Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2024 Volume 53 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2024 Volume 53 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review)

  • Authors:
    • Miaomiao Xu
    • Ying Cui
    • Siyuan Wei
    • Xuelong Cong
    • Yiying Chen
    • Shujie Tian
    • Anqi Yao
    • Weiwei Chen
    • Lixing Weng
  • View Affiliations / Copyright

    Affiliations: School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China, State Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P.R. China, RDFZ Chaoyang Branch School, Beijing 100028, P.R. China
    Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 13
    |
    Published online on: December 6, 2023
       https://doi.org/10.3892/ijmm.2023.5337
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Macrophages, as highly heterogeneous and plastic immune cells, occupy a pivotal role in both pro‑inflammatory (M1) and anti‑inflammatory (M2) responses. While M1‑type macrophages secrete pro‑inflammatory factors to initiate and sustain inflammation, M2‑type macrophages promote inflammation regression and uphold tissue homeostasis. These distinct phenotypic transitions in macrophages are closely linked to significant alterations in cellular metabolism, encompassing key response pathways such as glycolysis, pentose phosphate pathway, oxidative phosphorylation, lipid metabolism, amino acid metabolism, the tricarboxylic acid cycle and iron metabolism. These metabolic adaptations enable macrophages to adapt their activities in response to varying disease microenvironments. Therefore, the present review focused primarily on elucidating the intricate metabolic pathways that underlie macrophage functionality. Subsequently, it offers a comprehensive overview of the current state‑of‑the‑art nanomaterials, highlighting their promising potential in modulating macrophage metabolism to effectively hinder disease progression in both cancer and atherosclerosis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

View References

1 

Yunna C, Mengru H, Lei W and Weidong C: Macrophage M1/M2 polarization. Eur J Pharmacol. 877:1730902020. View Article : Google Scholar : PubMed/NCBI

2 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Murray PJ and Wynn TAJ: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 11:723–737. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Juhas U, Ryba-Stanisławowska M, Szargiej P and Myśliwska J: Different pathways of macrophage activation and polarization. Postepy Hig Med Dosw (Online). 69:496–502. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Wang T and He C: Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 44:38–50. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S and Bank RA: Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal. 11:292013. View Article : Google Scholar

8 

Tu Z, Chen M, Wang M, Shao Z, Jiang X, Wang K, Yao Z, Yang S, Zhang X, Gao W, et al: Engineering bioactive M2 macrophage-polarized anti-inflammatory, antioxidant, and antibacterial scaffolds for rapid angiogenesis and diabetic wound repair. Adv Funct Mater. 31:21009242021. View Article : Google Scholar

9 

Yin C, Zhao Q, Li W, Zhao Z, Wang J, Deng T, Zhang P, Shen K, Li Z and Zhang Y: Biomimetic anti-inflammatory nano-capsule serves as a cytokine blocker and M2 polarization inducer for bone tissue repair. Acta Biomater. 102:416–426. 2020. View Article : Google Scholar

10 

Kim J: Regulation of immune cell functions by metabolic reprogramming. J Immunol Res. 2018:86054712018. View Article : Google Scholar : PubMed/NCBI

11 

Wang M, Chen F, Tang Y, Wang J, Chen X, Li X and Zhang X: Regulation of macrophage polarization and functional status by modulating hydroxyapatite ceramic micro/nano-topography. Mater Des. 213:1103022022. View Article : Google Scholar

12 

O'Neill LAJ and Hardie DG: Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 493:346–355. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Tu B, Gao Y, Sun F, Shi M and Huang Y: Lipid metabolism regulation based on nanotechnology for enhancement of tumor immunity. Front Pharmacol. 13:8404402022. View Article : Google Scholar : PubMed/NCBI

14 

Lin L, Chen H, Zhao R, Zhu M and Nie G: Nanomedicine targets iron metabolism for cancer therapy. Cancer Sci. 113:828–837. 2022. View Article : Google Scholar :

15 

Lin X, Xiao Z, Chen T, Liang SH and Guo H: Glucose metabolism on tumor plasticity diagnosis, and treatment. Front Oncol. 10:3172020. View Article : Google Scholar

16 

Prasad CP, Gogia A and Batra AJC: Essential role of aerobic glycolysis in epithelial-to-mesenchymal transition during carcinogenesis. Clin Transl Oncol. 24:1844–1855. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Yang B and Shi J: Chemistry of advanced nanomedicines in cancer cell metabolism regulation. Adv Sci (Weinh). 7:20013882020. View Article : Google Scholar : PubMed/NCBI

18 

Garedew A, Henderson SO and Moncada S: Activated macrophages utilize glycolytic ATP to maintain mitochondrial membrane potential and prevent apoptotic cell death. Cell Death Differ. 17:1540–1550. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Galván-Peña S and O'Neill LAJ: Metabolic reprograming in macrophage polarization. Front Immunol. 5:4202014.PubMed/NCBI

20 

Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G, Liu R, Gao H, Tao B, Li W, et al: Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell. 71:201–215.e7. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Bailey JD, Diotallevi M, Nicol T, McNeill E, Shaw A, Chuaiphichai S, Hale A, Starr A, Nandi M, Stylianou E, et al: Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 28:218–230.e7. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Na YR, Je S and Seok SH: Metabolic features of macrophages in inflammatory diseases and cancer. Cancer Lett. 413:46–58. 2018. View Article : Google Scholar

23 

Wang J, Yang P, Yu T, Gao M, Liu D, Zhang J, Lu C, Chen X, Zhang X and Liu Y: Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int J Biol Sci. 18:6210–6225. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Yang K, Xu J, Fan M, Tu F, Wang X, Ha T, Williams DL and Li C: Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling. Front Immunol. 11:5879132020. View Article : Google Scholar

25 

Wang F, Zhang S, Vuckovic I, Jeon R, Lerman A, Folmes CD, Dzeja PP and Herrmann J: Glycolytic stimulation is not a requirement for M2 macrophage differentiation. Cell Metab. 28:463–475.e4. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Wang T, Liu H, Lian G, Zhang SY, Wang X and Jiang C: HIF1α-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediators Inflamm. 2017:90293272017. View Article : Google Scholar

27 

Zhihua Y, Yulin T, Yibo W, Wei D, Yin C, Jiahao X, Runqiu J and Xuezhong X: Hypoxia decreases macrophage glycolysis and M1 percentage by targeting microRNA-30c and mTOR in human gastric cancer. Cancer Sci. 110:2368–2377. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Everts B, Amiel E, Huang SCC, Smith AM, Chang CH, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJ, et al: TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat Immunol. 15:323–332. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Im SS, Yousef L, Blaschitz C, Liu JZ, Edwards RA, Young SG, Raffatellu M and Osborne TF: Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13:540–549. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Gordon S: Phagocytosis: An immunobiologic process. Immunity. 44:463–475. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Cader MZ, Boroviak K, Zhang Q, Assadi G, Kempster SL, Sewell GW, Saveljeva S, Ashcroft JW, Clare S, Mukhopadhyay S, et al: C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat Immunol. 17:1046–1056. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Nomura M, Liu J, Rovira II, Gonzalez-Hurtado E, Lee J, Wolfgang MJ and Finkel T: Fatty acid oxidation in macrophage polarization. Nat Immunol. 17:216–217. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Schönfeld P and Wojtczak L: Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J Lipid Res. 57:943–954. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Coniglio S, Shumskaya M and Vassiliou E: Unsaturated fatty acids and their immunomodulatory properties. Biology (Basel). 12:2792023.PubMed/NCBI

35 

Deng Y, Li W, Zhang Y, Li J, He F, Dong K, Hong Z, Luo R and Pei X: α-Linolenic acid inhibits RANKL-induced osteoclastogenesis in vitro and prevents inflammation in vivo. Foods. 12:6822023. View Article : Google Scholar

36 

Laval T, Chaumont L and Demangel C: Not too fat to fight: The emerging role of macrophage fatty acid metabolism in immunity to Mycobacterium tuberculosis. Immunol Rev. 301:84–97. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Suzuki M, Takaishi S, Nagasaki M, Onozawa Y, Iino I, Maeda H, Komai T and Oda T: Medium-chain fatty acid-sensing receptor, GPR84, is a proinflammatory receptor. J Biol Chem. 288:10684–10691. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Wang J, Wu X, Simonavicius N, Tian H and Ling L: Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem. 281:34457–34464. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Hidalgo MA, Carretta MD and Burgos RA: Long chain fatty acids as modulators of immune cells function: Contribution of FFA1 and FFA4 receptors. Front Physiol. 12:6683302021. View Article : Google Scholar : PubMed/NCBI

40 

Forsman H, Dahlgren C, Mårtensson J, Björkman L and Sundqvist M: Function and regulation of GPR84 in human neutrophils. Br J Pharmacol. Mar 4–2023.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

41 

Danielski LG, Giustina AD, Bonfante S, Barichello T and Petronilho F: The NLRP3 inflammasome and its role in sepsis development. Inflammation. 43:24–31. 2020. View Article : Google Scholar

42 

Kuhajda FP: Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition. 16:202–208. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Moon JS, Lee S, Park MA, Siempos II, Haslip M, Lee PJ, Yun M, Kim CK, Howrylak J, Ryter SW, et al: UCP2-induced fatty acid synthase promotes NLRP3 inflammasome activation during sepsis. J Clin Invest. 125:665–680. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Namgaladze D and Brüne B: Fatty acid oxidation is dispensable for human macrophage IL-4-induced polarization. Biochim Biophys Acta. 1841:1329–1335. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Zhu L, Zhao Q, Yang T, Ding W and Zhao Y: Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 34:82–100. 2015. View Article : Google Scholar

46 

Hohensinner PJ, Lenz M, Haider P, Mayer J, Richter M, Kaun C, Goederle L, Brekalo M, Salzmann M, Sharma S, et al: Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation. Biochem Pharmacol. 190:1146342021. View Article : Google Scholar : PubMed/NCBI

47 

Sola-García A, Cáliz-Molina MÁ, Espadas I, Petr M, Panadero-Morón C, González-Morán D, Martín-Vázquez ME, Narbona-Pérez ÁJ, López-Noriega L, Martínez-Corrales G, et al: Metabolic reprogramming by Acly inhibition using SB-204990 alters glucoregulation and modulates molecular mechanisms associated with aging. Commun Biol. 6:2502023. View Article : Google Scholar : PubMed/NCBI

48 

Luo J, Yang H and Song BL: Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 21:225–245. 2020. View Article : Google Scholar

49 

Guo H, Callaway JB and Ting JP: Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med. 21:677–687. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Zhou QD, Chi X, Lee MS, Hsieh WY, Mkrtchyan JJ, Feng AC, He C, York AG, Bui VL, Kronenberger EB, et al: Interferon-mediated reprogramming of membrane cholesterol to evade bacterial toxins. Nat Immunol. 21:746–755. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Zhao J, Chen J, Li M, Chen M and Sun C: Multifaceted functions of CH25H and 25HC to modulate the lipid metabolism, immune responses, and broadly antiviral activities. Viruses. 12:7272020. View Article : Google Scholar : PubMed/NCBI

52 

Platanias LC: Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol. 5:375–386. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Hsieh WY, Zhou QD, York AG, Williams KJ, Scumpia PO, Kronenberger EB, Hoi XP, Su B, Chi X, Bui VL, et al: Toll-like receptors induce signal-specific reprogramming of the macrophage lipidome. Cell Metab. 32:128–143.e5. 2020. View Article : Google Scholar : PubMed/NCBI

54 

York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L, Gray EE, Zhen A, Wu NC, Yamada DH, et al: Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell. 163:1716–1729. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Kieler M, Hofmann M and Schabbauer G: More than just protein building blocks: How amino acids and related metabolic pathways fuel macrophage polarization. FEBS J. 288:3694–3714. 2021. View Article : Google Scholar : PubMed/NCBI

56 

Yuan P, Hu X and Zhou Q: The nanomaterial-induced bystander effects reprogrammed macrophage immune function and metabolic profile. Nanotoxicology. 14:1137–1155. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Puchalska P, Huang X, Martin SE, Han X, Patti GJ and Crawford PA: Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments. Science. 9:298–313. 2018.

58 

O'Neill LA, Kishton RJ and Rathmell J: A guide to immunometabolism for immunologists. Nat Rev Immunol. 16:553–565. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, Shirey KA, Reutterer B, Kernbauer E, Stockinger S, et al: Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe. 12:313–323. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Yue Y, Huang W, Liang J, Guo J, Ji J, Yao Y, Zheng M, Cai Z, Lu L and Wang J: IL4I1 is a novel regulator of M2 macrophage polarization that can inhibit T cell activation via L-tryptophan and arginine depletion and IL-10 production. PLoS One. 10:e01429792015. View Article : Google Scholar : PubMed/NCBI

61 

Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, et al: An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 478:197–203. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Huang SCC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD and Pearce EJ: Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity. 45:817–830. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, Wang J, Ben-Sahra I, Byles V, Polynne-Stapornkul T, et al: Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation. Elife. 5:e116122016. View Article : Google Scholar : PubMed/NCBI

64 

Liu PS, Wang H, Li X, Chao T, Teav T, Christen S, Di Conza G, Cheng WC, Chou CH, Vavakova M, et al: α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 18:985–994. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Zhou W, Hu G, He J, Wang T, Zuo Y, Cao Y, Zheng Q, Tu J, Ma J, Cai R, et al: SENP1-Sirt3 signaling promotes α-ketoglutarate production during M2 macrophage polarization. Cell Rep. 39:1106602022. View Article : Google Scholar

66 

Palmieri EM, Menga A, Martín-Pérez R, Quinto A, Riera-Domingo C, De Tullio G, Hooper DC, Lamers WH, Ghesquière B, McVicar DW, et al: Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis. Cell Rep. 20:1654–1666. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Mazzone M, Menga A and Castegna A: Metabolism and TAM functions-it takes two to tango. FEBS J. 285:700–716. 2018. View Article : Google Scholar

68 

Ryan DG and O'Neill LAJ: Krebs cycle reborn in macrophage immunometabolism. Annu Rev Immunol. 38:289–313. 2020. View Article : Google Scholar : PubMed/NCBI

69 

McGettrick AF and O'Neill LAJ: How metabolism generates signals during innate immunity and inflammation. J Biol Chem. 288:22893–22898. 2013. View Article : Google Scholar : PubMed/NCBI

70 

O'Neill LAJ: A broken krebs cycle in macrophages. Immunity. 42:393–394. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Jha AK, Huang SCC, Sergushichev A, Lampropoulou V, Ivanova Y, Loginicheva E, Chmielewski K, Stewart KM, Ashall J, Everts B, et al: Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity. 42:419–430. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Infantino V, Pierri CL and Iacobazzi V: Metabolic routes in inflammation: The citrate pathway and its potential as therapeutic target. Curr Med Chem. 26:7104–7116. 2019. View Article : Google Scholar

73 

Infantino V, Iacobazzi V, Palmieri F and Menga A: ATP-citrate lyase is essential for macrophage inflammatory response. Biochem Biophys Res Commun. 440:105–111. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Tannahill G, Curtis A, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, et al: Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 496:238–242. 2013. View Article : Google Scholar : PubMed/NCBI

75 

He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H and Ling L: Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 429:188–193. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Toma I, Kang JJ, Sipos A, Vargas S, Bansal E, Hanner F, Meer E and Peti-Peterdi J: Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Invest. 118:2526–2534. 2008.PubMed/NCBI

77 

Peti-Peterdi J, Kang JJ and Toma I: Activation of the renal renin-angiotensin system in diabetes-new concepts. Nephrol Dial Transplant. 23:3047–3049. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Sadagopan N, Li W, Roberds SL, Major T, Preston GM, Yu Y and Tones MA: Circulating succinate is elevated in rodent models of hypertension and metabolic disease. Am J Hypertens. 20:1209–1215. 2007.PubMed/NCBI

79 

Macaulay IC, Tijssen MR, Thijssen-Timmer DC, Gusnanto A, Steward M, Burns P, Langford CF, Ellis PD, Dudbridge F, Zwaginga JJ, et al: Comparative gene expression profiling of in vitro differentiated megakaryocytes and erythroblasts identifies novel activatory and inhibitory platelet membrane proteins. Blood. 109:3260–3269. 2007. View Article : Google Scholar

80 

Wu JY, Huang TW, Hsieh YT, Wang YF, Yen CC, Lee GL, Yeh CC, Peng YJ, Kuo YY, Wen HT, et al: Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Mol Cell. 77:213–227.e5. 2020. View Article : Google Scholar

81 

Wunderer F, Traeger L, Sigurslid HH, Meybohm P, Bloch DB and Malhotra R: The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacol Res. 153:1046642020. View Article : Google Scholar : PubMed/NCBI

82 

Xia Y, Li Y, Wu X, Zhang Q, Chen S, Ma X and Yu M: Ironing out the details: How iron orchestrates macrophage polarization. Front Immunol. 12:6695662021. View Article : Google Scholar : PubMed/NCBI

83 

Liang G, Sakamoto A, Cornelissen A, Hong CC and Finn AV: Ironing-out the role of hepcidin in atherosclerosis. Arterioscler Thromb Vasc Biol. 39:303–305. 2019. View Article : Google Scholar

84 

Marques L, Negre-Salvayre A, Costa L and Canonne-Hergaux F: Iron gene expression profile in atherogenic Mox macrophages. Biochim Biophys Acta. 1862:1137–1146. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Handa P, Thomas S, Morgan-Stevenson V, Maliken BD, Gochanour E, Boukhar S, Yeh MM and Kowdley KV: Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis. J Leukoc Biol. 105:1015–1026. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Hu X, Cai X, Ma R, Fu W, Zhang C and Du X: Iron-load exacerbates the severity of atherosclerosis via inducing inflammation and enhancing the glycolysis in macrophages. J Cell Physiol. 234:18792–18800. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Zhou Y, Que KT, Zhang Z, Yi ZJ, Zhao PX, You Y, Gong JP and Liu ZJ: Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med. 7:4012–4022. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Wang CY and Babitt JL: Hepcidin regulation in the anemia of inflammation. Curr Opin Hematol. 23:189–197. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Kanamori Y, Murakami M, Matsui T and Funaba M: JNK facilitates IL-1β-induced hepcidin transcription via JunB activation. Cytokine. 111:295–302. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Kanamori Y, Murakami M, Sugiyama M, Hashimoto O, Matsui T and Funaba M: Hepcidin and IL-1β. Vitam Horm. 110:143–156. 2019. View Article : Google Scholar

91 

Zhang Z, Zhang F, An P, Guo X, Shen Y, Tao Y, Wu Q, Zhang Y, Yu Y, Ning B, et al: Ferroportin1 deficiency in mouse macrophages impairs iron homeostasis and inflammatory responses. Blood. 118:1912–1922. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Jiang L, Zheng H, Lyu Q, Hayashi S, Sato K, Sekido Y, Nakamura K, Tanaka H, Ishikawa K, Kajiyama H, et al: Lysosomal nitric oxide determines transition from autophagy to ferroptosis after exposure to plasma-activated Ringer's lactate. Redox Biol. 43:1019892021. View Article : Google Scholar : PubMed/NCBI

93 

Krümmel B, Plötz T, Jörns A, Lenzen S and Mehmeti I: The central role of glutathione peroxidase 4 in the regulation of ferroptosis and its implications for pro-inflammatory cytokine-mediated beta-cell death. Biochim Biophys Acta Mol Basis Dis. 1867:1661142021. View Article : Google Scholar : PubMed/NCBI

94 

de Goede KE, Driessen AJM and Van den Bossche J: Metabolic cancer-macrophage crosstalk in the tumor microenvironment. Biology (Basel). 9:3802020.PubMed/NCBI

95 

Ling J, Chang Y, Yuan Z, Chen Q, He L and Chen T: Designing lactate dehydrogenase-mimicking SnSe nanosheets to reprogram tumor-associated macrophages for potentiation of photothermal immunotherapy. ACS Appl Mater Interfaces. 14:27651–27665. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, Oh JM, Gwak SH, Yoo MY, Lee MS, et al: Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79:795–806. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Lin Y, Xu J and Lan H: Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol. 12:762019. View Article : Google Scholar : PubMed/NCBI

98 

Liu D, Chang C, Lu N, Wang X, Lu Q, Ren X, Ren P, Zhao D, Wang L, Zhu Y, et al: Comprehensive proteomics analysis reveals metabolic reprogramming of tumor-associated macrophages stimulated by the tumor microenvironment. J Proteome Res. 16:288–297. 2017. View Article : Google Scholar

99 

Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371.e9. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Goswami KK, Banerjee S, Bose A and Baral R: Lactic acid in alternative polarization and function of macrophages in tumor microenvironment. Hum Immunoll. 83:409–417. 2022. View Article : Google Scholar

101 

Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, et al: Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 513:559–563. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Chiu DKC, Xu IMJ, Lai RKH, Tse AP, Wei LL, Koh HY, Li LL, Lee D, Lo RC, Wong CM, et al: Hypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26. Hepatology. 64:797–813. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Xu Y, Lu J, Tang Y, Xie W, Zhang H, Wang B, Zhang S, Hou W, Zou C, Jiang P and Zhang W: PINK1 deficiency in gastric cancer compromises mitophagy, promotes the Warburg effect, and facilitates M2 polarization of macrophages. Cancer Lett. 529:19–36. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Zhang D, Tang Z, Huang H, Zhou G, Cui C, Weng Y, Liu W, Kim S, Lee S, Perez-Neut M, et al: Metabolic regulation of gene expression by histone lactylation. Nature. 574:575–580. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Locatelli SL, Careddu G, Serio S, Consonni FM, Maeda A, Viswanadha S, Vakkalanka S, Castagna L, Santoro A, Allavena P, et al: Targeting cancer cells and tumor microenvironment in preclinical and clinical models of hodgkin lymphoma using the dual PI3Kδ/γ inhibitor RP6530. Clin Cancer Res. 25:1098–1112. 2019. View Article : Google Scholar

106 

Ohashi T, Aoki M, Tomita H, Akazawa T, Sato K, Kuze B, Mizuta K, Hara A, Nagaoka H, Inoue N and Ito Y: M2-like macrophage polarization in high lactic acid-producing head and neck cancer. Cancer Sci. 108:1128–1134. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Kumar V: Targeting macrophage immunometabolism: Dawn in the darkness of sepsis. Int Immunopharmacol. 58:173–185. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Kanmani P and Kim H: Protective effects of lactic acid bacteria against TLR4 induced inflammatory response in hepatoma HepG2 cells through modulation of toll-like receptor negative regulators of mitogen-activated protein kinase and NF-κB signaling. Front Immunol. 9:15372018. View Article : Google Scholar

109 

Feng R, Morine Y, Ikemoto T, Imura S, Iwahashi S, Saito Y and Shimada M: Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction. Cell Commun Signal. 16:542018. View Article : Google Scholar : PubMed/NCBI

110 

Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Carmona-Fontaine C, Deforet M, Akkari L, Thompson CB, Joyce JA and Xavier JB: Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci USA. 114:2934–2939. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Li K, Lin C, He Y, Lu L, Xu K, Tao B, Xia Z, Zeng R, Mao Y, Luo Z and Cai K: Engineering of cascade-responsive nanoplatform to inhibit lactate efflux for enhanced tumor chemo-immunotherapy. ACS Nano. 14:14164–14180. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Choi H, Yeo M, Kang Y, Kim HJ, Park SG, Jang E, Park SH, Kim E and Kang S: Lactate oxidase/catalase-displaying nanoparticles efficiently consume lactate in the tumor microenvironment to effectively suppress tumor growth. J Nanobiotechnology. 21:52023. View Article : Google Scholar : PubMed/NCBI

114 

Wang H, Wu C, Tong X and Chen S: A biomimetic metal-organic framework nanosystem modulates immunosuppressive tumor microenvironment metabolism to amplify immunotherapy. J Control Release. 353:727–737. 2023. View Article : Google Scholar

115 

Zhao S, Li H, Liu R, Tao N, Deng L, Xu Q, Hou J, Sheng J, Zheng J, Wang L, et al: Nitrogen-centered lactate oxidase nanozyme for tumor lactate modulation and microenvironment remodeling. J Am Chem Soc. 145:10322–10332. 2023. View Article : Google Scholar : PubMed/NCBI

116 

Yang X, Zhao M, Wu Z, Chen C, Zhang Y, Wang L, Guo Q, Wang Q, Liang S, Hu S, et al: Nano-ultrasonic contrast agent for chemoimmunotherapy of breast cancer by immune metabolism reprogramming and tumor autophagy. ACS Nano. 16:3417–3431. 2022. View Article : Google Scholar : PubMed/NCBI

117 

Wu H, Han Y, Rodriguez Sillke Y, Deng H, Siddiqui S, Treese C, Schmidt F, Friedrich M, Keye J, Wan J, et al: Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 11:e106982019. View Article : Google Scholar : PubMed/NCBI

118 

Wu L, Zhang X, Zheng L, Zhao H, Yan G, Zhang Q, Zhou Y, Lei J, Zhang J, Wang J, et al: RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res. 8:710–721. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Niu Z, Shi Q, Zhang W, Shu Y, Yang N, Chen B, Wang Q, Zhao X, Chen J, Cheng N, et al: Caspase-1 cleaves PPARγ for potentiating the pro-tumor action of TAMs. Nat Commun. 8:7662017. View Article : Google Scholar

120 

Di Conza G, Tsai CH, Gallart-Ayala H, Yu YR, Franco F, Zaffalon L, Xie X, Li X, Xiao Z, Raines LN, et al: Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat Immunol. 22:1403–1415. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Bidault G, Virtue S, Petkevicius K, Jolin HE, Dugourd A, Guénantin AC, Leggat J, Mahler-Araujo B, Lam BYH, Ma MK, et al: SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation. Nat Metab. 3:1150–1162. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Zhao Q, Lin X and Wang G: Targeting SREBP-1-mediated lipogenesis as potential strategies for cancer. Front Oncol. 12:9523712022. View Article : Google Scholar : PubMed/NCBI

123 

Zhang T, Guo Z, Huo X, Gong Y, Li C, Huang J, Wang Y, Feng H, Ma X, Jiang C, et al: Dysregulated lipid metabolism blunts the sensitivity of cancer cells to EZH2 inhibitor. EBioMedicine. 77:1038722022. View Article : Google Scholar : PubMed/NCBI

124 

Chen M and Huang J: The expanded role of fatty acid metabolism in cancer: New aspects and targets. Precis Clin Med. 2:183–191. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Xiang W, Shi R, Kang X, Zhang X, Chen P, Zhang L, Hou A, Wang R, Zhao Y, Zhao K, et al: Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun. 9:25742018. View Article : Google Scholar : PubMed/NCBI

126 

Jiang M, Li X, Zhang J, Lu Y, Shi Y, Zhu C, Liu Y, Qin B, Luo Z, Du Y, et al: Dual inhibition of endoplasmic reticulum stress and oxidation stress manipulates the polarization of macrophages under hypoxia to sensitize immunotherapy. ACS Nano. 15:14522–14534. 2021. View Article : Google Scholar : PubMed/NCBI

127 

Hou L, Gong X, Yang J, Zhang H, Yang W and Chen X: Hybrid-membrane-decorated prussian blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Adv Mater. 34:22003892022. View Article : Google Scholar

128 

Yang Z, Luo Y, Yu H, Liang K, Wang M, Wang Q, Yin B and Chen H: Reshaping the tumor immune microenvironment based on a light-activated nanoplatform for efficient cancer therapy. Adv Mater. 34:21089082022. View Article : Google Scholar

129 

Costa da Silva M, Breckwoldt MO, Vinchi F, Correia MP, Stojanovic A, Thielmann CM, Meister M, Muley T, Warth A, Platten M, et al: Iron induces anti-tumor activity in tumor-associated macrophages. Front Immunol. 8:14792017. View Article : Google Scholar : PubMed/NCBI

130 

Zhang F, Li F, Lu GH, Nie W, Zhang L, Lv Y, Bao W, Gao X, Wei W, Pu K and Xie HY: Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano. 13:5662–5673. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Gu Z, Liu T, Liu C, Yang Y, Tang J, Song H, Wang Y, Yang Y and Yu C: Ferroptosis-strengthened metabolic and inflammatory regulation of tumor-associated macrophages provokes potent tumoricidal activities. Nano Lett. 21:6471–6479. 2021. View Article : Google Scholar : PubMed/NCBI

132 

Altman BJ, Stine ZE and Dang CV: From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 16:619–634. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Zhu Y, Zhang S, Sun J, Wang T, Liu Q, Wu G, Qian Y, Yang W, Wang Y and Wang W: Cigarette smoke promotes oral leukoplakia via regulating glutamine metabolism and M2 polarization of macrophage. Int J Oral Sci. 13:252021. View Article : Google Scholar : PubMed/NCBI

134 

Oh MH, Sun IH, Zhao L, Leone RD, Sun IM, Xu W, Collins SL, Tam AJ, Blosser RL, Patel CH, et al: Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J Clin Invest. 130:3865–3884. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Du B, Jiao Q, Bai Y, Yu M, Pang M, Zhao M, Ma H and Yao H: Glutamine metabolism-regulated nanoparticles to enhance chemoimmunotherapy by increasing antigen presentation efficiency. ACS Appl Mater Interfaces. 14:8753–8765. 2022. View Article : Google Scholar : PubMed/NCBI

136 

Hoves S, Ooi CH, Wolter C, Sade H, Bissinger S, Schmittnaegel M, Ast O, Giusti AM, Wartha K, Runza V, et al: Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J Exp Med. 215:859–876. 2018. View Article : Google Scholar : PubMed/NCBI

137 

Kashyap AS, Schmittnaegel M, Rigamonti N, Pais-Ferreira D, Mueller P, Buchi M, Ooi CH, Kreuzaler M, Hirschmann P, Guichard A, et al: Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc Natl Acad Sci USA. 117:541–551. 2020. View Article : Google Scholar : PubMed/NCBI

138 

Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, et al: CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 331:1612–1616. 2011. View Article : Google Scholar : PubMed/NCBI

139 

Liu PS, Chen YT, Li X, Hsueh PC, Tzeng SF, Chen H, Shi PZ, Xie X, Parik S, Planque M, et al: CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat Immunol. 24:452–462. 2023. View Article : Google Scholar : PubMed/NCBI

140 

Mai Z, Zhong J, Zhang J, Chen G, Tang Y, Ma W, Li G, Feng Z, Li F, Liang XJ, et al: Carrier-free immunotherapeutic nano-booster with dual synergistic effects based on glutaminase inhibition combined with photodynamic therapy. ACS Nano. 17:1583–1596. 2023. View Article : Google Scholar

141 

Tabas I and Bornfeldt KE: Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ Res. 126:1209–1227. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Zhu X, Owen JS, Wilson MD, Li H, Griffiths GL, Thomas MJ, Hiltbold EM, Fessler MB and Parks JS: Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res. 51:3196–3206. 2010. View Article : Google Scholar : PubMed/NCBI

143 

Stewart CR, Stuart LM, Wilkinson K, van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA, et al: CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 11:155–161. 2010. View Article : Google Scholar :

144 

Miller YI, Viriyakosol S, Worrall DS, Boullier A, Butler S and Witztum JL: Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler Thromb Vasc Biol. 25:1213–1219. 2005. View Article : Google Scholar : PubMed/NCBI

145 

Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, et al: NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 464:1357–1361. 2010. View Article : Google Scholar : PubMed/NCBI

146 

Chen J, Su Y, Pi S, Hu B and Mao L: The dual role of low-density lipoprotein receptor-related protein 1 in atherosclerosis. Front Cardiovasc Med. 8:6823892021. View Article : Google Scholar : PubMed/NCBI

147 

Tomas L, Edsfeldt A, Mollet IG, Perisic Matic L, Prehn C, Adamski J, Paulsson-Berne G, Hedin U, Nilsson J, Bengtsson E, et al: Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur Heart J. 39:2301–2310. 2018. View Article : Google Scholar : PubMed/NCBI

148 

Mügge A: The role of reactive oxygen species in atherosclerosis. Z Kardiol. 87:851–864. 1998.

149 

Kattoor AJ, Pothineni NVK, Palagiri D and Mehta J: Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 19:422017. View Article : Google Scholar : PubMed/NCBI

150 

He J, Zhang W, Zhou X, Xu F, Zou J, Zhang Q, Zhao Y, He H, Yang H and Liu J: Reactive oxygen species (ROS)-responsive size-reducible nanoassemblies for deeper atherosclerotic plaque penetration and enhanced macrophage-targeted drug delivery. Bioact Mater. 19:115–126. 2022.PubMed/NCBI

151 

Wang Y, Li L, Zhao W, Dou Y, An H, Tao H, Xu X, Jia Y, Lu S, Zhang J and Hu H: Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity. ACS Nano. 12:8943–8960. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Hu R, Dai C, Dong C, Ding L, Huang H, Chen Y and Zhang B: Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano. 16:15959–15976. 2022. View Article : Google Scholar : PubMed/NCBI

153 

Sun W, Xu Y, Yao Y, Yue J, Wu Z, Li H, Shen G, Liao Y, Wang H and Zhou W: Self-oxygenation mesoporous MnO2 nanoparticles with ultra-high drug loading capacity for targeted arteriosclerosis therapy. J Nanobiotechnology. 20:882022. View Article : Google Scholar

154 

Han XB, Li HX, Jiang YQ, Wang H, Li XS, Kou JY, Zheng YH, Liu ZN, Li H, Li J, et al: Upconversion nanoparticle-mediated photodynamic therapy induces autophagy and cholesterol efflux of macrophage-derived foam cells via ROS generation. Cell Death Dis. 8:e28642017. View Article : Google Scholar : PubMed/NCBI

155 

Dai T, He W, Tu S, Han J, Yuan B, Yao C, Ren W and Wu A: Black TiO2 nanoprobe-mediated mild phototherapy reduces intracellular lipid levels in atherosclerotic foam cells via cholesterol regulation pathways instead of apoptosis. Bioact Mater. 17:18–28. 2022.PubMed/NCBI

156 

Zhang Y, Gong F, Wu Y, Hou S, Xue L, Su Z and Zhang C: Poly-β-cyclodextrin supramolecular nanoassembly with a pH-sensitive switch removing lysosomal cholesterol crystals for antiatherosclerosis. Nano Lett. 21:9736–9745. 2021. View Article : Google Scholar : PubMed/NCBI

157 

You P, Mayier A, Zhou H, Yang A, Fan J, Ma S, Liu B and Jiang Y: Targeting and promoting atherosclerosis regression using hybrid membrane coated nanomaterials via alleviated inflammation and enhanced autophagy. Appl Mater Today. 26:1013862022. View Article : Google Scholar

158 

Li C, Dou Y, Chen Y, Qi Y, Li L, Han S, Jin T, Guo J, Chen J and Zhang J: Site-specific microRNA-33 antagonism by pH-responsive nanotherapies for treatment of atherosclerosis via regulating cholesterol efflux and adaptive immunity. Adv Funct Mater. 30:20021312020. View Article : Google Scholar

159 

He H, Wang J, Yannie PJ, Korzun WJ, Yang H and Ghosh S: Nanoparticle-based 'two-pronged' approach to regress atherosclerosis by simultaneous modulation of cholesterol influx and efflux. Biomaterials. 260:1203332020. View Article : Google Scholar

160 

Wu Z, Zhou M, Tang X, Zeng J, Li Y, Sun Y, Huang J, Chen L, Wan M and Mao C: Carrier-free trehalose-based nanomotors targeting macrophages in inflammatory plaque for treatment of atherosclerosis. ACS Nano. 16:3808–3820. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xu M, Cui Y, Wei S, Cong X, Chen Y, Tian S, Yao A, Chen W and Weng L: Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review). Int J Mol Med 53: 13, 2024.
APA
Xu, M., Cui, Y., Wei, S., Cong, X., Chen, Y., Tian, S. ... Weng, L. (2024). Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review). International Journal of Molecular Medicine, 53, 13. https://doi.org/10.3892/ijmm.2023.5337
MLA
Xu, M., Cui, Y., Wei, S., Cong, X., Chen, Y., Tian, S., Yao, A., Chen, W., Weng, L."Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review)". International Journal of Molecular Medicine 53.2 (2024): 13.
Chicago
Xu, M., Cui, Y., Wei, S., Cong, X., Chen, Y., Tian, S., Yao, A., Chen, W., Weng, L."Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review)". International Journal of Molecular Medicine 53, no. 2 (2024): 13. https://doi.org/10.3892/ijmm.2023.5337
Copy and paste a formatted citation
x
Spandidos Publications style
Xu M, Cui Y, Wei S, Cong X, Chen Y, Tian S, Yao A, Chen W and Weng L: Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review). Int J Mol Med 53: 13, 2024.
APA
Xu, M., Cui, Y., Wei, S., Cong, X., Chen, Y., Tian, S. ... Weng, L. (2024). Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review). International Journal of Molecular Medicine, 53, 13. https://doi.org/10.3892/ijmm.2023.5337
MLA
Xu, M., Cui, Y., Wei, S., Cong, X., Chen, Y., Tian, S., Yao, A., Chen, W., Weng, L."Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review)". International Journal of Molecular Medicine 53.2 (2024): 13.
Chicago
Xu, M., Cui, Y., Wei, S., Cong, X., Chen, Y., Tian, S., Yao, A., Chen, W., Weng, L."Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review)". International Journal of Molecular Medicine 53, no. 2 (2024): 13. https://doi.org/10.3892/ijmm.2023.5337
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team