Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2024 Volume 53 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2024 Volume 53 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review)

  • Authors:
    • Maximo Berto Martinez Benitez
    • Yussel Pérez Navarro
    • Elisa Azuara‑Liceaga
    • Angeles Tecalco Cruz
    • Jesús Valdés Flores
    • Lilia Lopez‑Canovas
  • View Affiliations / Copyright

    Affiliations: Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico, Biochemistry Department, Center for Research and Advanced Studies, National Polytechnic Institute of Mexico, Mexico City, CP 07360, Mexico
    Copyright: © Benitez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 44
    |
    Published online on: March 21, 2024
       https://doi.org/10.3892/ijmm.2024.5368
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Circular RNAs (circRNAs) are non‑coding single‑stranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and post‑transcriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to high‑glucose concentrations and the transcription factors c‑Jun and c‑Fos are reported.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

American Diabetes Association: 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes Care. 44(Suppl 1): S15–S33. 2021. View Article : Google Scholar

2 

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, et al: IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 183:1091192022. View Article : Google Scholar

3 

Harding JL, Pavkov ME, Magliano DJ, Shaw JE and Gregg EW: Global trends in diabetes complications: A review of current evidence. Diabetologia. 62:3–16. 2019. View Article : Google Scholar

4 

Prasad RB and Groop L: Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel). 6:87–123. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Lyssenko V and Laakso M: Genetic screening for the risk of type 2 diabetes: Worthless or valuable? Diabetes Care. 36(Suppl 2): S120–S126. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Vassy JL and Meigs JB: Is Genetic testing useful to predict type 2 diabetes? Best Pract Res Clin Endocrinol Metab. 26:189–201. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Miranda-Lora AL, Vilchis-Gil J, Juárez-Comboni DB, Cruz M and Klünder-Klünder M: A genetic risk score improves the prediction of type 2 diabetes mellitus in mexican youths but has lower predictive utility compared with non-genetic factors. Front Endocrinol (Lausanne). 12:6478642021. View Article : Google Scholar : PubMed/NCBI

8 

Willems SM, Mihaescu R, Sijbrands EJG, Van Duijn CM and Janssens AC: A methodological perspective on genetic risk prediction studies in type 2 diabetes: Recommendations for future research. Curr Diab Rep. 11:511–518. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Fava S and Hattersley AT: The role of genetic susceptibility in diabetic nephropathy: evidence from family studies. Nephrol Dial Transplant. 17:1543–1546. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Szymañski M, Barciszewska MZ, Zywicki M and Barciszewski J: Noncoding RNA transcripts. J Appl Genet. 44:1–19. 2003.PubMed/NCBI

11 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar :

12 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss, et al: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 58:870–885. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI

15 

Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-Type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI

16 

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Song P, Yang F, Jin H and Wang X: The regulation of protein translation and its implications for cancer. Signal Transduct Target Ther. 6:682021. View Article : Google Scholar : PubMed/NCBI

18 

Liao W, Du J, Wang Z, Feng Q, Liao M, Liu H, Yuan K and Zeng Y: The role and mechanism of noncoding RNAs in regulation of metabolic reprogramming in hepatocellular carcinoma. Int J Cancer. 151:337–347. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Ebbesen KK, Hansen TB and Kjems J: Insights into circular RNA biology. RNA Biol. 14:1035–1045. 2017. View Article : Google Scholar :

20 

Chen LL: The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 17:205–211. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Qu S, Zhong Y, Shang R, Zhang X, Song W, Kjems J and Li H: The emerging landscape of circular RNA in life processes. RNA Biol. 14:992–999. 2017. View Article : Google Scholar :

22 

Barrett SP and Salzman J: Circular RNAs: Analysis, expression and potential functions. Development. 143:1838–1847. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Liu CX and Chen LL: Circular RNAs: Characterization, cellular roles, and applications. Cell. 185:2016–2034. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Chi T, Lin J, Wang M, Zhao Y, Liao Z and Wei P: Non-Coding RNA as biomarkers for type 2 diabetes development and clinical management. Front Endocrinol (Lausanne). 12:6300322021. View Article : Google Scholar : PubMed/NCBI

25 

Wang F and Zhang M: Circ_001209 aggravates diabetic retinal vascular dysfunction through regulating miR-15b-5p/COL12A1. J Transl Med. 19:2942021. View Article : Google Scholar : PubMed/NCBI

26 

Fan W, Pang H, Xie Z, Huang G and Zhou Z: Circular RNAs in diabetes mellitus and its complications. Front Endocrinol (Lausanne). 13:8856502022. View Article : Google Scholar : PubMed/NCBI

27 

Patil NS, Feng B, Su Z, Castellani CA and Chakrabarti S: Circular RNA mediated gene regulation in chronic diabetic complications. Sci Rep. 11:237662021. View Article : Google Scholar : PubMed/NCBI

28 

Tu C, Wang L, Wei L and Jiang Z: The role of circular RNA in diabetic nephropathy. Int J Med Sci. 19:916–923. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Liu R, Zhang M and Ge Y: Circular RNA HIPK3 exacerbates diabetic nephropathy and promotes proliferation by sponging miR-185. Gene. 765:1450652021. View Article : Google Scholar

30 

van Zonneveld AJ, Kölling M, Bijkerk R and Lorenzen JM: Circular RNAs in kidney disease and cancer. Nat Rev Nephrol. 17:814–826. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Lasda E and Parker R: Circular RNAs: Diversity of form and function. RNA. 20:1829–1842. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Petkovic S and Müller S: RNA circularization strategies in vivo and in vitro. Nucleic Acids Res. 43:2454–2465. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Yamazaki T, Fujiwara N, Yukinaga H, Ebisuya M, Shiki T, Kurihara T, Kioka N, Kambe T, Nagao M, Nishida E and Masuda S: The Closely Related RNA helicases, UAP56 and URH49, Preferentially Form Distinct mRNA Export Machineries and Coordinately Regulate Mitotic Progression. Mol Biol Cell. 21:2953–2965. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Huang C, Liang D, Tatomer DC and Wilusz JE: A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 32:639–644. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Ren L, Jiang Q, Mo L, Tan L, Dong Q, Meng L, Yang N and Li G: Mechanisms of circular RNA degradation. Commun Biol. 5:13552022. View Article : Google Scholar : PubMed/NCBI

36 

Zhang C, Huang S, Zhuang H, Ruan S, Zhou Z, Huang K, Ji F, Ma Z, Hou B and He X: YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene. 39:4507–4518. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Chang W and Wang J: Exosomes and their noncoding RNA cargo are emerging as new modulators for diabetes mellitus. Cells. 8:8532019. View Article : Google Scholar : PubMed/NCBI

38 

Hentze MW and Preiss T: Circular RNAs: Splicing's enigma variations. EMBO J. 32:923–925. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, et al: Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer. 18:1162019. View Article : Google Scholar : PubMed/NCBI

41 

Chen XT, Li ZW, Zhao X, Li ML, Hou PF, Chu SF, Zheng JN and Bai J: Role of Circular RNA in kidney-related diseases. Front Pharmacol. 12:6158822021. View Article : Google Scholar : PubMed/NCBI

42 

Wang H, Gao X, Yu S, Wang W, Liu G, Jiang X and Sun D: Circular RNAs regulate parental gene expression: A new direction for molecular oncology research. Front Oncol. 12:9477752022. View Article : Google Scholar : PubMed/NCBI

43 

Wu N, Yuan Z, Du KY, Fang L, Lyu J, Zhang C, He A, Eshaghi E, Zeng K, Ma J, et al: Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ. 26:2758–2773. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 Is a Circular RNA that Can Be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Zhang Z, Yang T and Xiao J: Circular RNAs: Promising biomarkers for human diseases. EBioMedicine. 34:267–274. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: CircRNA Biogenesis competes with Pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Schneider T, Hung LH, Schreiner S, Starke S, Eckhof H, Rossbach O, Reich S, Medenbach J and Bindereif A: CircRNA-protein complexes: IMP3 protein component defines subfamily of circRNPs. Sci Rep. 6:313132016. View Article : Google Scholar : PubMed/NCBI

49 

Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, et al: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 7:124292016. View Article : Google Scholar : PubMed/NCBI

50 

Das A, Sinha T, Shyamal S and Panda AC: Emerging role of circular RNA-protein interactions. Noncoding RNA. 7:482021.PubMed/NCBI

51 

Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, Davey NE, Humphreys DT, Preiss T, Steinmetz LM, et al: Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell. 149:1393–1406. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Yar Saglam SA, Alp E and Ilke Onen H: Circular RNAs and its biological functions in health and disease. Gene Expression and Phenotypic Traits. Chen YC and Chen SJ: IntechOpen; pp. 1–37. 2020

53 

Yang Q, Li F, He AT and Yang BB: Circular RNAs: Expression, localization, and therapeutic potentials. Mol Ther. 29:1683–1702. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Wang Y, Lu T, Wang Q, Liu J and Jiao W: Circular RNAs: Crucial regulators in the human body (Review). Oncol Rep. 40:3119–3135. 2018.PubMed/NCBI

55 

Wang M, Yu F, Wu W, Zhang Y, Chang W, Ponnusamy M, Wang K and Li P: Circular RNAs: A novel type of non-coding RNA and their potential implications in antiviral immunity. Int J Biol Sci. 13:1497–1506. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Yang L, Fu J and Zhou Y: Circular RNAs and their emerging roles in immune regulation. Front Immunol. 9:29772018. View Article : Google Scholar

57 

Shao T, Pan YH and Xiong XD: Circular RNA: an important player with multiple facets to regulate its parental gene expression. Mol Ther Nucleic Acids. 23:369–376. 2020. View Article : Google Scholar

58 

Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI

59 

Liu Y, Song J, Liu Y, Zhou Z and Wang X: Transcription activation of circ-STAT3 induced by Gli2 promotes the progression of hepatoblastoma via acting as a sponge for miR-29a/b/c-3p to upregulate STAT3/Gli2. J Exp Clin Cancer Res. 39:1012020. View Article : Google Scholar : PubMed/NCBI

60 

Okholm TLH, Nielsen MM, Hamilton MP, Christensen LL, Vang S, Hedegaard J, Hansen TB, Kjems J, Dyrskjøt L and Pedersen JS: Circular RNA expression is abundant and correlated to aggressiveness in early-stage bladder cancer. NPJ Genom Med. 2:362017. View Article : Google Scholar : PubMed/NCBI

61 

Selby NM and Taal MW: An updated overview of diabetic nephropathy: Diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab. 22(Suppl 1): S3–S15. 2020. View Article : Google Scholar

62 

Gheith O, Farouk N, Nampoory N, Halim MA and Al-Otaibi T: Diabetic kidney disease: Worldwide difference of prevalence and risk factors. J Nephropharmacol. 5:49–56. 2015.eCollection 2016.

63 

Brosius FC, Khoury CC, Buller CL and Chen S: Abnormalities in signaling pathways in diabetic nephropathy. Expert Rev Endocrinol Metab. 5:51–64. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Cooper ME: Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia. 44:1957–1972. 2001. View Article : Google Scholar : PubMed/NCBI

65 

Makita Z, Radoff S, Rayfield EJ, Yang Z, Skolnik E, Delaney V, Friedman EA, Cerami A and Vlassara H: Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 325:836–842. 1991. View Article : Google Scholar : PubMed/NCBI

66 

Busch M, Franke S, Rüster C and Wolf G: Advanced glycation end-products and the kidney. Eur J Clin Invest. 40:742–755. 2010. View Article : Google Scholar : PubMed/NCBI

67 

Ramasamy R, Yan SF and Schmidt AM: Receptor for AGE (RAGE): Signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci. 1243:88–102. 2011. View Article : Google Scholar

68 

Kay AM, Simpson CL and Stewart JA Jr: The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J Diabetes Res. 2016:68097032016. View Article : Google Scholar : PubMed/NCBI

69 

Yun J, Ren J, Liu Y, Dai L, Song L, Ma X, Luo S and Song Y: Circ-ACTR2 aggravates the high glucose-induced cell dysfunction of human renal mesangial cells through mediating the miR-205-5p/HMGA2 axis in diabetic nephropathy. Diabetol Metab Syndr. 13:722021. View Article : Google Scholar : PubMed/NCBI

70 

Wang Q, Cang Z, Shen L, Peng W, Xi L, Jiang X, Ge X, Xu B and Huang S: circ_0037128/miR-17-3p/AKT3 axis promotes the development of diabetic nephropathy. Gene. 765:1450762021. View Article : Google Scholar

71 

Feng T, Li W, Li T, Jiao W and Chen S: Circular RNA_0037128 aggravates high glucose-induced damage in HK-2 cells via regulation of microRNA-497-5p/nuclear factor of activated T cells 5 axis. Bioengineered. 12:10959–10970. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Fang R, Cao X, Zhu Y and Chen Q: Hsa_circ_0037128 aggravates high glucose-induced podocytes injury in diabetic nephropathy through mediating miR-31-5p/KLF9. Autoimmunity. 55:254–263. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Tang B, Li W, Ji TT, Li XY, Qu X, Feng L and Bai S: Circ-AKT3 inhibits the accumulation of extracellular matrix of mesangial cells in diabetic nephropathy via modulating miR-296-3p/E-cadherin signals. J Cell Mol Med. 24:8779–8788. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Hu W, Han Q, Zhao L and Wang L: Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-β1. J Cell Physiol. 234:1469–1476. 2019. View Article : Google Scholar

75 

Mou X, Chen JW, Zhou DY, Liu K, Chen LJ, Zhou D and Hu YB: A novel identified circular RNA, circ-0000491, aggravates the extracellular matrix of diabetic nephropathy glomerular mesangial cells through suppressing miR-101b by targeting TGFβRI. Mol Med Rep. 22:3785–3794. 2020.PubMed/NCBI

76 

Bai S, Xiong X, Tang B, Ji T, Li X, Qu X and Li W: Exosomal circ_DLGAP4 promotes diabetic kidney disease progression by sponging miR-143 and targeting ERBB3/NF-κB/MMP-2 axis. Cell Death Dis. 11:10082020. View Article : Google Scholar

77 

Xu B, Wang Q, Li W, Xia L, Ge X, Shen L, Cang Z, Peng W, Shao K and Huang S: Circular RNA circEIF4G2 aggravates renal fibrosis in diabetic nephropathy by sponging miR-218. J Cell Mol Med. 26:1799–1805. 2022. View Article : Google Scholar

78 

Yao T, Zha D, Hu C and Wu X: Circ_0000285 promotes podocyte injury through sponging miR-654-3p and activating MAPK6 in diabetic nephropathy. Gene. 747:1446612020. View Article : Google Scholar : PubMed/NCBI

79 

Qiu B, Qi X and Wang J: CircTLK1 downregulation attenuates high glucose-induced human mesangial cell injury by blocking the AKT/NF-κB pathway through sponging miR-126-5p/miR-204-5p. Biochem Genet. 60:1471–1487. 2022. View Article : Google Scholar

80 

Chen B, Li Y, Liu Y and Xu Z: circLRP6 regulates high glucose-induced proliferation, oxidative stress, ECM accumulation, and inflammation in mesangial cells. J Cell Physiol. 234:21249–21259. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Feng F, Yang J, Wang G, Huang P, Li Y and Zhou B: Circ_0068087 promotes high glucose-induced human renal tubular cell injury through regulating miR-106a-5p/ROCK2 pathway. Nephron. 147:212–222. 2023. View Article : Google Scholar

82 

Zhuang L, Wang Z, Hu X, Yang Q, Pei X and Jin G: CircHIPK3 alleviates high glucose toxicity to human renal tubular epithelial HK-2 cells through regulation of miR-326/miR-487a-3p/SIRT1. Diabetes Metab Syndr Obes. 14:729–740. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Liu H, Wang X, Wang ZY and Li L: Circ_0080425 inhibits cell proliferation and fibrosis in diabetic nephropathy via sponging miR-24-3p and targeting fibroblast growth factor 11. J Cell Physiol. 235:4520–4529. 2020. View Article : Google Scholar

84 

Wang W, Feng J, Zhou H and Li Q: Circ_0123996 promotes cell proliferation and fibrosis in mouse mesangial cells through sponging miR-149-5p and inducing Bach1 expression. Gene. 761:1449712020. View Article : Google Scholar

85 

Li G, Qin Y, Qin S, Zhou X, Zhao W and Zhang D: Circ_WBSCR17 aggravates inflammatory responses and fibrosis by targeting miR-185-5p/SOX6 regulatory axis in high glucose-induced human kidney tubular cells. Life Sci. 259:1182692020. View Article : Google Scholar : PubMed/NCBI

86 

An L, Ji D, Hu W, Wang J, Jin X, Qu Y and Zhang N: Interference of hsa_circ_0003928 alleviates high glucose-induced cell apoptosis and inflammation in HK-2 cells via mir-151-3p/anxa2. Diabetes Metab Syndr Obes. 13:3157–3168. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Liu Q, Cui Y, Ding N and Zhou C: Knockdown of circ_0003928 ameliorates high glucose-induced dysfunction of human tubular epithelial cells through the miR-506-3p/HDAC4 pathway in diabetic nephropathy. Eur J Med Res. 27:552022. View Article : Google Scholar : PubMed/NCBI

88 

Ge X, Xi L, Wang Q, Li H, Xia L, Cang Z, Peng W and Huang S: Circular RNA Circ_0000064 promotes the proliferation and fibrosis of mesangial cells via miR-143 in diabetic nephropathy. Gene. 758:1449522020. View Article : Google Scholar : PubMed/NCBI

89 

Sun L, Han Y, Shen C, Luo H and Wang Z: Emodin alleviates high glucose-induced oxidative stress, inflammation and extracellular matrix accumulation of mesangial cells by the circ_0000064/miR-30c-5p/Lmp7 axis. J Recept Signal Transduct Res. 42:302–312. 2022. View Article : Google Scholar

90 

Wang H, Huang S, Hu T, Fei S and Zhang H: Circ_0000064 promotes high glucose-induced renal tubular epithelial cells injury to facilitate diabetic nephropathy progression through miR-532-3p/ROCK1 axis. BMC Endocr Disord. 22:672022. View Article : Google Scholar : PubMed/NCBI

91 

Li J, Min Y and Zhao Q: Circ_0000064 knockdown attenuates high glucose-induced proliferation, inflammation and extracellular matrix deposition of mesangial cells through miR-424-5p-mediated WNT2B inhibition in cell models of diabetic nephropathy. Clin Exp Nephrol. 26:943–954. 2022. View Article : Google Scholar : PubMed/NCBI

92 

Peng F, Gong W, Li S, Yin B, Zhao C, Liu W, Chen X, Luo C, Huang Q, Chen T, et al: circRNA_010383 Acts as a Sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes. 70:603–615. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Wang Y, Qi Y, Ji T, Tang B, Li X, Zheng P and Bai S: Circ_LARP4 regulates high glucose-induced cell proliferation, apoptosis, and fibrosis in mouse mesangial cells. Gene. 765:1451142021. View Article : Google Scholar

94 

Sun A, Sun N, Liang X and Hou Z: Circ-FBXW12 aggravates the development of diabetic nephropathy by binding to miR-31-5p to induce LIN28B. Diabetol Metab Syndr. 13:1412021. View Article : Google Scholar : PubMed/NCBI

95 

Wu R, Niu Z, Ren G, Ruan L and Sun L: CircSMAD4 alleviates high glucose-induced inflammation, extracellular matrix deposition and apoptosis in mouse glomerulus mesangial cells by relieving miR-377-3p-mediated BMP7 inhibition. Diabetol Metab Syndr. 13:1372021. View Article : Google Scholar : PubMed/NCBI

96 

Liu J, Duan P, Xu C, Xu D, Liu Y and Jiang J: CircRNA circ-ITCH improves renal inflammation and fibrosis in streptozotocin-induced diabetic mice by regulating the miR-33a-5p/SIRT6 axis. Inflamm Res. 70:835–846. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Zhao L, Chen H, Zeng Y, Yang K, Zhang R, Li Z, Yang T and Ruan H: Circular RNA circ_0000712 regulates high glucose-induced apoptosis, inflammation, oxidative stress, and fibrosis in (DN) by targeting the miR-879-5p/SOX6 axis. Endocr J. 68:1155–1164. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Zhu Y, Zha F, Tang B, Ji TT, Li XY, Feng L and Bai SJ: Exosomal hsa_circ_0125310 promotes cell proliferation and fibrosis in diabetic nephropathy via sponging miR-422a and targeting the IGF1R/p38 axis. J Cell Mol Med. 26:151–162. 2022. View Article : Google Scholar

99 

Jin J, Wang Y, Zheng D, Liang M and He Q: A Novel Identified Circular RNA, mmu_mmu_circRNA_0000309, Involves in Germacrone-Mediated Improvement of Diabetic Nephropathy Through Regulating Ferroptosis by Targeting miR-188-3p/GPX4 Signaling Axis. Antioxid Redox Signal. 36:740–759. 2022. View Article : Google Scholar

100 

Chen S: Circ_000166/miR-296 aggravates the process of diabetic renal fibrosis by regulating the SGLT2 signaling pathway in renal tubular epithelial cells. Dis Markers. 2022:61030862022.PubMed/NCBI

101 

Wang D, Zhang Z, Si Z and Wang L: Circ 0006282/miR-155 reduced inflammation in diabetic nephropathy via expression of SIRT1/NLRP3 signaling pathway. Food Sci Technol (Campinas). 42:e395202022. View Article : Google Scholar

102 

Li Y, Yu W, Xiong H and Yuan F: Circ_0000181 regulates miR-667-5p/NLRC4 axis to promote pyroptosis progression in diabetic nephropathy. Sci Rep. 12:119942022. View Article : Google Scholar : PubMed/NCBI

103 

Zhuang L, Jin G, Qiong W, Ge X and Pei X: Circular RNA COL1A2 mediates high glucose-induced oxidative stress and pyroptosis by regulating MiR-424-5p/SGK1 in diabetic nephropathy. Appl Biochem Biotechnol. 195:7652–7667. 2023. View Article : Google Scholar : PubMed/NCBI

104 

Liu X and Wu Y: Circ_0000953 deficiency exacerbates podocyte injury and autophage through targeting mir-655/atg4b in diabetic nephropathy. Kidney Int Rep. 8:S198–S199. 2023. View Article : Google Scholar

105 

Rashad NM, Sherif MH, El-Shal AS and Abdelsamad MAE: The expression profile of circANKRD36 and ANKRD36 as diagnostic biomarkers of chronic kidney disease in patients with type 2 diabetes mellitus. Egypt J Med Hum Genet. 22:432021. View Article : Google Scholar

106 

Zhang K, Wan X, Khan MA, Sun X, Yi X, Wang Z, Chen K and Peng L: Peripheral Blood circRNA microarray profiling identities hsa_circ_0001831 and hsa_circ_0000867 as two novel circrna biomarkers for early type 2 diabetic nephropathy. Diabetes Metab Syndr Obes. 15:2789–2801. 2022. View Article : Google Scholar : PubMed/NCBI

107 

Badr AM, Elkholy O, Said M, Fahim SA, El-Khatib M, Sabry D and Gaber RM: Diagnostic Significance of hsa_circ_0000146 and hsa_circ_0000072 biomarkers for diabetic kidney disease in patients with type 2 diabetes mellitus. J Med Biochem. 42:239–248. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Ling L, Tan Z, Zhang C, Gui S, Cui Y, Hu Y and Chen L: CircRNAs in exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells. Am J Transl Res. 11:4667–4682. 2019.PubMed/NCBI

109 

Liu M and Zhao J: Circular RNAs in diabetic nephropathy: Updates and perspectives. Aging Dis. 13:1365–1380. 2022. View Article : Google Scholar : PubMed/NCBI

110 

Loganathan TS, Sulaiman SA, Abdul Murad NA, Shah SA, Abdul Gafor AH, Jamal R and Abdullah N: Interactions Among Non-Coding RNAs in Diabetic Nephropathy. Front Pharmacol. 11:1912020. View Article : Google Scholar : PubMed/NCBI

111 

Xiong X, Liu C, Shen M, Yang Q, Zhao Q, Li X, Zhong X and Wang Z: Circular RNA expression profile in transgenic diabetic mouse kidneys. Cell Mol Biol Lett. 26:252021. View Article : Google Scholar : PubMed/NCBI

112 

Bai YH, Wang JP, Yang M, Zeng Y and Jiang HY: SiRNA-HMGA2 weakened AGEs-induced epithelial-to-mesenchymal transition in tubular epithelial cells. Biochem Biophys Res Commun. 457:730–735. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Birchmeier W and Behrens J: Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1198:11–26. 1994.PubMed/NCBI

114 

Li JH, Wang W, Huang XR, Oldfield M, Schmidt AM, Cooper ME and Lan HY: Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am J Pathol. 164:1389–1397. 2004. View Article : Google Scholar : PubMed/NCBI

115 

Guria A, Sharma P, Natesan S and Pandi G: Circular RNAs-The road less traveled. Front Mol Biosci. 6:1462020. View Article : Google Scholar : PubMed/NCBI

116 

Ikeda Y, Morikawa S, Nakashima M, Yoshikawa S, Taniguchi K, Sawamura H, Suga N, Tsuji A and Matsuda S: CircRNAs and RNA-Binding proteins involved in the pathogenesis of cancers or central nervous system disorders. Noncoding RNA. 9:232023.PubMed/NCBI

117 

Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, Yang W, Zhang C, Yang Q, Yee A, et al: A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 7:3842–3855. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Stoll L, Rodríguez-Trejo A, Guay C, Brozzi F, Bayazit MB, Gattesco S, Menoud V, Sobel J, Marques AC, Venø MT, et al: A circular RNA generated from an intron of the insulin gene controls insulin secretion. Nat Commun. 11:56112020. View Article : Google Scholar : PubMed/NCBI

119 

Hou L, Wei Y, Lin Y, Wang X, Lai Y, Yin M, Chen Y, Guo X, Wu S, Zhu Y, et al: Concurrent binding to DNA and RNA facilitates the pluripotency reprogramming activity of Sox2. Nucleic Acids Res. 48:3869–3887. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Zhang C, Han X, Yang L, Fu J, Sun C, Huang S, Xiao W, Gao Y, Liang Q, Wang X, et al: Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus. Theranostics. 10:10908–10924. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Livi CM, Klus P, Delli Ponti R and Tartaglia GG: CatRAPID signature: Identification of ribonucleoproteins and RNA-binding regions. Bioinformatics. 32:773–775. 2016. View Article : Google Scholar :

122 

Bailey TL, Johnson J, Grant CE and Noble WS: The MEME Suite. Nucleic Acids Res. 43(W1): W39–W49. 2015. View Article : Google Scholar : PubMed/NCBI

123 

Gupta S, Stamatoyannopoulos JA, Bailey TL and Noble WS: Quantifying similarity between motifs. Genome Biol. 8:R242007. View Article : Google Scholar : PubMed/NCBI

124 

Muppirala UK, Honavar VG and Dobbs D: Predicting RNA-Protein interactions using only sequence information. BMC Bioinformatics. 12:4892011. View Article : Google Scholar : PubMed/NCBI

125 

Pan X, Fang Y, Li X, Yang Y and Shen HB: RBPsuite: RNA-protein binding sites prediction suite based on deep learning. BMC Genomics. 21:8842020. View Article : Google Scholar : PubMed/NCBI

126 

Lin YC, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, Reumers J, Moisse M, Plaisance S, Drmanac R, et al: Genome dynamics of the human embryonic kidney 293 lineage in response to cell biology manipulations. Nat Commun. 5:47672014. View Article : Google Scholar : PubMed/NCBI

127 

Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ and Xu RH: Circular RNA: Metabolism, functions and interactions with proteins. Mol Cancer. 19:1722020. View Article : Google Scholar : PubMed/NCBI

128 

Kreisberg JI, Radnik RA, Ayo SH, Garoni J and Saikumar P: High glucose elevates c-fos and c-jun transcripts and proteins in mesangial cell cultures. Kidney Int. 46:105–112. 1994. View Article : Google Scholar : PubMed/NCBI

129 

Xu YX, Pu SD, Li X, Yu ZW, Zhang YT, Tong XW, Shan YY and Gao XY: Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications. Pharmacol Res. 178:1061352022. View Article : Google Scholar : PubMed/NCBI

130 

Feng S, LV L, Liu B, Zhu X and Jing J: MO619: Landscape RNA Profiling of Urinary Extracellular Vesicles in Patients with Diabetic Nephropathy. Nephrology Dialysis Transplantation. 37:2022. View Article : Google Scholar

131 

Sinha N, Kumar V, Puri V, Nada R, Rastogi A, Jha V and Puri S: Urinary exosomes: Potential biomarkers for diabetic nephropathy. Nephrology (Carlton). 25:881–887. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Xie Y, Jia Y, Cuihua X, Hu F, Xue M and Xue Y: Urinary exosomal MicroRNA profiling in incipient type 2 diabetic kidney disease. J Diabetes Res. 2017:69789842017. View Article : Google Scholar : PubMed/NCBI

133 

Zhao Y, Shen A, Guo F, Song Y, Jing N, Ding X, Pan M, Zhang H, Wang J, Wu L, et al: Urinary Exosomal MiRNA-4534 as a novel diagnostic biomarker for diabetic kidney disease. Front Endocrinol (Lausanne). 11:5902020. View Article : Google Scholar : PubMed/NCBI

134 

Cao Y, Shi Y, Yang Y, Wu Z, Peng N, Xiao J, Dou F, Xu J, Pei W, Fu C, et al: Urinary exosomes derived circRNAs as biomarkers for chronic renal fibrosis. Ann Med. 54:1966–1976. 2022. View Article : Google Scholar : PubMed/NCBI

135 

Ma H, Xu Y, Zhang R, Guo B, Zhang S and Zhang X: Differential expression study of circular RNAs in exosomes from serum and urine in patients with idiopathic membranous nephropathy. Arch Med Sci. 15:738–753. 2019. View Article : Google Scholar : PubMed/NCBI

136 

Luan R, Tian G, Ci X, Zheng Q, Wu L and Lu X: Differential expression analysis of urinary exosomal circular RNAs in patients with IgA nephropathy. Nephrology (Carlton). 26:432–441. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Benitez MM, Navarro YP, Azuara‑Liceaga E, Cruz AT, Flores JV and Lopez‑Canovas L: Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review). Int J Mol Med 53: 44, 2024.
APA
Benitez, M.M., Navarro, Y.P., Azuara‑Liceaga, E., Cruz, A.T., Flores, J.V., & Lopez‑Canovas, L. (2024). Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review). International Journal of Molecular Medicine, 53, 44. https://doi.org/10.3892/ijmm.2024.5368
MLA
Benitez, M. M., Navarro, Y. P., Azuara‑Liceaga, E., Cruz, A. T., Flores, J. V., Lopez‑Canovas, L."Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review)". International Journal of Molecular Medicine 53.5 (2024): 44.
Chicago
Benitez, M. M., Navarro, Y. P., Azuara‑Liceaga, E., Cruz, A. T., Flores, J. V., Lopez‑Canovas, L."Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review)". International Journal of Molecular Medicine 53, no. 5 (2024): 44. https://doi.org/10.3892/ijmm.2024.5368
Copy and paste a formatted citation
x
Spandidos Publications style
Benitez MM, Navarro YP, Azuara‑Liceaga E, Cruz AT, Flores JV and Lopez‑Canovas L: Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review). Int J Mol Med 53: 44, 2024.
APA
Benitez, M.M., Navarro, Y.P., Azuara‑Liceaga, E., Cruz, A.T., Flores, J.V., & Lopez‑Canovas, L. (2024). Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review). International Journal of Molecular Medicine, 53, 44. https://doi.org/10.3892/ijmm.2024.5368
MLA
Benitez, M. M., Navarro, Y. P., Azuara‑Liceaga, E., Cruz, A. T., Flores, J. V., Lopez‑Canovas, L."Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review)". International Journal of Molecular Medicine 53.5 (2024): 44.
Chicago
Benitez, M. M., Navarro, Y. P., Azuara‑Liceaga, E., Cruz, A. T., Flores, J. V., Lopez‑Canovas, L."Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review)". International Journal of Molecular Medicine 53, no. 5 (2024): 44. https://doi.org/10.3892/ijmm.2024.5368
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team