao Z, Jin C, Han H and Jin D: Targeting MALAT1 induces DNA damage and sensitize non-small cell lung cancer cells to cisplatin by repressing BRCA1. Cancer Chemother Pharmacol. 86:663–672. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Goldstein M and Kastan MB: The DNA damage response: Implications for tumor responses to radiation and chemotherapy. Annu Rev Med. 66:129–143. 2015. View Article : Google Scholar

112 

Yao RW, Wang Y and Chen LL: Cellular functions of long noncoding RNAs. Nat Cell Biol. 21:542–551. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Kang M, Ren M, Li Y, Fu Y, Deng M and Li C: Exosome-mediated transfer of lncRNA PART1 induces gefitinib resistance in esophageal squamous cell carcinoma via functioning as a competing endogenous RNA. J Exp Clin Cancer Res. 37:1712018. View Article : Google Scholar : PubMed/NCBI

114 

Xiong XD, Ren X, Cai MY, Yang JW, Liu X and Yang JM: Long non-coding RNAs: An emerging powerhouse in the battle between life and death of tumor cells. Drug Resist Updat. 26:28–42. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Li Z, Zhou Y, Tu B, Bu Y, Liu A and Kong J: Long noncoding RNA MALAT1 affects the efficacy of radiotherapy for esophageal squamous cell carcinoma by regulating Cks1 expression. J Oral Pathol Med. 46:583–590. 2017. View Article : Google Scholar

116 

Sun M, Jin FY, Xia R, Kong R, Li JH, Xu TP, Liu YW, Zhang EB, Liu XH and De W: Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer. 14:3192014. View Article : Google Scholar : PubMed/NCBI

117 

Liu J, Ben Q, Lu E, He X, Yang X, Ma J, Zhang W, Wang Z, Liu T, Zhang J and Wang H: Long noncoding RNA PANDAR blocks CDKN1A gene transcription by competitive interaction with p53 protein in gastric cancer. Cell Death Dis. 9:1682018. View Article : Google Scholar : PubMed/NCBI

118 

Shao L, Zuo X, Yang Y, Zhang Y, Yang N, Shen B, Wang J, Wang X, Li R, Jin G, et al: The inherited variations of a p53-responsive enhancer in 13q12.12 confer lung cancer risk by attenuating TNFRSF19 expression. Genome Biol. 20:1032019. View Article : Google Scholar : PubMed/NCBI

119 

Zhen Y, Ye Y, Wang H, Xia Z, Wang B, Yi W and Deng X: Knockdown of SNHG8 repressed the growth, migration, and invasion of colorectal cancer cells by directly sponging with miR-663. Biomed Pharmacother. 116:1090002019. View Article : Google Scholar : PubMed/NCBI

120 

Liu J, Yang C, Gu Y, Li C, Zhang H, Zhang W, Wang X, Wu N and Zheng C: Knockdown of the lncRNA SNHG8 inhibits cell growth in Epstein-Barr virus-associated gastric carcinoma. Cell Mol Biol Lett. 23:172018. View Article : Google Scholar : PubMed/NCBI

121 

Tian X, Liu Y, Wang Z and Wu S: lncRNA SNHG8 promotes aggressive behaviors of nasopharyngeal carcinoma via regulating miR-656-3p/SATB1 axis. Biomed Pharmacother. 131:1105642020. View Article : Google Scholar : PubMed/NCBI

122 

Miao W, Lu T, Liu X, Yin W and Zhang H: LncRNA SNHG8 induces ovarian carcinoma cells cellular process and stemness through Wnt/β-catenin pathway. Cancer Biomark. 28:459–471. 2020. View Article : Google Scholar

123 

Fan D, Qiu B, Yang XJ, Tang HL, Peng SJ, Yang P, Dong YM, Yang L, Bao GQ and Zhao HD: LncRNA SNHG8 promotes cell migration and invasion in breast cancer cell through miR-634/ZBTB20 axis. Eur Rev Med Pharmacol Sci. 24:11639–11649. 2020.PubMed/NCBI

124 

Zhu W, Tan L, Ma T, Yin Z and Gao J: Long noncoding RNA SNHG8 promotes chemoresistance in gastric cancer via binding with hnRNPA1 and stabilizing TROY expression. Dig Liver Dis. 54:1573–1582. 2022. View Article : Google Scholar : PubMed/NCBI

125 

Wang Z, Wang X, Rong Z, Dai L, Qin C, Wang S and Geng W: LncRNA LINC01134 contributes to radioresistance in hepatocellular carcinoma by regulating DNA damage response via MAPK signaling pathway. Front Pharmacol. 12:7918892021. View Article : Google Scholar

126 

Sun Y, Wang J, Ma Y, Li J, Sun X, Zhao X, Shi X, Hu Y, Qu F and Zhang X: Radiation induces NORAD expression to promote ESCC radiotherapy resistance via EEPD1/ATR/Chk1 signalling and by inhibiting pri-miR-199a1 processing and the exosomal transfer of miR-199a-5p. J Exp Clin Cancer Res. 40:3062021. View Article : Google Scholar : PubMed/NCBI

127 

Yao P, Li Y, Shen W, Xu X, Zhu W, Yang X, Cao J and Xing C: ANKHD1 silencing suppresses the proliferation, migration and invasion of CRC cells by inhibiting YAP1-induced activation of EMT. Am J Cancer Res. 8:2311–2324. 2018.PubMed/NCBI

128 

Yao PA, Wu Y, Zhao K, Li Y, Cao J and Xing C: The feedback loop of ANKHD1/lncRNA MALAT1/YAP1 strengthens the radioresistance of CRC by activating YAP1/AKT signaling. Cell Death Dis. 13:1032022. View Article : Google Scholar : PubMed/NCBI

129 

Takahashi H, Nishimura J, Kagawa Y, Kano Y, Takahashi Y, Wu X, Hiraki M, Hamabe A, Konno M, Haraguchi N, et al: Significance of Polypyrimidine Tract-binding Protein 1 expression in colorectal cancer. Mol Cancer Ther. 14:1705–1716. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Huan L, Guo T, Wu Y, Xu L, Huang S, Xu Y, Liang L and He X: Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response. Mol Cancer. 19:112020. View Article : Google Scholar : PubMed/NCBI

131 

Jin MH and Oh DY: ATM in DNA repair in cancer. Pharmacol Ther. 203:1073912019. View Article : Google Scholar : PubMed/NCBI

132 

Cimprich KA and Cortez D: ATR: An essential regulator of genome integrity. Nat Rev Mol Cell Biol. 9:616–627. 2008. View Article : Google Scholar : PubMed/NCBI

133 

Panzarino NJ, Krais JJ, Cong K, Peng M, Mosqueda M, Nayak SU, Bond SM, Calvo JA, Doshi MB, Bere M, et al: Replication gaps underlie BRCA deficiency and therapy response. Cancer Res. 81:1388–1397. 2021. View Article : Google Scholar

134 

Zhang B, Bao W, Zhang S, Chen B, Zhou X, Zhao J, Shi Z, Zhang T, Chen Z, Wang L, et al: LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination. Cell Death Dis. 13:7342022. View Article : Google Scholar : PubMed/NCBI

135 

Jiang Y, Guo H, Tong T, Xie F, Qin X, Wang X, Chen W and Zhang J: lncRNA lnc-POP1-1 upregulated by VN1R5 promotes cisplatin resistance in head and neck squamous cell carcinoma through interaction with MCM5. Mol Ther. 30:448–467. 2022. View Article : Google Scholar :

136 

Choi PS and Thomas-Tikhonenko A: RNA-binding proteins of COSMIC importance in cancer. J Clin Invest. 131:e1516272021. View Article : Google Scholar : PubMed/NCBI

137 

Fabbri L, Chakraborty A, Robert C and Vagner S: The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer. 21:558–577. 2021. View Article : Google Scholar : PubMed/NCBI

138 

Duffy AG, Makarova-Rusher OV, Ulahannan SV, Rahma OE, Fioravanti S, Walker M, Abdullah S, Raffeld M, Anderson V, Abi-Jaoudeh N, et al: Modulation of tumor eIF4E by antisense inhibition: A phase I/II translational clinical trial of ISIS 183750-an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer. Int J Cancer. 139:1648–1657. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Shen L and Pelletier J: Selective targeting of the DEAD-box RNA helicase eukaryotic initiation factor (eIF) 4A by natural products. Nat Prod Rep. 37:609–616. 2020. View Article : Google Scholar

140 

Zhu H, Chen K, Chen Y, Liu J, Zhang X, Zhou Y, Liu Q, Wang B, Chen T and Cao X: RNA-binding protein ZCCHC4 promotes human cancer chemoresistance by disrupting DNA-damage-induced apoptosis. Signal Transduct Target Ther. 7:2402022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zou S, Gou X and Wen K: Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells. Int J Mol Med 52: 93, 2023.
APA
Zou, S., Gou, X., & Wen, K. (2023). Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells. International Journal of Molecular Medicine, 52, 93. https://doi.org/10.3892/ijmm.2023.5296
MLA
Zou, S., Gou, X., Wen, K."Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells". International Journal of Molecular Medicine 52.4 (2023): 93.
Chicago
Zou, S., Gou, X., Wen, K."Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells". International Journal of Molecular Medicine 52, no. 4 (2023): 93. https://doi.org/10.3892/ijmm.2023.5296
Copy and paste a formatted citation
x
Spandidos Publications style
Zou S, Gou X and Wen K: Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells. Int J Mol Med 52: 93, 2023.
APA
Zou, S., Gou, X., & Wen, K. (2023). Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells. International Journal of Molecular Medicine, 52, 93. https://doi.org/10.3892/ijmm.2023.5296
MLA
Zou, S., Gou, X., Wen, K."Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells". International Journal of Molecular Medicine 52.4 (2023): 93.
Chicago
Zou, S., Gou, X., Wen, K."Advances in the role of long non‑coding RNAs and RNA‑binding proteins in regulating DNA damage repair in cancer cells". International Journal of Molecular Medicine 52, no. 4 (2023): 93. https://doi.org/10.3892/ijmm.2023.5296
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team