Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2024 Volume 53 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2024 Volume 53 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of vitamins beyond vitamin D3 in bone health and osteoporosis (Review)

  • Authors:
    • Anatoly V. Skalny
    • Michael Aschner
    • Aristidis Tsatsakis
    • Joao B.T. Rocha
    • Abel Santamaria
    • Demetrios A. Spandidos
    • Airton C. Martins
    • Rongzhu Lu
    • Tatiana V. Korobeinikova
    • Wen Chen
    • Jung-Su Chang
    • Jane C.J. Chao
    • Chong Li
    • Alexey A. Tinkov
  • View Affiliations / Copyright

    Affiliations: Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia, Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA, Laboratory of Toxicology and Forensic Sciences, Division of Morphology, Medical School, University of Crete, 70013 Heraklion, Greece, Department of Biochemistry and Molecular Biology, CCNE, Federal University of Santa Maria, Santa Maria, RS 97105‑900, Brazil, Faculty of Science, National Autonomous University of Mexico, Mexico City 04510, Mexico, Laboratory of Clinical Virology, Medical School, University of Crete, 70013 Heraklion, Greece, Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China, Department of Toxicology, School of Public Health, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan, R.O.C., Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
    Copyright: © Skalny et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 9
    |
    Published online on: December 5, 2023
       https://doi.org/10.3892/ijmm.2023.5333
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The objective of the present review was to summarize the molecular mechanisms associated with the effects of the vitamins A, C, E and K, and group B vitamins on bone and their potential roles in the development of osteoporosis. Epidemiological findings have demonstrated an association between vitamin deficiency and a higher risk of developing osteoporosis; vitamins are positively related to bone health upon their intake at the physiological range. Excessive vitamin intake can also adversely affect bone formation, as clearly demonstrated for vitamin A. Vitamins E (tocopherols and tocotrienols), K2 (menaquinones 4 and 7) and C have also been shown to promote osteoblast development through bone morphogenetic protein (BMP)/Smad and Wnt/β‑catenin signaling, as well as the TGFβ/Smad pathway (α‑tocopherol). Vitamin A metabolite (all‑trans retinoic acid) exerts both inhibitory and stimulatory effects on BMP‑ and Wnt/β‑catenin‑mediated osteogenesis at the nanomolar and micromolar range, respectively. Certain vitamins significantly reduce receptor activator of nuclear factor kappa‑B ligand (RANKL) production and RANKL/RANK signaling, while increasing the level of osteoprotegerin (OPG), thus reducing the RANKL/OPG ratio and exerting anti‑osteoclastogenic effects. Ascorbic acid can both promote and inhibit RANKL signaling, being essential for osteoclastogenesis. Vitamin K2 has also been shown to prevent vascular calcification by activating matrix Gla protein through its carboxylation. Therefore, the maintenance of a physiological intake of vitamins should be considered as a nutritional strategy for the prevention of osteoporosis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Lorentzon M and Cummings SR: Osteoporosis: The evolution of a diagnosis. J Intern Med. 277:650–661. 2015.

2 

Salari N, Ghasemi H, Mohammadi L, Behzadi MH, Rabieenia E, Shohaimi S and Mohammadi M: The global prevalence of osteoporosis in the world: A comprehensive systematic review and meta-analysis. J Orthop Surg Res. 16:6092021.

3 

Xiao PL, Cui AY, Hsu CJ, Peng R, Jiang N, Xu XH, Ma YG, Liu D and Lu HD: Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: A systematic review and meta-analysis. Osteoporos Int. 33:2137–2153. 2022.

4 

Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM and Cooper C: The epidemiology of osteoporosis. Br Med Bull. 133:105–117. 2020.

5 

Pouresmaeili F, Kamalidehghan B, Kamarehei M and Goh YM: A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag. 14:2029–2049. 2018.

6 

Levis S and Lagari VS: The role of diet in osteoporosis prevention and management. Curr Osteoporos Rep. 10:296–302. 2012.

7 

Muñoz-Garach A, García-Fontana B and Muñoz-Torres M: Nutrients and dietary patterns related to osteoporosis. Nutrients. 12:19862020.

8 

Brincat M, Gambin J, Brincat M and Calleja-Agius J: The role of vitamin D in osteoporosis. Maturitas. 80:329–332. 2015.

9 

Goltzman D: Functions of vitamin D in bone. Histochem Cell Biol. 149:305–312. 2018.

10 

Ratajczak AE, Rychter AM, Zawada A, Dobrowolska A and Krela-Kaźmierczak I: Do only calcium and vitamin D matter? Micronutrients in the diet of inflammatory bowel diseases patients and the risk of osteoporosis. Nutrients. 13:5252021.

11 

Martiniakova M, Babikova M, Mondockova V, Blahova J, Kovacova V and Omelka R: The role of macronutrients, micronutrients and flavonoid polyphenols in the prevention and treatment of osteoporosis. Nutrients. 14:5232022.

12 

Heaney RP: Nutrition and risk for osteoporosis. Osteoporosis. Acadmic Press; pp. 669–700. 2001

13 

Nazrun AS, Norazlina M, Norliza M and Nirwana SI: Comparison of the effects of tocopherol and tocotrienol on osteoporosis in animal models. Int J Pharmacol. 6:561–568. 2010.

14 

Wu AM, Huang CQ, Lin ZK, Tian NF, Ni WF, Wang XY, Xu HZ and Chi YL: The relationship between vitamin A and risk of fracture: Meta-analysis of prospective studies. J Bone Miner Res. 29:2032–2039. 2014.

15 

Henning P, Conaway HH and Lerner UH: Retinoid receptors in bone and their role in bone remodeling. Front Endocrinol (Lausanne). 6:312015.

16 

Ahmadieh H and Arabi A: Vitamins and bone health: Beyond calcium and vitamin D. Nutr Rev. 69:584–598. 2011.

17 

Szewczyk K, Chojnacka A and Górnicka M: Tocopherols and tocotrienols-bioactive dietary compounds; What is certain, what is doubt? Int J Mol Sci. 22:62222021.

18 

Wong SK, Mohamad NV, Ibrahim N', Chin KY, Shuid AN and Ima-Nirwana S: The molecular mechanism of vitamin E as a bone-protecting agent: A review on current evidence. Int J Mol Sci. 20:14532019.

19 

Michaëlsson K and Larsson SC: Circulating alpha-tocopherol levels, bone mineral density, and fracture: Mendelian randomization study. Nutrients. 13:19402021.

20 

Mata-Granados JM, Cuenca-Acebedo R, Luque de Castro MD and Quesada Gómez JM: Lower vitamin E serum levels are associated with osteoporosis in early postmenopausal women: A cross-sectional study. J Bone Miner Metab. 31:455–460. 2013.

21 

Holvik K, Gjesdal CG, Tell GS, Grimnes G, Schei B, Apalset EM, Samuelsen SO, Blomhoff R, Michaëlsson K and Meyer HE: Low serum concentrations of alpha-tocopherol are associated with increased risk of hip fracture. A NOREPOS study. Osteoporos Int. 25:2545–2554. 2014.

22 

Michaëlsson K, Wolk A, Byberg L, Ärnlöv J and Melhus H: Intake and serum concentrations of α-tocopherol in relation to fractures in elderly women and men: 2 Cohort studies. Am J Clin Nutr. 99:107–114. 2014.

23 

Shen CL, Yang S, Tomison MD, Romero AW, Felton CK and Mo H: Tocotrienol supplementation suppressed bone resorption and oxidative stress in postmenopausal osteopenic women: A 12-week randomized double-blinded placebo-controlled trial. Osteoporos Int. 29:881–891. 2018.

24 

Vallibhakara SAO, Nakpalat K, Sophonsritsuk A, Tantitham C and Vallibhakara O: Effect of vitamin E supplement on bone turnover markers in postmenopausal osteopenic women: A double-blind, randomized, placebo-controlled trial. Nutrients. 13:42262021.

25 

Yang TC, Duthie GG, Aucott LS and Macdonald HM: Vitamin E homologues α- and γ-tocopherol are not associated with bone turnover markers or bone mineral density in peri-menopausal and post-menopausal women. Osteoporos Int. 27:2281–2290. 2016.

26 

Zhang J, Hu X and Zhang J: Associations between serum vitamin E concentration and bone mineral density in the US elderly population. Osteoporos Int. 28:1245–1253. 2017.

27 

Hampson G, Edwards S, Sankaralingam A, Harrington DJ, Voong K, Fogelman I and Frost ML: Circulating concentrations of vitamin E isomers: Association with bone turnover and arterial stiffness in post-menopausal women. Bone. 81:407–412. 2015.

28 

Hamidi MS, Corey PN and Cheung AM: Effects of vitamin E on bone turnover markers among US postmenopausal women. J Bone Miner Res. 27:1368–1380. 2012.

29 

Mehat MZ, Shuid AN, Mohamed N, Muhammad N and Soelaiman IN: Beneficial effects of vitamin E isomer supplementation on static and dynamic bone histomorphometry parameters in normal male rats. J Bone Miner Metab. 28:503–509. 2010.

30 

Muhammad N, Luke DA, Shuid AN, Mohamed N and Soelaiman IN: Two different isomers of vitamin E prevent bone loss in postmenopausal osteoporosis rat model. Evid Based Complement Alternat Med. 2012:1615272012.

31 

Chin KY, Gengatharan D, Mohd Nasru FS, Khairussam RA, Ern SL, Aminuddin SA and Ima-Nirwana S: The effects of annatto tocotrienol on bone biomechanical strength and bone calcium content in an animal model of osteoporosis due to testosterone deficiency. Nutrients. 8:8082016.

32 

Shuid AN, Mohamad S, Muhammad N, Fadzilah FM, Mokhtar SA, Mohamed N and Soelaiman IN: Effects of α-tocopherol on the early phase of osteoporotic fracture healing. J Orthop Res. 29:1732–1738. 2011.

33 

Mohamad S, Shuid AN, Mohamed N, Fadzilah FM, Mokhtar SA, Abdullah S, Othman F, Suhaimi F, Muhammad N and Soelaiman IN: The effects of alpha-tocopherol supplementation on fracture healing in a postmenopausal osteoporotic rat model. Clinics (São Paulo). 67:1077–1085. 2012.

34 

Akçay H, Kuru K, Tatar B and Şimşek F: Vitamin E promotes bone formation in a distraction osteogenesis model. J Craniofac Surg. 30:2315–2318. 2019.

35 

Kurklu M, Yildiz C, Kose O, Yurttas Y, Karacalioglu O, Serdar M and Deveci S: Effect of alpha-tocopherol on bone formation during distraction osteogenesis: A rabbit model. J Orthop Traumatol. 12:153–158. 2011.

36 

Hagan ML, Bahraini A, Pierce JL, Bass SM, Yu K, Elsayed R, Elsalanty M, Johnson MH, McNeil A, McNeil PL and McGee-Lawrence ME: Inhibition of osteocyte membrane repair activity via dietary vitamin E deprivation impairs osteocyte survival. Calcif Tissue Int. 104:224–234. 2019.

37 

Turan B, Can B and Delilbasi E: Selenium combined with vitamin E and vitamin C restores structural alterations of bones in heparin-induced osteoporosis. Clin Rheumatol. 22:432–436. 2003.

38 

Ikegami H, Kawawa R, Ichi I, Ishikawa T, Koike T, Aoki Y and Fujiwara Y: Excessive vitamin E intake does not cause bone loss in male or ovariectomized female mice fed normal or high-fat diets. J Nutr. 147:1932–1937. 2017.

39 

Kasai S, Ito A, Shindo K, Toyoshi T and Bando M: High-dose α-tocopherol supplementation does not induce bone loss in normal rats. PLoS One. 10:e01320592015.

40 

Lan D, Yao C, Li X, Liu H, Wang D, Wang Y and Qi S: Tocopherol attenuates the oxidative stress of BMSCs by inhibiting ferroptosis through the PI3k/AKT/mTOR pathway. Front Bioeng Biotechnol. 10:9385202022.

41 

Ahn KH, Jung HK, Jung SE, Yi KW, Park HT, Shin JH, Kim YT, Hur JY, Kim SH and Kim T: Microarray analysis of gene expression during differentiation of human mesenchymal stem cells treated with vitamin E in vitro into osteoblasts. Korean J Bone Metab. 18:23–32. 2011.

42 

Jia YB, Jiang DM, Ren YZ, Liang ZH, Zhao ZQ and Wang YX: Inhibitory effects of vitamin E on osteocyte apoptosis and DNA oxidative damage in bone marrow hemopoietic cells at early stage of steroid-induced femoral head necrosis. Mol Med Rep. 15:1585–1592. 2017.

43 

Soeta S, Higuchi M, Yoshimura I, Itoh R, Kimura N and Aamsaki H: Effects of vitamin E on the osteoblast differentiation. J Vet Med Sci. 72:951–957. 2010.

44 

Kim HN, Lee JH, Jin WJ and Lee ZH: α-Tocopheryl succinate inhibits osteoclast formation by suppressing receptor activator of nuclear factor-kappaB ligand (RANKL) expression and bone resorption. J Bone Metab. 19:111–120. 2012.

45 

Johnson SA, Feresin RG, Soungdo Y, Elam ML and Arjmandi BH: Vitamin E suppresses ex vivo osteoclastogenesis in ovariectomized rats. Food Funct. 7:1628–1633. 2016.

46 

Fujita K, Iwasaki M, Ochi H, Fukuda T, Ma C, Miyamoto T, Takitani K, Negishi-Koga T, Sunamura S, Kodama T, et al: Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat Med. 18:589–594. 2012.

47 

Chin KY and Ima-Nirwana S: The biological effects of tocotrienol on bone: A review on evidence from rodent models. Drug Des Devel Ther. 9:2049–2061. 2015.

48 

Shen CL, Klein A, Chin KY, Mo H, Tsai P, Yang RS, Chyu MC and Ima-Nirwana S: Tocotrienols for bone health: A translational approach. Ann N Y Acad Sci. 1401:150–165. 2017.

49 

Xu W, He P, He S, Cui P, Mi Y, Yang Y, Li Y and Zhou S: Gamma-tocotrienol stimulates the proliferation, differentiation, and mineralization in osteoblastic MC3T3-E1 cells. J Chem. 2018:38059322018.

50 

Wan Hasan WN, Abd Ghafar N, Chin KY and Ima-Nirwana S: Annatto-derived tocotrienol stimulates osteogenic activity in preosteoblastic MC3T3-E1 cells: A temporal sequential study. Drug Des Devel Ther. 12:1715–1726. 2018.

51 

Wan Hasan WN, Chin KY, Abd Ghafar N and Soelaiman IN: Annatto-derived tocotrienol promotes mineralization of MC3T3-E1 cells by enhancing BMP-2 protein expression via inhibiting RhoA activation and HMG-CoA reductase gene expression. Drug Des Devel Ther. 14:969–976. 2020.

52 

Xu W, Li Y, Feng R, He P and Zhang Y: γ-Tocotrienol induced the proliferation and differentiation of MC3T3-E1 cells through the stimulation of the Wnt/β-catenin signaling pathway. Food Funct. 13:398–410. 2022.

53 

Shah AK and Yeganehjoo H: The stimulatory impact of d-δ-Tocotrienol on the differentiation of murine MC3T3-E1 preosteoblasts. Mol Cell Biochem. 462:173–183. 2019.

54 

Casati L, Pagani F, Maggi R, Ferrucci F and Sibilia V: Food for bone: Evidence for a role for delta-tocotrienol in the physiological control of osteoblast migration. Int J Mol Sci. 21:46612020.

55 

Abd Manan N, Mohamed N and Shuid AN: Effects of low-dose versus high-dose γ-tocotrienol on the bone cells exposed to the hydrogen peroxide-induced oxidative stress and apoptosis. Evid Based Complement Alternat Med. 2012:6808342012.

56 

Casati L, Pagani F, Limonta P, Vanetti C, Stancari G and Sibilia V: Beneficial effects of δ-tocotrienol against oxidative stress in osteoblastic cells: Studies on the mechanisms of action. Eur J Nutr. 59:1975–1987. 2020.

57 

Cai J, Tian X, Ren J, Lu S and Guo J: Synergistic effect of sesamin and γ-Tocotrienol on promoting osteoblast differentiation via AMPK signaling. Nat Prod Commun. 17:1–8. 2022.

58 

Radzi NFM, Ismail NAS and Alias E: Tocotrienols regulate bone loss through suppression on osteoclast differentiation and activity: A systematic review. Curr Drug Targets. 19:1095–1107. 2018.

59 

Ha H, Lee JH, Kim HN and Lee ZH: α-Tocotrienol inhibits osteoclastic bone resorption by suppressing RANKL expression and signaling and bone resorbing activity. Biochem Biophys Res Commun. 406:546–551. 2011.

60 

Ormsby RT, Hosaka K, Evdokiou A, Odysseos A, Findlay DM, Solomon LB and Atkins GJ: The effects of vitamin E analogues α-Tocopherol and γ-Tocotrienol on the human osteocyte response to ultra-high molecular weight polyethylene wear particles. Prosthesis. 4:480–489. 2022.

61 

Kim KW, Kim BM, Won JY, Min HK, Lee SJ, Lee SH and Kim HR: Tocotrienol regulates osteoclastogenesis in rheumatoid arthritis. Korean J Intern Med. 36(Suppl 1): S273–S282. 2021.

62 

Wong SK, Chin KY and Ima-Nirwana S: The effects of tocotrienol on bone peptides in a rat model of osteoporosis induced by metabolic syndrome: The possible communication between bone cells. Int J Environ Res Public Health. 16:33132019.

63 

Chin KY, Abdul-Majeed S, Fozi NF and Ima-Nirwana S: Annatto tocotrienol improves indices of bone static histomorphometry in osteoporosis due to testosterone deficiency in rats. Nutrients. 6:4974–4983. 2014.

64 

Deng L, Ding Y, Peng Y, Wu Y, Fan J, Li W, Yang R, Yang M and Fu Q: γ-Tocotrienol protects against ovariectomy-induced bone loss via mevalonate pathway as HMG-CoA reductase inhibitor. Bone. 67:200–207. 2014.

65 

Soelaiman IN, Ming W, Abu Bakar R, Hashnan NA, Mohd Ali H, Mohamed N, Muhammad N and Shuid AN: Palm tocotrienol supplementation enhanced bone formation in oestrogen-deficient rats. Int J Endocrinol. 2012:5328622012.

66 

Mohamad NV, Ima-Nirwana S and Chin KY: Self-emulsified annatto tocotrienol improves bone histomorphometric parameters in a rat model of oestrogen deficiency through suppression of skeletal sclerostin level and RANKL/OPG ratio. Int J Med Sci. 18:3665–3673. 2021.

67 

Liang G, Kow ASF, Tham CL, Ho YC and Lee MT: Ameliorative effect of tocotrienols on perimenopausal-associated osteoporosis-a review. Antioxidants (Basel). 11:21792022.

68 

Bus K and Szterk A: Relationship between structure and biological activity of various vitamin K forms. Foods. 10:31362021.

69 

Myneni VD and Mezey E: Regulation of bone remodeling by vitamin K2. Oral Dis. 23:1021–1028. 2017.

70 

Stevenson M, Lloyd-Jones M and Papaioannou D: Vitamin K to prevent fractures in older women: Systematic review and economic evaluation. Health Technol Assess. 13:iii–xi. 1–134. 2009.

71 

Ma ML, Ma ZJ, He YL, Sun H, Yang B, Ruan BJ, Zhan WD, Li SX, Dong H and Wang YX: Efficacy of vitamin K2 in the prevention and treatment of postmenopausal osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Front Public Health. 10:9796492022.

72 

Zhou M, Han S, Zhang W and Wu D: Efficacy and safety of vitamin K2 for postmenopausal women with osteoporosis at a long-term follow-up: Meta-analysis and systematic review. J Bone Miner Metab. 40:763–772. 2022.

73 

Salma, Ahmad SS, Karim S, Ibrahim IM, Alkreathy HM, Alsieni M and Khan MA: Effect of vitamin K on bone mineral density and fracture risk in adults: Systematic review and meta-analysis. Biomedicines. 10:10482022.

74 

Hao G, Zhang B, Gu M, Chen C, Zhang Q, Zhang G and Cao X: Vitamin K intake and the risk of fractures: A meta-analysis. Medicine (Baltimore). 96:e67252017.

75 

Moore AE, Kim E, Dulnoan D, Dolan AL, Voong K, Ahmad I, Gorska R, Harrington DJ and Hampson G: Serum vitamin K1 (phylloquinone) is associated with fracture risk and hip strength in post-menopausal osteoporosis: A cross-sectional study. Bone. 141:1156302020.

76 

O'Connor EM, Grealy G, McCarthy J, Desmond A, Craig O, Shanahan F and Cashman KD: Effect of phylloquinone (vitamin K1) supplementation for 12 months on the indices of vitamin K status and bone health in adult patients with Crohn's disease. Br J Nutr. 112:1163–1174. 2014.

77 

Tsugawa N, Shiraki M, Suhara Y, Kamao M, Ozaki R, Tanaka K and Okano T: Low plasma phylloquinone concentration is associated with high incidence of vertebral fracture in Japanese women. J Bone Miner Metab. 26:79–85. 2008.

78 

Yamauchi M, Yamaguchi T, Nawata K, Takaoka S and Sugimoto T: Relationships between undercarboxylated osteocalcin and vitamin K intakes, bone turnover, and bone mineral density in healthy women. Clin Nutr. 29:761–765. 2010.

79 

Kuang X, Liu C, Guo X, Li K, Deng Q and Li D: The combination effect of vitamin K and vitamin D on human bone quality: A meta-analysis of randomized controlled trials. Food Funct. 11:3280–3297. 2020.

80 

Bolton-Smith C, McMurdo ME, Paterson CR, Mole PA, Harvey JM, Fenton ST, Prynne CJ, Mishra GD and Shearer MJ: Two-year randomized controlled trial of vitamin K1 (phylloquinone) and vitamin D3 plus calcium on the bone health of older women. J Bone Miner Res. 22:509–519. 2007.

81 

Hu L, Ji J, Li D, Meng J and Yu B: The combined effect of vitamin K and calcium on bone mineral density in humans: A meta-analysis of randomized controlled trials. J Orthop Surg Res. 16:5922021.

82 

Platonova K, Kitamura K, Watanabe Y, Takachi R, Saito T, Kabasawa K, Takahashi A, Kobayashi R, Oshiki R, Solovev A, et al: Dietary calcium and vitamin K are associated with osteoporotic fracture risk in middle-aged and elderly Japanese women, but not men: The Murakami cohort study. Br J Nutr. 125:319–328. 2021.

83 

Knapen MHJ, Drummen NE, Smit E, Vermeer C and Theuwissen E: Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int. 24:2499–2507. 2013.

84 

Rønn SH, Harsløf T, Pedersen SB and Langdahl BL: Vitamin K2 (menaquinone-7) prevents age-related deterioration of trabecular bone microarchitecture at the tibia in postmenopausal women. Eur J Endocrinol. 175:541–549. 2016.

85 

Shiraki M, Shiraki Y, Aoki C and Miura M: Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res. 15:515–521. 2000.

86 

Su S, He N, Men P, Song C and Zhai S: The efficacy and safety of menatetrenone in the management of osteoporosis: A systematic review and meta-analysis of randomized controlled trials. Osteoporos Int. 30:1175–1186. 2019.

87 

Abdel Aziz DM, Saleh HA, Taha NM and Elbadawy MA: Relation between circulating vitamin K2 level and osteoporosis in post-menopausal women. QJM: Int J Med. 114(Suppl 1): hcab116–002. 2021.

88 

Heiss C, Hoesel LM, Wehr U, Keller T, Horas U, Meyer C, Rambeck W and Schnettler R: Vitamin K in combination with other biochemical markers to diagnose osteoporosis. Biomarkers. 9:479–488. 2004.

89 

Li C, Liang C, Kong Z, Su Y, Ren W, Dong H, Wu Y, Yang N, Liu R, Wu J and Zheng Y: Determination of vitamin K1, MK-4, MK-7, and D levels in human serum of postmenopausal osteoporosis women based on high stability LC-MS/MS: MK-7 may be a new marker of bone metabolism. Ann Nutr Metab. 79:334–342. 2023.

90 

Kawana K, Takahashi M, Hoshino H and Kushida K: Circulating levels of vitamin K1, menaquinone-4, and menaquinone-7 in healthy elderly Japanese women and patients with vertebral fractures and patients with hip fractures. Endocr Res. 27:337–343. 2001.

91 

El-Morsy AS, Beshir SR, Farrag KAER, Mohamed MS and Hamam GG: Comparative study on the effect of vitamin K versus combined Ca and vitamin D administration on the prevention of experimentally-induced osteoporosis in adult male albino rats. Egypt J Histol. 34:5–14. 2011.

92 

Hara K, Kobayashi M and Akiyama Y: Vitamin K2 (menatetrenone) inhibits bone loss induced by prednisolone partly through enhancement of bone formation in rats. Bone. 31:575–581. 2002.

93 

Sasaki N, Kusano E, Takahashi H, Ando Y, Yano K, Tsuda E and Asano Y: Vitamin K2 inhibits glucocorticoid-induced bone loss partly by preventing the reduction of osteoprotegerin (OPG). J Bone Miner Metab. 23:41–47. 2005.

94 

Jin C, Tan K, Yao Z, Lin BH, Zhang DP, Chen WK, Mao SM, Zhang W, Chen L, Lin Z, et al: A novel anti-osteoporosis mechanism of VK2: Interfering with ferroptosis via AMPK/SIRT1 pathway in Type 2 diabetic osteoporosis. J Agric Food Chem. 71:2745–2761. 2023.

95 

Yamaguchi M, Sugimoto E and Hachiya S: Stimulatory effect of menaquinone-7 (vitamin K2) on osteoblastic bone formation in vitro. Mol Cell Biochem. 223:131–137. 2001.

96 

Iwamoto D, Masaki C, Shibata Y, Watanabe C, Nodai T, Munemasa T, Mukaibo T, Kondo Y and Hosokawa R: Microstructural and mechanical recovery of bone in ovariectomized rats: The effects of menaquinone-7. J Mech Behav Biomed Mater. 120:1045712021.

97 

Katsuyama H, Otsuki T, Tomita M, Fukunaga M, Fukunaga T, Suzuki N, Saijoh K, Fushimi S and Sunami S: Menaquinone-7 regulates the expressions of osteocalcin, OPG, RANKL and RANK in osteoblastic MC3T3E1 cells. Int J Mol Med. 15:231–236. 2005.

98 

Akbulut AC, Wasilewski GB, Rapp N, Forin F, Singer H, Czogalla-Nitsche KJ and Schurgers LJ: Menaquinone-7 supplementation improves osteogenesis in pluripotent stem cell derived mesenchymal stem cells. Front Cell Dev Biol. 8:6187602021.

99 

Katsuyama H, Saijoh K, Otsuki T, Tomita M, Fukunaga M and Sunami S: Menaquinone-7 regulates gene expression in osteoblastic MC3T3E1 cells. Int J Mol Med. 19:279–284. 2007.

100 

Gigante A, Brugè F, Cecconi S, Manzotti S, Littarru GP and Tiano L: Vitamin MK-7 enhances vitamin D3-induced osteogenesis in hMSCs: Modulation of key effectors in mineralization and vascularization. J Tissue Eng Regen Med. 9:691–701. 2015.

101 

Tang H, Zhu Z, Zheng Z, Wang H, Li C, Wang L, Zhao G and Wang P: A study of hydrophobins-modified menaquinone-7 on osteoblastic cells differentiation. Mol Cell Biochem. 476:1939–1948. 2021.

102 

Yamaguchi M and Weitzmann MN: Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation. Int J Mol Med. 27:3–14. 2011.

103 

Wang H, Li L, Zhang N and Ma Y: Vitamin K2 improves osteogenic differentiation by inhibiting STAT1 via the Bcl-6 and IL-6/JAK in C3H10 T1/2 clone 8 cells. Nutrients. 14:29342022.

104 

Owen R, Bahmaee H, Claeyssens F and Reilly GC: Comparison of the anabolic effects of reported osteogenic compounds on human mesenchymal progenitor-derived osteoblasts. Bioengineering (Basel). 7:122020.

105 

Wang H, Zhang N, Li L, Yang P and Ma Y: Menaquinone 4 reduces bone loss in ovariectomized mice through dual regulation of bone remodeling. Nutrients. 13:25702021.

106 

Cui Q, Li N, Nie F, Yang F, Li H and Zhang J: Vitamin K2 promotes the osteogenic differentiation of periodontal ligament stem cells via the Wnt/β-catenin signaling pathway. Arch Oral Biol. 124:1050572021.

107 

Urayama S, Kawakami A, Nakashima T, Tsuboi M, Yamasaki S, Hida A, Ichinose Y, Nakamura H, Ejima E, Aoyagi T, et al: Effect of vitamin K2 on osteoblast apoptosis: Vitamin K2 inhibits apoptotic cell death of human osteoblasts induced by Fas, proteasome inhibitor, etoposide, and staurosporine. J Lab Clin Med. 136:181–193. 2000.

108 

Jiang Y, Lin L, Xin H, Jin Y, Jiang Y and Xue L: Study on the protective effect of menatetrenone against the oxidative stress of osteoblasts. J Pharm Pract Serv. 38:523–527. 2020.

109 

Cui Y, Zhang W, Yang P, Zhu S, Luo S and Li M: Menaquinone-4 prevents medication-related osteonecrosis of the jaw through the SIRT1 signaling-mediated inhibition of cellular metabolic stresses-induced osteoblast apoptosis. Free Radic Biol Med. 206:33–49. 2023.

110 

Amizuka N, Li M and Maeda T: The interplay of magnesium and vitamin K2 on bone mineralization. Clin Calcium. 15:57–61. 2005.In Japanese.

111 

Cui L, Xu J, Zhang J, Zhang M, Zhang S and Bai Y: Menaquinone-4 modulates the expression levels of calcification-associated factors to inhibit calcification of rat aortic vascular smooth muscle cells in a dose-dependent manner. Exp Ther Med. 16:3172–3178. 2018.

112 

Li W, Zhang S, Liu J, Liu Y and Liang Q: Vitamin K2 stimulates MC3T3-E1 osteoblast differentiation and mineralization through autophagy induction. Mol Med Rep. 19:3676–3684. 2019.

113 

Chen L, Shi X, Weng SJ, Xie J, Tang JH, Yan DY, Wang BZ, Xie ZJ, Wu ZY and Yang L: Vitamin K2 can rescue the dexamethasone-induced downregulation of osteoblast autophagy and mitophagy thereby restoring osteoblast function in vitro and in vivo. Front Pharmacol. 11:12092020.

114 

Fusaro M, Cianciolo G, Brandi ML, Ferrari S, Nickolas TL, Tripepi G, Plebani M, Zaninotto M, Iervasi G, La Manna G, et al: Vitamin K and osteoporosis. Nutrients. 12:36252020.

115 

Tabb MM, Sun A, Zhou C, Grün F, Errandi J, Romero K, Pham H, Inoue S, Mallick S, Lin M, et al: Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem. 278:43919–43927. 2003.

116 

Ichikawa T, Horie-Inoue K, Ikeda K, Blumberg B and Inoue S: Steroid and xenobiotic receptor SXR mediates vitamin K2-activated transcription of extracellular matrix-related genes and collagen accumulation in osteoblastic cells. J Biol Chem. 281:16927–16934. 2006.

117 

Zhang Y, Weng S, Yin J, Ding H, Zhang C and Gao Y: Vitamin K2 promotes mesenchymal stem cell differentiation by inhibiting miR-133a expression. Mol Med Rep. 15:2473–2480. 2017.

118 

Takeuchi Y, Suzawa M, Fukumoto S and Fujita T: Vitamin K(2) inhibits adipogenesis, osteoclastogenesis, and ODF/RANK ligand expression in murine bone marrow cell cultures. Bone. 27:769–776. 2000.

119 

Jiang Y, Xia T, Xin H, Jin Y, Jiang Y and Xue L: Effects of vitamin K on osteoblastic bone formation and osteoclastic bone absorption. J Pharm Pract. 340–345. 2020.

120 

Wu WJ, Gao H, Jin JS and Ahn BY: A comparatively study of menaquinone-7 isolated from Cheonggukjang with vitamin K1 and menaquinone-4 on osteoblastic cells differentiation and mineralization. Food Chem Toxicol. 131:1105402019.

121 

Kim M, Na W and Sohn C: Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice. J Clin Biochem Nutr. 53:108–113. 2013.

122 

Koshihara Y, Hoshi K, Okawara R, Ishibashi H and Yamamoto S: Vitamin K stimulates osteoblastogenesis and inhibits osteoclastogenesis in human bone marrow cell culture. J Endocrinol. 176:339–348. 2003.

123 

Akiyama Y, Hara K, Tajima T, Murota S and Morita I: Effect of vitamin K2 (menatetrenone) on osteoclast-like cell formation in mouse bone marrow cultures. Eur J Pharmacol. 263:181–185. 1994.

124 

Yamaguchi M and Ma ZJ: Inhibitory effect of menaquinone-7 (vitamin K2) on osteoclast-like cell formation and osteoclastic bone resorption in rat bone tissues in vitro. Mol Cell Biochem. 228:39–47. 2001.

125 

Tsukamoto Y: Studies on action of menaquinone-7 in regulation of bone metabolism and its preventive role of osteoporosis. Biofactors. 22:5–19. 2004.

126 

Wu WJ, Kim MS and Ahn BY: The inhibitory effect of vitamin K on RANKL-induced osteoclast differentiation and bone resorption. Food Funct. 6:3351–3358. 2015.

127 

Lee AS, Sung MJ, Son SJ, Han AR, Hong SM and Lee SH: Effect of menaquinone-4 on receptor activator of nuclear factor κB ligand-induced osteoclast differentiation and ovariectomy-induced bone loss. J Med Food. 26:128–134. 2023.

128 

Taira H, Fujikawa Y, Kudo O, Itonaga I and Torisu T: Menatetrenone (vitamin K2) acts directly on circulating human osteoclast precursors. Calcif Tissue Int. 73:78–85. 2003.

129 

Stock M and Schett G: Vitamin K-dependent proteins in skeletal development and disease. Int J Mol Sci. 22:93282021.

130 

Alonso N, Meinitzer A, Fritz-Petrin E, Enko D and Herrmann M: Role of Vitamin K in bone and muscle metabolism. Calcif Tissue Int. 112:178–196. 2023.

131 

Komori T: Functions of osteocalcin in bone, pancreas, testis, and muscle. Int J Mol Sci. 21:75132020.

132 

Lacombe J and Ferron M: Gamma-carboxylation regulates osteocalcin function. Oncotarget. 6:19924–19925. 2015.

133 

Rasekhi H, Karandish M, Jalali MT, Mohammad-Shahi M, Zarei M, Saki A and Shahbazian H: The effect of vitamin K1 supplementation on sensitivity and insulin resistance via osteocalcin in prediabetic women: A double-blind randomized controlled clinical trial. Eur J Clin Nutr. 69:891–895. 2015.

134 

Hussein AG, Mohamed RH, Shalaby SM and Abd El Motteleb DM: Vitamin K2 alleviates type 2 diabetes in rats by induction of osteocalcin gene expression. Nutrition. 47:33–38. 2018.

135 

Clemens TL and Karsenty G: The osteoblast: An insulin target cell controlling glucose homeostasis. J Bone Miner Res. 26:677–680. 2011.

136 

Roumeliotis S, Dounousi E, Eleftheriadis T and Liakopoulos V: Association of the inactive circulating matrix Gla protein with vitamin K Intake, calcification, mortality, and cardiovascular disease: A review. Int J Mol Sci. 20:6282019.

137 

Dalmeijer GW, van der Schouw YT, Vermeer C, Magdeleyns EJ, Schurgers LJ and Beulens JW: Circulating matrix Gla protein is associated with coronary artery calcification and vitamin K status in healthy women. J Nutr Biochem. 24:624–628. 2013.

138 

Mandatori D, Pelusi L, Schiavone V, Pipino C, Di Pietro N and Pandolfi A: The dual role of vitamin K2 in 'bone-vascular crosstalk': Opposite effects on bone loss and vascular calcification. Nutrients. 13:12222021.

139 

Fusaro M, Noale M, Viola V, Galli F, Tripepi G, Vajente N, Plebani M, Zaninotto M, Guglielmi G, Miotto D, et al: Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J Bone Miner Res. 27:2271–2278. 2012.

140 

Delanaye P, Krzesinski JM, Warling X, Moonen M, Smelten N, Médart L, Pottel H and Cavalier E: Dephosphorylated-uncarboxylated Matrix Gla protein concentration is predictive of vitamin K status and is correlated with vascular calcification in a cohort of hemodialysis patients. BMC Nephrol. 15:1452014.

141 

Mandatori D, Pipino C, Di Tomo P, Schiavone V, Ranieri A, Pantalone S, Di Silvestre S, Di Pietrantonio N, Ucci M, Palmerini C, et al: Osteogenic transdifferentiation of vascular smooth muscle cells isolated from spontaneously hypertensive rats and potential menaquinone-4 inhibiting effect. J Cell Physiol. 234:19761–19773. 2019.

142 

Schurgers LJ, Uitto J and Reutelingsperger CP: Vitamin K-dependent carboxylation of matrix Gla-protein: A crucial switch to control ectopic mineralization. Trends Mol Med. 19:217–226. 2013.

143 

Tesfamariam B: Involvement of vitamin K-dependent proteins in vascular calcification. J Cardiovasc Pharmacol Ther. 24:323–333. 2019.

144 

Yee MMF, Chin KY, Ima-Nirwana S and Wong SK: Vitamin A and bone health: A review on current evidence. Molecules. 26:17572021.

145 

Burckhardt P: Vitamin A and bone health. Nutrition and bone health. Humana Press; New York, NY: pp. 409–421. 2015

146 

Navarro-Valverde C, Caballero-Villarraso J, Mata-Granados JM, Casado-Díaz A, Sosa-Henríquez M, Malouf-Sierra J, Nogués-Solán X, Rodríguez-Mañas L, Cortés-Gil X, Delgadillo-Duarte J and Quesada-Gómez JM: High serum retinol as a relevant contributor to low bone mineral density in postmenopausal osteoporotic women. Calcif Tissue Int. 102:651–656. 2018.

147 

Mata-Granados JM, Cuenca-Acevedo JR, Luque de Castro MD, Holick MF and Quesada-Gómez JM: Vitamin D insufficiency together with high serum levels of vitamin A increases the risk for osteoporosis in postmenopausal women. Arch Osteoporos. 8:1242013.

148 

Zhang X, Huang J, Zhou Y, Hong Z, Lin X, Chen S, Ye Y and Zhang Z: Vitamin A nutritional status is a key determinant of bone mass in children. Nutrients. 14:46942022.

149 

Tanumihardjo SA, Gannon BM, Kaliwile C, Chileshe J and Binkley NC: Restricting vitamin A intake increases bone formation in Zambian children with high liver stores of vitamin. Arch Osteoporos. 14:722019.

150 

Maggio D, Polidori MC, Barabani M, Tufi A, Ruggiero C, Cecchetti R, Aisa MC, Stahl W and Cherubini A: Low levels of carotenoids and retinol in involutional osteoporosis. Bone. 38:244–248. 2006.

151 

Yang Z, Zhang Z, Penniston KL, Binkley N and Tanumihardjo SA: Serum carotenoid concentrations in postmenopausal women from the United States with and without osteoporosis. Int J Vitam Nutr Res. 78:105–111. 2008.

152 

Balasuriya CND, Larose TL, Mosti MP, Evensen KAI, Jacobsen GW, Thorsby PM, Stunes AK and Syversen U: Maternal serum retinol, 25(OH)D and 1,25(OH)2D concentrations during pregnancy and peak bone mass and trabecular bone score in adult offspring at 26-year follow-up. PLoS One. 14:e02227122019.

153 

Holvik K, Ahmed LA, Forsmo S, Gjesdal CG, Grimnes G, Samuelsen SO, Schei B, Blomhoff R, Tell GS and Meyer HE: No increase in risk of hip fracture at high serum retinol concentrations in community-dwelling older Norwegians: The Norwegian epidemiologic osteoporosis studies. Am J Clin Nutr. 102:1289–1296. 2015.

154 

Zhou P, Shao R, Wang H, Miao J and Wang X: Dietary vitamin A, C, and E intake and subsequent fracture risk at various sites: A meta-analysis of prospective cohort studies. Medicine (Baltimore). 99:e208412020.

155 

Rejnmark L, Vestergaard P, Charles P, Hermann AP, Brot C, Eiken P and Mosekilde L: No effect of vitamin A intake on bone mineral density and fracture risk in perimenopausal women. Osteoporos Int. 15:872–880. 2004.

156 

de Jonge EA, Kiefte-de Jong JC, Campos-Obando N, Booij L, Franco OH, Hofman A, Uitterlinden AG, Rivadeneira F and Zillikens MC: Dietary vitamin A intake and bone health in the elderly: The Rotterdam study. Eur J Clin Nutr. 69:1360–1368. 2015.

157 

Zia-Ul-Haq M, Riaz M and Modhi AO: Carotenoids and bone health. In: Carotenoids: Structure and Function in the Human Body. Springer Cham. 697–713. 2021.

158 

Dai Z, Wang R, Ang LW, Low YL, Yuan JM and Koh WP: Protective effects of dietary carotenoids on risk of hip fracture in men: The Singapore Chinese health study. J Bone Miner Res. 29:408–417. 2014.

159 

Cao WT, Zeng FF, Li BL, Lin JS, Liang YY and Chen YM: Higher dietary carotenoid intake associated with lower risk of hip fracture in middle-aged and elderly Chinese: A matched case-control study. Bone. 111:116–122. 2018.

160 

Xu J, Song C, Song X, Zhang X and Li X: Carotenoids and risk of fracture: A meta-analysis of observational studies. Oncotarget. 8:2391–2399. 2017.

161 

Gao SS and Zhao Y: The effects of β-carotene on osteoporosis: A systematic review and meta-analysis of observational studies. Osteoporos Int. 34:627–639. 2023.

162 

Zhang ZQ, Cao WT, Liu J, Cao Y, Su YX and Chen YM: Greater serum carotenoid concentration associated with higher bone mineral density in Chinese adults. Osteoporos Int. 27:1593–1601. 2016.

163 

Hayhoe RPG, Lentjes MAH, Mulligan AA, Luben RN, Khaw KT and Welch AA: Carotenoid dietary intakes and plasma concentrations are associated with heel bone ultrasound attenuation and osteoporotic fracture risk in the European prospective investigation into cancer and nutrition (EPIC)-Norfolk cohort. Br J Nutr. 117:1439–1453. 2017.

164 

Tanaka K, Tanaka S, Sakai A, Ninomiya T, Arai Y and Nakamura T: Deficiency of vitamin A delays bone healing process in association with reduced BMP2 expression after drill-hole injury in mice. Bone. 47:1006–1012. 2010.

165 

Shen Q, Wang X, Bai H, Tan X and Liu X: Effects of high-dose all-trans retinoic acid on longitudinal bone growth of young rats. Growth Horm IGF Res. 62:1014462022.

166 

Broulík PD, Raška I and Brouliková K: Prolonged overdose of all-trans retinoic acid enhances bone sensitivity in castrated mice. Nutrition. 29:1166–1169. 2013.

167 

Lionikaite V, Henning P, Drevinge C, Shah FA, Palmquist A, Wikström P, Windahl SH and Lerner UH: Vitamin A decreases the anabolic bone response to mechanical loading by suppressing bone formation. FASEB J. 33:5237–5247. 2019.

168 

Weng Z, Wang C, Zhang C, Xu J, Chai Y, Jia Y, Han P and Wen G: All-trans retinoic acid promotes osteogenic differentiation and bone consolidation in a rat distraction osteogenesis model. Calcif Tissue Int. 104:320–330. 2019.

169 

Zhang S, Chen X, Hu Y, Wu J, Cao Q, Chen S and Gao Y: All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3β signalling pathway. Mol Cell Endocrinol. 422:243–253. 2016.

170 

Zhang W, Deng ZL, Chen L, Zuo GW, Luo Q, Shi Q, Zhang BQ, Wagner ER, Rastegar F, Kim SH, et al: Retinoic acids potentiate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS One. 5:e119172010.

171 

Osathanon T, Manokawinchoke J, Egusa H and Pavasant P: Notch signaling partly regulates the osteogenic differentiation of retinoic acid-treated murine induced pluripotent stem cells. J Oral Sci. 59:405–413. 2017.

172 

Dingwall M, Marchildon F, Gunanayagam A, Louis CS and Wiper-Bergeron N: Retinoic acid-induced Smad3 expression is required for the induction of osteoblastogenesis of mesenchymal stem cells. Differentiation. 82:57–65. 2011.

173 

Wiper-Bergeron N, St-Louis C and Lee JM: CCAAT/Enhancer binding protein beta abrogates retinoic acid-induced osteoblast differentiation via repression of Runx2 transcription. Mol Endocrinol. 21:2124–2135. 2007.

174 

Hisada K, Hata K, Ichida F, Matsubara T, Orimo H, Nakano T, Yatani H, Nishimura R and Yoneda T: Retinoic acid regulates commitment of undifferentiated mesenchymal stem cells into osteoblasts and adipocytes. J Bone Miner Metab. 31:53–63. 2013.

175 

Cruz ACC, Cardozo FTGS, Magini RS and Simões CMO: Retinoic acid increases the effect of bone morphogenetic protein type 2 on osteogenic differentiation of human adipose-derived stem cells. J Appl Oral Sci. 27:e201803172019.

176 

Liu Y, Liu Y, Zhang R, Wang X, Huang F, Yan Z, Nie M, Huang J, Wang Y, Wang Y, et al: All-trans retinoic acid modulates bone morphogenic protein 9-induced osteogenesis and adipogenesis of preadipocytes through BMP/Smad and Wnt/β-catenin signaling pathways. Int J Biochem Cell Biol. 47:47–56. 2014.

177 

Skillington J, Choy L and Derynck R: Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol. 159:135–146. 2002.

178 

Ferreira-Baptista C, Queirós A, Ferreira R, Fernandes MH, Gomes PS and Colaço B: Retinoic acid induces the osteogenic differentiation of cat adipose tissue-derived stromal cells from distinct anatomical sites. J Anat. 242:277–288. 2023.

179 

Shao Y, Chen QZ, Zeng YH, Li Y, Ren WY, Zhou LY, Liu RX, Wu K, Yang JQ, Deng ZL, et al: All-trans retinoic acid shifts rosiglitazone-induced adipogenic differentiation to osteogenic differentiation in mouse embryonic fibroblasts. Int J Mol Med. 38:1693–1702. 2016.

180 

Song HM, Nacamuli RP, Xia W, Bari AS, Shi YY, Fang TD and Longaker MT: High-dose retinoic acid modulates rat calvarial osteoblast biology. J Cell Physiol. 202:255–262. 2005.

181 

Jeradi S and Hammerschmidt M: Retinoic acid-induced premature osteoblast-to-preosteocyte transitioning has multiple effects on calvarial development. Development. 143:1205–1216. 2016.

182 

Jacobsen C and Craft AM: Retinoic-acid-induced osteogenesis of hiPSCs. Nat Biomed Eng. 3:504–506. 2019.

183 

Sun W, Shi A, Ma D, Bolscher JGM, Nazmi K, Veerman ECI, Bikker FJ, Lin H and Wu G: All-trans retinoic acid and human salivary histatin-1 promote the spreading and osteogenic activities of pre-osteoblasts in vitro. FEBS Open Bio. 10:396–406. 2020.

184 

Karakida T, Yui R, Suzuki T, Fukae M and Oida S: Retinoic acid receptor γ-dependent signaling cooperates with BMP2 to induce osteoblastic differentiation of C2C12 cells. Connect Tissue Res. 52:365–372. 2011.

185 

Bi W, Gu Z, Zheng Y, Zhang X, Guo J and Wu G: Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis. PLoS One. 8:e781982013.

186 

Roa LA, Bloemen M, Carels CEL, Wagener FADTG and Von den Hoff JW: Retinoic acid disrupts osteogenesis in pre-osteoblasts by down-regulating WNT signaling. Int J Biochem Cell Biol. 116:1055972019.

187 

Krutzen CLJM, Roa LA, Bloemen M and Von den Hoff JW: Excess vitamin a might contribute to submucous clefting by inhibiting WNT-mediated bone formation. Orthod Craniofac Res. 26:132–139. 2023.

188 

Liu Y, Ma X, Guo J, Lin Z, Zhou M, Bi W, Liu J, Wang J, Lu H and Wu G: All-trans retinoic acid can antagonize osteoblastogenesis induced by different BMPs irrespective of their dimerization types and dose-efficiencies. Drug Des Devel Ther. 12:3419–3430. 2018.

189 

Chen M, Huang HZ, Wang M and Wang AX: Retinoic acid inhibits osteogenic differentiation of mouse embryonic palate mesenchymal cells. Birth Defects Res A Clin Mol Teratol. 88:965–970. 2010.

190 

Chen M, Yang X, LI ZM, Liu X, Wang WC and Huang HZ: Inhibitory effect of all-trans retinoic acid on osteogenic differentiation of mouse embryonic palate mesenchymal cells and its possible mechanism. Chin J Pharmacol Toxicol. 29:836–841. 2015.

191 

Wang S, Bi W, Liu Y, Cheng J, Sun W, Wu G and Xu X: The antagonist of retinoic acid receptor α, ER-50891 antagonizes the inhibitive effect of all-trans retinoic acid and rescues bone morphogenetic protein 2-induced osteoblastogenic differentiation. Drug Des Devel Ther. 14:297–308. 2020.

192 

Nuka S, Sawada N, Iba K, Chiba H, Ishii S and Mori M: All-trans retinoic acid inhibits dexamethasone-induced ALP activity and mineralization in human osteoblastic cell line SV HFO. Cell Struct Funct. 22:27–32. 1997.

193 

Ewendt F, Lehmann A, Wodak MF and Stangl GI: All-trans retinoic acid and beta-carotene increase sclerostin production in C2C12 myotubes. Biomedicines. 11:14322023.

194 

Guo L, Zhang Y, Liu H, Cheng Q, Yang S and Yang D: All-trans retinoic acid inhibits the osteogenesis of periodontal ligament stem cells by promoting IL-1β production via NF-κB signaling. Int Immunopharmacol. 108:1087572022.

195 

Ahmed N, Sammons J, Khokher MA and Hassan HT: Retinoic acid suppresses interleukin 6 production in normal human osteoblasts. Cytokine. 12:289–293. 2000.

196 

Shen CX and Bi WJ: Role of all-trans retinoic acid in osteogenic differentiation. J Oral Sci Res. 34:1038–1041. 2018.

197 

Hu L, Lind T, Sundqvist A, Jacobson A and Melhus H: Retinoic acid increases proliferation of human osteoclast progenitors and inhibits RANKL-stimulated osteoclast differentiation by suppressing RANK. PLoS One. 5:e133052010.

198 

Balkan W, Rodríguez-Gonzalez M, Pang M, Fernandez I and Troen BR: Retinoic acid inhibits NFATc1 expression and osteoclast differentiation. J Bone Miner Metab. 29:652–661. 2011.

199 

Conaway HH, Persson E, Halén M, Granholm S, Svensson O, Pettersson U, Lie A and Lerner UH: Retinoids inhibit differentiation of hematopoietic osteoclast progenitors. FASEB J. 23:3526–3538. 2009.

200 

Bi W, Liu Y, Guo J, Lin Z, Liu J, Zhou M, Wismeijer D, Pathak JL and Wu G: All-trans retinoic-acid inhibits heterodimeric bone morphogenetic protein 2/7-stimulated osteoclastogenesis, and resorption activity. Cell Biosci. 8:482018.

201 

Kindmark A, Melhus H, Ljunghall S and Ljunggren O: Inhibitory effects of 9-cis and all-trans retinoic acid on 1,25(OH)2 vitamin D3-induced bone resorption. Calcif Tissue Int. 57:242–244. 1995.

202 

Conaway HH, Pirhayati A, Persson E, Pettersson U, Svensson O, Lindholm C, Henning P, Tuckermann J and Lerner UH: Retinoids stimulate periosteal bone resorption by enhancing the protein RANKL, a response inhibited by monomeric glucocorticoid receptor. J Biol Chem. 286:31425–31436. 2011.

203 

Saneshige S, Mano H, Tezuka K, Kakudo S, Mori Y, Honda Y, Itabashi A, Yamada T, Miyata K, Hakeda Y, et al: Retinoic acid directly stimulates osteoclastic bone resorption and gene expression of cathepsin K/OC-2. Biochem J. 309:721–724. 1995.

204 

Lind T, Öhman C, Calounova G, Rasmusson A, Andersson G, Pejler G and Melhus H: Excessive dietary intake of vitamin A reduces skull bone thickness in mice. PLoS One. 12:e01762172017.

205 

Yamaguchi M: Role of carotenoid β-cryptoxanthin in bone homeostasis. J Biomed Sci. 19:362012.

206 

Uchiyama S and Yamaguchi M: Beta-cryptoxanthin stimulates cell differentiation and mineralization in osteoblastic MC3T3-E1 cells. J Cell Biochem. 95:1224–1234. 2005.

207 

Yamaguchi M and Weitzmann MN: The bone anabolic carotenoid beta-cryptoxanthin enhances transforming growth factor-beta1-induced SMAD activation in MC3T3 preosteoblasts. Int J Mol Med. 24:671–675. 2009.

208 

Yamaguchi M and Weitzmann MN: The bone anabolic carotenoids p-hydroxycinnamic acid and β-cryptoxanthin antagonize NF-κB activation in MC3T3 preosteoblasts. Mol Med Rep. 2:641–644. 2009.

209 

Yamaguchi M and Weitzmann MN: The bone anabolic carotenoid p-hydroxycinnamic acid promotes osteoblast mineralization and suppresses osteoclast differentiation by antagonizing NF-κB activation. Int J Mol Med. 30:708–712. 2012.

210 

Zhu K, Yang C, Dai H, Li J, Liu W, Luo Y, Zhang X and Wang Q: Crocin inhibits titanium particle-induced inflammation and promotes osteogenesis by regulating macrophage polarization. Int Immunopharmacol. 76:1058652019.

211 

Kalalinia F, Ghasim H, Amel Farzad S, Pishavar E, Ramezani M and Hashemi M: Comparison of the effect of crocin and crocetin, two major compounds extracted from saffron, on osteogenic differentiation of mesenchymal stem cells. Life Sci. 208:262–267. 2018.

212 

Russo C, Ferro Y, Maurotti S, Salvati MA, Mazza E, Pujia R, Terracciano R, Maggisano G, Mare R, Giannini S, et al: Lycopene and bone: An in vitro investigation and a pilot prospective clinical study. J Transl Med. 18:432020.

213 

Oliveira GR, Vargas-Sanchez PK, Fernandes RR, Ricoldi MST, Semeghini MS, Pitol DL, de Sousa LG, Siessere S and Bombonato-Prado KF: Lycopene influences osteoblast functional activity and prevents femur bone loss in female rats submitted to an experimental model of osteoporosis. J Bone Miner Metab. 37:658–667. 2019.

214 

Semeghini MS, Scalize PH, Coelho MC, Fernandes RR, Pitol DL, Tavares MS, de Sousa LG, Coppi AA, Siessere S and Bombonato-Prado KF: Lycopene prevents bone loss in ovariectomized rats and increases the number of osteocytes and osteoblasts. J Anat. 241:729–740. 2022.

215 

Odes-Barth S, Khanin M, Linnewiel-Hermoni K, Miller Y, Abramov K, Levy J and Sharoni Y: Inhibition of osteoclast differentiation by carotenoid derivatives through inhibition of the NF-κB pathway. Antioxidants (Basel). 9:11672020.

216 

Linnewiel-Hermoni K, Motro Y, Miller Y, Levy J and Sharoni Y: Carotenoid derivatives inhibit nuclear factor kappa B activity in bone and cancer cells by targeting key thiol groups. Free Radic Biol Med. 75:105–120. 2014.

217 

Uchiyama S and Yamaguchi M: Inhibitory effect of beta-cryptoxanthin on osteoclast-like cell formation in mouse marrow cultures. Biochem Pharmacol. 67:1297–1305. 2004.

218 

Hirata N, Ichimaru R, Tominari T, Matsumoto C, Watanabe K, Taniguchi K, Hirata M, Ma S, Suzuki K, Grundler FMW, et al: Beta-cryptoxanthin inhibits lipopolysaccharide-induced osteoclast differentiation and bone resorption via the suppression of inhibitor of NF-κB kinase activity. Nutrients. 11:3682019.

219 

Uchiyama S and Yamaguchi M: Beta-cryptoxanthin stimulates apoptotic cell death and suppresses cell function in osteoclastic cells: Change in their related gene expression. J Cell Biochem. 98:1185–1195. 2006.

220 

Ozaki K, Okamoto M, Fukasawa K, Iezaki T, Onishi Y, Yoneda Y, Sugiura M and Hinoi E: Daily intake of β-cryptoxanthin prevents bone loss by preferential disturbance of osteoclastic activation in ovariectomized mice. J Pharmacol Sci. 129:72–77. 2015.

221 

Matsumoto C, Ashida N, Yokoyama S, Tominari T, Hirata M, Ogawa K, Sugiura M, Yano M, Inada M and Miyaura C: The protective effects of β-cryptoxanthin on inflammatory bone resorption in a mouse experimental model of periodontitis. Biosci Biotechnol Biochem. 77:860–862. 2013.

222 

Wang F, Wang N, Gao Y, Zhou Z, Liu W, Pan C, Yin P, Yu X and Tang M: β-Carotene suppresses osteoclastogenesis and bone resorption by suppressing NF-κB signaling pathway. Life Sci. 174:15–20. 2017.

223 

Mamun-Or-Rashid ANM, Lucy TT, Yagi M and Yonei Y: Inhibitory effects of astaxanthin on CML-HSA-induced inflammatory and RANKL-induced osteoclastogenic gene expression in RAW 264.7 Cells. Biomedicines. 10:542021.

224 

Tominari T, Matsumoto C, Watanabe K, Hirata M, Grundler FM, Inada M and Miyaura C: Lutein, a carotenoid, suppresses osteoclastic bone resorption and stimulates bone formation in cultures. Biosci Biotechnol Biochem. 81:302–306. 2017.

225 

Das SK, Ren R, Hashimoto T and Kanazawa K: Fucoxanthin induces apoptosis in osteoclast-like cells differentiated from RAW264.7 cells. J Agric Food Chem. 58:6090–6095. 2010.

226 

Aghajanian P, Hall S, Wongworawat MD and Mohan S: The roles and mechanisms of actions of vitamin C in bone: New developments. J Bone Miner Res. 30:1945–1955. 2015.

227 

Morton DJ, Barrett-Connor EL and Schneider DL: Vitamin C supplement use and bone mineral density in postmenopausal women. J Bone Miner Res. 16:135–140. 2001.

228 

Malmir H, Shab-Bidar S and Djafarian K: Vitamin C intake in relation to bone mineral density and risk of hip fracture and osteoporosis: A systematic review and meta-analysis of observational studies. Br J Nutr. 119:847–858. 2018.

229 

Zeng LF, Luo MH, Liang GH, Yang WY, Xiao X, Wei X, Yu J, Guo D, Chen HY, Pan JK, et al: Can dietary intake of vitamin C-oriented foods reduce the risk of osteoporosis, fracture, and BMD loss? Systematic review with meta-analyses of recent studies. Front Endocrinol (Lausanne). 10:8442020.

230 

Sun Y, Liu C, Bo Y, You J, Zhu Y, Duan D, Cui H and Lu Q: Dietary vitamin C intake and the risk of hip fracture: A dose-response meta-analysis. Osteoporos Int. 29:79–87. 2018.

231 

Sahni S, Hannan MT, Gagnon D, Blumberg J, Cupples LA, Kiel DP and Tucker KL: Protective effect of total and supplemental vitamin C intake on the risk of hip fracture-a 17-year follow-up from the Framingham osteoporosis study. Osteoporos Int. 20:1853–1861. 2009.

232 

Kim YA, Kim KM, Lim S, Choi SH, Moon JH, Kim JH, Kim SW, Jang HC and Shin CS: Favorable effect of dietary vitamin C on bone mineral density in postmenopausal women (KNHANES IV, 2009): Discrepancies regarding skeletal sites, age, and vitamin D status. Osteoporos Int. 26:2329–2337. 2015.

233 

Rondanelli M, Peroni G, Fossari F, Vecchio V, Faliva MA, Naso M, Perna S, D Paolo E, Riva A, Petrangolini G, et al: Evidence of a positive link between consumption and supplementation of ascorbic acid and bone mineral density. Nutrients. 13:10122021.

234 

Lan KM, Wang LK, Lin YT, Hung KC, Wu LC, Ho CH, Chang CY and Chen JY: Suboptimal plasma vitamin C is associated with lower bone mineral density in young and early middle-aged men: A retrospective cross-sectional study. Nutrients. 14:35562022.

235 

Mangano KM, Noel SE, Dawson-Hughes B and Tucker KL: Sufficient plasma vitamin C is related to greater bone mineral density among postmenopausal women from the Boston Puerto Rican Health Study. J Nutr. 151:3764–3772. 2021.

236 

Sakamoto Y and Takano Y: Morphological influence of ascorbic acid deficiency on endochondral ossification in osteogenic disorder Shionogi rat. Anat Rec. 268:93–104. 2002.

237 

Hasegawa T, Li M, Hara K, Sasaki M, Tabata C, de Freitas PH, Hongo H, Suzuki R, Kobayashi M, Inoue K, et al: Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats. Biomed Res. 32:259–269. 2011.

238 

Segawa T, Miyakoshi N, Kasukawa Y, Aonuma H, Tsuchie H and Shimada Y: Combined treatment with minodronate and vitamin C increases bone mineral density and strength in vitamin C-deficient rats. Osteoporos Sarcopenia. 2:30–37. 2016.

239 

Zhu LL, Cao J, Sun M, Yuen T, Zhou R, Li J, Peng Y, Moonga SS, Guo L, Mechanick JI, et al: Vitamin C prevents hypogonadal bone loss. PLoS One. 7:e470582012.

240 

Deyhim F, Strong K, Deyhim N, Vandyousefi S, Stamatikos A and Faraji B: Vitamin C reverses bone loss in an osteopenic rat model of osteoporosis. Int J Vitam Nutr Res. 88:58–64. 2018.

241 

Park JK, Lee EM, Kim AY, Lee EJ, Min CW, Kang KK, Lee MM and Jeong KS: Vitamin C deficiency accelerates bone loss inducing an increase in PPAR-γ expression in SMP30 knockout mice. Int J Exp Pathol. 93:332–340. 2012.

242 

Hadzir SN, Ibrahim SN, Abdul Wahab RM, Zainol Abidin IZ, Senafi S, Ariffin ZZ, Abdul Razak M and Zainal Ariffin SH: Ascorbic acid induces osteoblast differentiation of human suspension mononuclear cells. Cytotherapy. 16:674–682. 2014.

243 

Okajima LS, Martinez EF, Pinheiro IF, Fonseca Silva AS and Demasi APD: Effect of sodium ascorbyl phosphate on osteoblast viability and differentiation. J Periodontal Res. 55:660–666. 2020.

244 

Yang HM and Seo HS: Effects of ascorbic acid on osteoblast differentiation in MC3T3-E1 cells. Soonchunhyang Med Sci. 19:93–98. 2013.

245 

Carinci F, Pezzetti F, Spina AM, Palmieri A, Laino G, De Rosa A, Farina E, Illiano F, Stabellini G, Perrotti V and Piattelli A: Effect of vitamin C on pre-osteoblast gene expression. Arch Oral Biol. 50:481–496. 2005.

246 

Ciceri P, Volpi E, Brenna I, Arnaboldi L, Neri L, Brancaccio D and Cozzolino M: Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation. Nephrol Dial Transplant. 27:122–127. 2012.

247 

Valenti MT, Zanatta M, Donatelli L, Viviano G, Cavallini C, Scupoli MT and Dalle Carbonare L: Ascorbic acid induces either differentiation or apoptosis in MG-63 osteosarcoma lineage. Anticancer Res. 34:1617–1627. 2014.

248 

Choi HK, Kim GJ, Yoo HS, Song DH, Chung KH, Lee KJ, Koo YT and An JH: Vitamin C activates osteoblastogenesis and inhibits osteoclastogenesis via Wnt/β-catenin/ATF4 signaling pathways. Nutrients. 11:5062019.

249 

Burger MG, Steinitz A, Geurts J, Pippenger BE, Schaefer DJ, Martin I, Barbero A and Pelttari K: Ascorbic acid attenuates senescence of human osteoarthritic osteoblasts. Int J Mol Sci. 18:25172017.

250 

Son E, Do H, Joo HM and Pyo S: Induction of alkaline phosphatase activity by L-ascorbic acid in human osteoblastic cells: A potential role for CK2 and Ikaros. Nutrition. 23:745–753. 2007.

251 

Xing W, Pourteymoor S and Mohan S: Ascorbic acid regulates osterix expression in osteoblasts by activation of prolyl hydroxylase and ubiquitination-mediated proteosomal degradation pathway. Physiol Genomics. 43:749–757. 2011.

252 

Rosadi I, Indrady FT, Karina K and Hariani N: Evaluation effects of ascorbic acid leads to activate and induce osteogenic protein marker expression: In silico and in-vitro study. Biomed Res Ther. 9:4832–4841. 2022.

253 

Pustylnik S, Fiorino C, Nabavi N, Zappitelli T, da Silva R, Aubin JE and Harrison RE: EB1 levels are elevated in ascorbic Acid (AA)-stimulated osteoblasts and mediate cell-cell adhesion-induced osteoblast differentiation. J Biol Chem. 288:22096–22110. 2013.

254 

Farhadian N, Miresmaeili A, Azar R, Zargaran M, Moghimbeigi A and Soheilifar S: Effect of dietary ascorbic acid on osteogenesis of expanding midpalatal suture in rats. J Dent (Tehran). 12:39–48. 2015.

255 

Rahman F, Bordignon B, Culerrier R, Peiretti F, Spicuglia S, Djabali M, Landrier JF and Fontes M: Ascorbic acid drives the differentiation of mesoderm-derived embryonic stem cells. Involvement of p38 MAPK/CREB and SVCT2 transporter. Mol Nutr Food Res. 61:2017.

256 

Rahman F, Al Frouh F, Bordignon B, Fraterno M, Landrier JF, Peiretti F and Fontes M: Ascorbic acid is a dose-dependent inhibitor of adipocyte differentiation, probably by reducing cAMP pool. Front Cell Dev Biol. 2:292014.

257 

Takamizawa S, Maehata Y, Imai K, Senoo H, Sato S and Hata R: Effects of ascorbic acid and ascorbic acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. Cell Biol Int. 28:255–265. 2004.

258 

Mizutani A, Sugiyama I, Kuno E, Matsunaga S and Tsukagoshi N: Expression of matrix metalloproteinases during ascorbate-induced differentiation of osteoblastic MC3T3-E1 cells. J Bone Miner Res. 16:2043–2049. 2001.

259 

Thaler R, Khani F, Sturmlechner I, Dehghani SS, Denbeigh JM, Zhou X, Pichurin O, Dudakovic A, Jerez SS, Zhong J, et al: Vitamin C epigenetically controls osteogenesis and bone mineralization. Nat Commun. 13:58832022.

260 

Xiao XH, Liao EY, Zhou HD, Dai RC, Yuan LQ and Wu XP: Ascorbic acid inhibits osteoclastogenesis of RAW264.7 cells induced by receptor activated nuclear factor kappaB ligand (RANKL) in vitro. J Endocrinol Invest. 28:253–260. 2005.

261 

Takarada T, Hinoi E, Kambe Y, Sahara K, Kurokawa S, Takahata Y and Yoneda Y: Osteoblast protects osteoclast devoid of sodium-dependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid. Eur J Pharmacol. 575:1–11. 2007.

262 

Sanbe T, Tomofuji T, Ekuni D, Azuma T, Irie K, Tamaki N, Yamamoto T and Morita M: Vitamin C intake inhibits serum lipid peroxidation and osteoclast differentiation on alveolar bone in rats fed on a high-cholesterol diet. Arch Oral Biol. 54:235–240. 2009.

263 

Hie M and Tsukamoto I: Vitamin C-deficiency stimulates osteoclastogenesis with an increase in RANK expression. J Nutr Biochem. 22:164–171. 2011.

264 

Otsuka E, Kato Y, Hirose S and Hagiwara H: Role of ascorbic acid in the osteoclast formation: Induction of osteoclast differentiation factor with formation of the extracellular collagen matrix. Endocrinology. 141:3006–3011. 2000.

265 

Tsuneto M, Yamazaki H, Yoshino M, Yamada T and Hayashi S: Ascorbic acid promotes osteoclastogenesis from embryonic stem cells. Biochem Biophys Res Commun. 335:1239–1246. 2005.

266 

Ragab AA, Lavish SA, Banks MA, Goldberg VM and Greenfield EM: Osteoclast differentiation requires ascorbic acid. J Bone Miner Res. 13:970–977. 1998.

267 

Noh AL and Yim M: Beta-glycerophosphate accelerates RANKL-induced osteoclast formation in the presence of ascorbic acid. Pharmazie. 66:195–200. 2011.

268 

Le Nihouannen D, Barralet JE, Fong JE and Komarova SV: Ascorbic acid accelerates osteoclast formation and death. Bone. 46:1336–1343. 2010.

269 

Rahman S and Baumgartner M: B vitamins: Small molecules, big effects. J Inherit Metab Dis. 42:579–580. 2019.

270 

Dai Z and Koh WP: B-vitamins and bone health-a review of the current evidence. Nutrients. 7:3322–3346. 2015.

271 

Tucker KL, Hannan MT, Qiao N, Jacques PF, Selhub J, Cupples LA and Kiel DP: Low plasma vitamin B12 is associated with lower BMD: The Framingham osteoporosis study. J Bone Miner Res. 20:152–158. 2005.

272 

Pawlak R: Vitamin B12 status is a risk factor for bone fractures among vegans. Med Hypotheses. 153:1106252021.

273 

Zhang H, Tao X and Wu J: Association of homocysteine, vitamin B12, and folate with bone mineral density in postmenopausal women: A meta-analysis. Arch Gynecol Obstet. 289:1003–1009. 2014.

274 

Ouzzif Z, Oumghar K, Sbai K, Mounach A, Derouiche M and El Maghraoui A: Relation of plasma total homocysteine, folate and vitamin B12 levels to bone mineral density in Moroccan healthy postmenopausal women. Rheumatol Int. 32:123–128. 2012.

275 

Wang J, Chen L, Zhang Y, Li CG, Zhang H, Wang Q, Qi X, Qiao L, Da WW, Cui XJ, et al: Association between serum vitamin B6 concentration and risk of osteoporosis in the middle-aged and older people in China: A cross-sectional study. BMJ Open. 9:e0281292019.

276 

Dai Z, Wang R, Ang LW, Yuan JM and Koh WP: Dietary B vitamin intake and risk of hip fracture: The Singapore Chinese health study. Osteoporos Int. 24:2049–2059. 2013.

277 

Li Z, Zhang S, Wan L, Song X, Yuan D, Zhang S, Wu D and Jiang J: Vitamin B6 as a novel risk biomarker of fractured ankles. Medicine (Baltimore). 100:e274422021.

278 

Baines M, Kredan MB, Usher J, Davison A, Higgins G, Taylor W, West C, Fraser WD and Ranganath LR: The association of homocysteine and its determinants MTHFR genotype, folate, vitamin B12 and vitamin B6 with bone mineral density in postmenopausal British women. Bone. 40:730–736. 2007.

279 

Rondanelli M, Tartara A, Fossari F, Vecchio V, Faliva MA, Naso M, Perna S, Nichetti M and Peroni G: Adequate intake and supplementation of B vitamins, in particular folic acid, can play a protective role in bone health. Curr Aging Sci. 15:110–120. 2022.

280 

Clements M, Heffernan M, Ward M, Hoey L, Doherty LC, Hack Mendes R, Clarke MM, Hughes CF, Love I, Murphy S, et al: A 2-year randomized controlled trial with low-dose B-vitamin supplementation shows benefits on bone mineral density in adults with lower B12 status. J Bone Miner Res. 37:2443–2455. 2022.

281 

Kalimeri M, Leek F, Wang NX, Koh HR, Roy NC, Cameron-Smith D, Kruger MC, Henry CJ and Totman JJ: Folate and vitamin B-12 status is associated with bone mineral density and hip strength of postmenopausal Chinese-Singaporean women. JBMR Plus. 4:e103992020.

282 

Holstein JH, Herrmann M, Splett C, Herrmann W, Garcia P, Histing T, Graeber S, Ong MF, Kurz K, Siebel T, et al: Low serum folate and vitamin B6 are associated with an altered cancellous bone structure in humans. Am J Clin Nutr. 90:1440–1445. 2009.

283 

He T, Jin X, Koh YS, Zhang Q, Zhang C and Liu F: The association of homocysteine, folate, vitamin B12, and vitamin B6 with fracture incidence in older adults: A systematic review and meta-analysis. Ann Transl Med. 9:11432021.

284 

Haliloglu B, Aksungar FB, Ilter E, Peker H, Akin FT, Mutlu N and Ozekici U: Relationship between bone mineral density, bone turnover markers and homocysteine, folate and vitamin B12 levels in postmenopausal women. Arch Gynecol Obstet. 281:663–668. 2010.

285 

Haroon NN, Marwaha RK, Godbole MM and Gupta SK: Role of B12 and homocysteine status in determining BMD and bone turnover in young Indians. J Clin Densitom. 15:366–373. 2012.

286 

El Maghraoui A, Ghozlani I, Mounach A, Rezqi A, Oumghar K, Achemlal L, Bezza A and Ouzzif Z: Homocysteine, folate, and vitamin B12 levels and vertebral fracture risk in postmenopausal women. J Clin Densitom. 15:328–333. 2012.

287 

Keser I, Ilich JZ, Vrkić N, Giljević Z and Colić Barić I: Folic acid and vitamin B(12) supplementation lowers plasma homocysteine but has no effect on serum bone turnover markers in elderly women: A randomized, double-blind, placebo-controlled trial. Nutr Res. 33:211–219. 2013.

288 

Oliai Araghi S, Kiefte-de Jong JC, van Dijk SC, Swart KMA, Ploegmakers KJ, Zillikens MC, van Schoor NM, de Groot LCPGM, Lips P, Stricker BH, et al: Long-term effects of folic acid and vitamin-B12 supplementation on fracture risk and cardiovascular disease: Extended follow-up of the B-PROOF trial. Clin Nutr. 40:1199–1206. 2021.

289 

Enneman AW, Swart KM, van Wijngaarden JP, van Dijk SC, Ham AC, Brouwer-Brolsma EM, van der Zwaluw NL, Dhonukshe-Rutten RA, van der Cammen TJ, de Groot LC, et al: Effect of vitamin B12 and folic acid supplementation on bone mineral density and quantitative ultrasound parameters in older people with an elevated plasma homocysteine level: B-PROOF, a randomized controlled trial. Calcif Tissue Int. 96:401–409. 2015.

290 

Stone KL, Lui LY, Christen WG, Troen AM, Bauer DC, Kado D, Schambach C, Cummings SR and Manson JE: Effect of combination folic acid, vitamin B6, and vitamin B12 supplementation on fracture risk in women: A randomized, controlled trial. J Bone Miner Res. 32:2331–2338. 2017.

291 

Ahn TK, Kim JO, An HJ, Park HS, Choi UY, Sohn S, Kim KT, Kim NK and Han IB: 3'-UTR polymorphisms of vitamin B-related genes are associated with osteoporosis and osteoporotic vertebral compression fractures (OVCFs) in postmenopausal women. Genes (Basel). 11:6122020.

292 

Liu CT, Karasik D, Xu H, Zhou Y, Broe K, Cupples LA, Cpgm de Groot L, Ham A, Hannan MT, Hsu YH, et al: Genetic variants modify the associations of concentrations of methylmalonic acid, vitamin B-12, vitamin B-6, and folate with bone mineral density. Am J Clin Nutr. 114:578–587. 2021.

293 

He H, Zhang Y, Sun Y, Zhang Y, Xu J, Yang Y and Chen J: Folic acid attenuates high-fat diet-induced osteoporosis through the AMPK signaling pathway. Front Cell Dev Biol. 9:7918802022.

294 

Cai H, Lin L, Wang G, Berman Z, Yang X and Cheng X: Folic acid rescues corticosteroid-induced vertebral malformations in chick embryos through targeting TGF-β signaling. J Cell Physiol. 235:8626–8639. 2020.

295 

Mohammadi A, Omrani L, Omrani LR, Kiani F, Eshraghian A, Azizi Z and Omrani GR: Protective effect of folic acid on cyclosporine-induced bone loss in rats. Transpl Int. 25:127–133. 2012.

296 

Su S, Zhang D, Liu J, Zhao H, Tang X, Che H, Wang Q, Ren W and Zhen D: Folate ameliorates homocysteine-induced osteoblast dysfunction by reducing endoplasmic reticulum stress-activated PERK/ATF-4/CHOP pathway in MC3T3-E1 cells. J Bone Miner Metab. 40:422–433. 2022.

297 

Santos C, Gomes P, Duarte JA, Almeida MM, Costa MEV and Fernandes MH: Development of hydroxyapatite nanoparticles loaded with folic acid to induce osteoblastic differentiation. Int J Pharm. 516:185–195. 2017.

298 

Huot PS, Dodington DW, Mollard RC, Reza-López SA, Sánchez-Hernández D, Cho CE, Kuk J, Ward WE and Anderson GH: High folic acid intake during pregnancy lowers body weight and reduces femoral area and strength in female rat offspring. J Osteoporos. 2013:1541092013.

299 

Singh P, Telnova S, Zhou B, Mohamed AD, Mello V, Wackerhage H, Guo XE, Panda AK and Yadav VK: Maternal vitamin B12 in mice positively regulates bone, but not muscle mass and strength in post-weaning and mature offspring. Am J Physiol Regul Integr Comp Physiol. 320:R984–R993. 2021.

300 

Roman-Garcia P, Quiros-Gonzalez I, Mottram L, Lieben L, Sharan K, Wangwiwatsin A, Tubio J, Lewis K, Wilkinson D, Santhanam B, et al: Vitamin B12-dependent taurine synthesis regulates growth and bone mass. J Clin Invest. 124:2988–3002. 2014.

301 

Vaes BLT, Lute C, Blom HJ, Bravenboer N, de Vries TJ, Everts V, Dhonukshe-Rutten RA, Müller M, de Groot LCPGM and Steegenga WT: Vitamin B(12) deficiency stimulates osteoclastogenesis via increased homocysteine and methylmalonic acid. Calcif Tissue Int. 84:413–422. 2009.

302 

Herrmann M, Widmann T, Colaianni G, Colucci S, Zallone A and Herrmann W: Increased osteoclast activity in the presence of increased homocysteine concentrations. Clin Chem. 51:2348–2353. 2005.

303 

Shiga T, Kimira Y, Mano H, Kawata T, Tadokoro T, Suzuki T and Yamamoto Y: Vitamin B12 deficiency-induced increase of osteoclastic bone resorption caused by abnormal renal resorption of inorganic phosphorus via Napi2a. Biosci Biotechnol Biochem. 80:510–513. 2016.

304 

Massé PG, Delvin EE, Hauschka PV, Donovan SM, Grynpas MD, Mahuren JD, Watkins BA and Howell DS: Perturbations in factors that modulate osteoblast functions in vitamin B6 deficiency. Can J Physiol Pharmacol. 78:904–911. 2000.

305 

Narisawa S, Wennberg C and Millán JL: Abnormal vitamin B6 metabolism in alkaline phosphatase knock-out mice causes multiple abnormalities, but not the impaired bone mineralization. J Pathol. 193:125–133. 2001.

306 

Ma Q, Liang M, Tang X, Luo F and Dou C: Vitamin B5 inhibit RANKL induced osteoclastogenesis and ovariectomy induced osteoporosis by scavenging ROS generation. Am J Transl Res. 11:5008–5018. 2019.

307 

Cicek B, Hacimuftuoglu A, Yeni Y, Danisman B, Ozkaraca M, Mokhtare B, Kantarci M, Spanakis M, Nikitovic D, Lazopoulos G, et al: Chlorogenic acid attenuates doxorubicin-induced oxidative stress and marks of apoptosis in cardiomyocytes via Nrf2/HO-1 and dityrosine signaling. J Pers Med. 13:6492023.

308 

Ma Q, Liang M, Wang Y, Ding N, Wu Y, Duan L, Yu T, Lu Y, Xu J, Kang F and Dou C: Non-coenzyme role of vitamin B1 in RANKL-induced osteoclastogenesis and ovariectomy induced osteoporosis. J Cell Biochem. 121:3526–3536. 2020.

309 

Herrmann M, Schmidt J, Umanskaya N, Colaianni G, Al Marrawi F, Widmann T, Zallone A, Wildemann B and Herrmann W: Stimulation of osteoclast activity by low B-vitamin concentrations. Bone. 41:584–591. 2007.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Skalny AV, Aschner M, Tsatsakis A, Rocha JB, Santamaria A, Spandidos DA, Martins AC, Lu R, Korobeinikova TV, Chen W, Chen W, et al: Role of vitamins beyond vitamin D<sub>3</sub> in bone health and osteoporosis (Review). Int J Mol Med 53: 9, 2024.
APA
Skalny, A.V., Aschner, M., Tsatsakis, A., Rocha, J.B., Santamaria, A., Spandidos, D.A. ... Tinkov, A.A. (2024). Role of vitamins beyond vitamin D<sub>3</sub> in bone health and osteoporosis (Review). International Journal of Molecular Medicine, 53, 9. https://doi.org/10.3892/ijmm.2023.5333
MLA
Skalny, A. V., Aschner, M., Tsatsakis, A., Rocha, J. B., Santamaria, A., Spandidos, D. A., Martins, A. C., Lu, R., Korobeinikova, T. V., Chen, W., Chang, J., Chao, J. C., Li, C., Tinkov, A. A."Role of vitamins beyond vitamin D<sub>3</sub> in bone health and osteoporosis (Review)". International Journal of Molecular Medicine 53.1 (2024): 9.
Chicago
Skalny, A. V., Aschner, M., Tsatsakis, A., Rocha, J. B., Santamaria, A., Spandidos, D. A., Martins, A. C., Lu, R., Korobeinikova, T. V., Chen, W., Chang, J., Chao, J. C., Li, C., Tinkov, A. A."Role of vitamins beyond vitamin D<sub>3</sub> in bone health and osteoporosis (Review)". International Journal of Molecular Medicine 53, no. 1 (2024): 9. https://doi.org/10.3892/ijmm.2023.5333
Copy and paste a formatted citation
x
Spandidos Publications style
Skalny AV, Aschner M, Tsatsakis A, Rocha JB, Santamaria A, Spandidos DA, Martins AC, Lu R, Korobeinikova TV, Chen W, Chen W, et al: Role of vitamins beyond vitamin D<sub>3</sub> in bone health and osteoporosis (Review). Int J Mol Med 53: 9, 2024.
APA
Skalny, A.V., Aschner, M., Tsatsakis, A., Rocha, J.B., Santamaria, A., Spandidos, D.A. ... Tinkov, A.A. (2024). Role of vitamins beyond vitamin D<sub>3</sub> in bone health and osteoporosis (Review). International Journal of Molecular Medicine, 53, 9. https://doi.org/10.3892/ijmm.2023.5333
MLA
Skalny, A. V., Aschner, M., Tsatsakis, A., Rocha, J. B., Santamaria, A., Spandidos, D. A., Martins, A. C., Lu, R., Korobeinikova, T. V., Chen, W., Chang, J., Chao, J. C., Li, C., Tinkov, A. A."Role of vitamins beyond vitamin D<sub>3</sub> in bone health and osteoporosis (Review)". International Journal of Molecular Medicine 53.1 (2024): 9.
Chicago
Skalny, A. V., Aschner, M., Tsatsakis, A., Rocha, J. B., Santamaria, A., Spandidos, D. A., Martins, A. C., Lu, R., Korobeinikova, T. V., Chen, W., Chang, J., Chao, J. C., Li, C., Tinkov, A. A."Role of vitamins beyond vitamin D<sub>3</sub> in bone health and osteoporosis (Review)". International Journal of Molecular Medicine 53, no. 1 (2024): 9. https://doi.org/10.3892/ijmm.2023.5333
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team