You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
|
Yan J and Horng T: Lipid metabolism in regulation of macrophage functions. Trends Cell Biol. 30:979–989. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wynn TA, Chawla A and Pollard JW: Macrophage biology in development, homeostasis and disease. Nature. 496:445–455. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Murray PJ and Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 11:723–737. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Murray PJ: Macrophage polarization. Annu Rev Physiol. 79:541–566. 2017. View Article : Google Scholar | |
|
Chinnery HR, McMenamin PG and Dando SJ: Macrophage physiology in the eye. Pflugers Arch. 469:501–515. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chu F, Shi M, Zheng C, Shen D, Zhu J, Zheng X and Cui L: The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol. 318:1–7. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Norden DM, Muccigrosso MM and Godbout JP: Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology. 96:29–41. 2015. View Article : Google Scholar : | |
|
Kabba JA, Xu Y, Christian H, Ruan W, Chenai K, Xiang Y, Zhang L, Saavedra JM and Pang T: Microglia: Housekeeper of the central nervous system. Cell Mol Neurobiol. 38:53–71. 2018. View Article : Google Scholar | |
|
Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK and Roy S: Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol. 185:2596–2606. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Biswas SK, Chittezhath M, Shalova IN and Lim JY: Macrophage polarization and plasticity in health and disease. Immunol Res. 53:11–24. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Strauss O, Dunbar PR, Bartlett A and Phillips A: The immunophenotype of antigen presenting cells of the mononuclear phagocyte system in normal human liver-a systematic review. J Hepatol. 62:458–468. 2015. View Article : Google Scholar | |
|
McMurran CE, Jones CA, Fitzgerald DC and Franklin RJ: CNS remyelination and the innate immune system. Front Cell Dev Biol. 4:382016. View Article : Google Scholar : PubMed/NCBI | |
|
Tay TL, Hagemeyer N and Prinz M: The force awakens: Insights into the origin and formation of microglia. Curr Opin Neurobiol. 39:30–37. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Subramaniam SR and Federoff HJ: Targeting microglial activation states as a therapeutic avenue in Parkinson's disease. Front Aging Neurosci. 9:1762017. View Article : Google Scholar : PubMed/NCBI | |
|
Du L, Zhang Y, Chen Y, Zhu J, Yang Y and Zhang HL: Role of microglia in neurological disorders and their potentials as a therapeutic target. Mol Neurobiol. 54:7567–7584. 2017. View Article : Google Scholar | |
|
Jiang HR, Milovanović M, Allan D, Niedbala W, Besnard AG, Fukada SY, Alves-Filho JC, Togbe D, Goodyear CS, Linington C, et al: IL-33 attenuates EAE by suppressing IL-17 and IFN-gamma production and inducing alternatively activated macrophages. Eur J Immunol. 42:1804–1814. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N, Schwartz A, Smirnov I, Pollack A, Jung S and Schwartz M: Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest. 116:905–915. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Boche D, Perry VH and Nicoll JA: Review: Activation patterns of microglia and their identification in the human brain. Neuropath Appl Neuro. 39:3–18. 2013. View Article : Google Scholar | |
|
Mills CD: M1 and M2 macrophages: Oracles of health and disease. Crit Rev Immunol. 32:463–488. 2012. View Article : Google Scholar | |
|
Ransohoff RM and Brown MA: Innate immunity in the central nervous system. J Clin Invest. 122:1164–1171. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ransohoff RM and Perry VH: Microglial physiology: Unique stimuli, specialized responses. Annu Rev Immunol. 27:119–145. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Graeber MB: Changing face of microglia. Science. 330:783–788. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK and Suttles J: Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 175:342–349. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Liang H and Zen K: Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 5:6142014. View Article : Google Scholar : PubMed/NCBI | |
|
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Varnum MM and Ikezu T: The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer's disease brain. Arch Immunol Ther Exp (Warsz). 60:251–266. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Colton C and Wilcock DM: Assessing activation states in microglia. CNS Neurol Disord Drug Targets. 9:174–191. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Henkel JS, Beers DR, Zhao W and Appel SH: Microglia in ALS: The good, the bad, and the resting. J Neuroimmune Pharm. 4:389–398. 2009. View Article : Google Scholar | |
|
Hanisch UK and Kettenmann H: Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 10:1387–1394. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang LX, Zhang SX, Wu HJ, Rong XL and Guo J: M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 106:345–358. 2019. View Article : Google Scholar | |
|
Ferrante CJ, Pinhal-Enfield G, Elson G, Cronstein BN, Hasko G, Outram S and Leibovich SJ: The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Rα) signaling. Inflammation. 36:921–931. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zizzo G, Hilliard BA, Monestier M and Cohen PL: Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol. 189:3508–3520. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mosser DM and Edwards JP: Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 8:958–969. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Edwards JP, Zhang X, Frauwirth KA and Mosser DM: Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol. 80:1298–1307. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Sävman K, et al: Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun. 32:70–85. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Freilich RW, Woodbury ME and Ikezu T: Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One. 8:e794162013. View Article : Google Scholar : PubMed/NCBI | |
|
Fenn AM, Henry CJ, Huang Y, Dugan A and Godbout JP: Lipopolysaccharide-induced interleukin (IL)-4 receptor-α expression and corresponding sensitivity to the M2 promoting effects of IL-4 are impaired in microglia of aged mice. Brain Behav Immun. 26:766–777. 2012. View Article : Google Scholar | |
|
Liu HC, Zheng MH, Du YL, Wang L, Kuang F, Qin HY, Zhang BF and Han H: N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cell Immunol. 278:84–90. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Michelucci A, Heurtaux T, Grandbarbe L, Morga E and Heuschling P: Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta. J Neuroimmunol. 210:3–12. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Crane MJ, Daley JM, van Houtte O, Brancato SK, Henry WJ Jr and Albina JE: The monocyte to macrophage transition in the murine sterile wound. PLoS One. 9:e866602014. View Article : Google Scholar : PubMed/NCBI | |
|
Italiani P, Mazza EM, Lucchesi D, Cifola I, Gemelli C, Grande A, Battaglia C, Bicciato S and Boraschi D: Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro. PLoS One. 9:e876802014. View Article : Google Scholar : PubMed/NCBI | |
|
Orecchioni M, Ghosheh Y, Pramod AB and Ley K: Macrophage polarization: Different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 10:10842019. View Article : Google Scholar : PubMed/NCBI | |
|
Watanabe S, Alexander M, Misharin AV and Budinger GRS: The role of macrophages in the resolution of inflammation. J Clin Invest. 129:2619–2628. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Atri C, Guerfali FZ and Laouini D: Role of human macrophage polarization in inflammation during infectious diseases. Int J Mol Sci. 19:18012018. View Article : Google Scholar : PubMed/NCBI | |
|
Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
He C and Carter AB: The metabolic prospective and redox regulation of macrophage polarization. J Clin Cell Immunol. 6:3712015. View Article : Google Scholar | |
|
Bansal S, Barathi V, Iwata D and Agrawal R: Experimental autoimmune uveitis and other animal models of uveitis: An update. Indian J Ophthalmol. 63:211–218. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Meng X, Fang S, Zhang Z, Wang Y, You C, Zhang J and Yan H: Preventive effect of chrysin on experimental autoimmune uveitis triggered by injection of human IRBP peptide 1-20 in mice. Cell Mol Immunol. 14:702–711. 2017. View Article : Google Scholar | |
|
Bousquet E, Camelo S, Leroux Les Jardins G, Goldenberg B, Naud MC, Besson-Lescure B, Lebreton L, Annat J, Behar-Cohen F and de Kozak Y: Protective effect of intravitreal administration of tresperimus, an immunosuppressive drug, on experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 52:5414–5423. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Haruta H, Ohguro N, Fujimoto M, Hohki S, Terabe F, Serada S, Nomura S, Nishida K, Kishimoto T and Naka T: Blockade of interleukin-6 signaling suppresses not only th17 but also interphotoreceptor retinoid binding protein-specific Th1 by promoting regulatory T cells in experimental autoimmune uveoretinitis. Investigative Invest Ophthalmol Vis Sci. 52:3264–3271. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Luger D, Silver PB, Tang J, Cua D, Chen Z, Iwakura Y, Bowman EP, Sgambellone NM, Chan CC and Caspi RR: Either a Th17 or a Th1 effector response can drive autoimmunity: Conditions of disease induction affect dominant effector category. J Exp Med. 205:799–810. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao J, Chen M and Xu H: Experimental autoimmune uveoretinitis (EAU)-related tissue damage and angiogenesis is reduced in CCL2-/-CX3CR1gfp/gfp mice. Invest Ophthalmol Vis Sci. 55:7572–7582. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen M, Copland DA, Zhao J, Liu J, Forrester JV, Dick AD and Xu H: Persistent inflammation subverts thrombospondin-1-induced regulation of retinal angiogenesis and is driven by CCR2 ligation. Am J Pathol. 180:235–245. 2012. View Article : Google Scholar | |
|
Lipski DA, Dewispelaere R, Foucart V, Caspers LE, Defrance M, Bruyns C and Willermain F: MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis. J Neuroinflamm. 14:1362017. View Article : Google Scholar | |
|
Miura-Takeda S, Tashiro-Yamaji J, Oku H, Takahashi T, Shimizu T, Sugiyama T, Ikeda T, Kubota T and Yoshida R: Experimental autoimmune uveoretinitis initiated by non-phagocytic destruction of inner segments of photoreceptor cells by Mac-1(+) mononuclear cells. Microbiol Immunol. 52:601–610. 2008. View Article : Google Scholar | |
|
Niven J, Hoare J, McGowan D, Devarajan G, Itohara S, Gannagé M, Teismann P and Crane I: S100B up-regulates macrophage production of IL1β and CCL22 and influences severity of retinal inflammation. PLoS One. 10:e1326882015. View Article : Google Scholar | |
|
Nguyen AM and Rao NA: Oxidative photoreceptor cell damage in autoimmune uveitis. J Ophthalmic Inflamm Infect. 1:7–13. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wu GS, Lee TD, Moore RE and Rao NA: Photoreceptor mitochondrial tyrosine nitration in experimental uveitis. Invest Ophthalmol Vis Sci. 46:2271–2281. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kimura A, Naka T, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y and Kishimoto T: Aryl hydrocarbon receptor in combination with Stat1 regulates LPS-induced inflammatory responses. J Exp Med. 206:2027–2035. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, He J, Liang H, Hu K, Jiang S, Yang L, Mei S, Zhu X, Yu J, Kijlstra A, et al: Aryl hydrocarbon receptor regulates apoptosis and inflammation in a murine model of experimental autoimmune uveitis. Front Immunol. 9:17132018. View Article : Google Scholar : PubMed/NCBI | |
|
Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S and Kastelein RA: IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol. 179:2551–2555. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, et al: IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 183:6469–6477. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Barbour M, Allan D, Xu H, Pei C, Chen M, Niedbala W, Fukada SY, Besnard AG, Alves-Filho JC, Tong X, et al: IL-33 attenuates the development of experimental autoimmune uveitis. Eur J Immunol. 44:3320–3329. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Qu R, Zhou M, Qiu Y, Peng Y, Yin X, Liu B, Bi H, Gao Y and Guo D: Glucocorticoids improve the balance of M1/M2 macrophage polarization in experimental autoimmune uveitis through the P38MAPK-MEF2C axis. Int Immunopharmacol. 120:1103922023. View Article : Google Scholar : PubMed/NCBI | |
|
Tortorella C, Simone O, Piazzolla G, Stella I and Antonaci S: Age-related impairment of GM-CSF-induced signalling in neutrophils: Role of SHP-1 and SOCS proteins. Ageing Res Rev. 6:81–93. 2007. View Article : Google Scholar | |
|
Jost MM, Ninci E, Meder B, Kempf C, Van Royen N, Hua J, Berger B, Hoefer I, Modolell M and Buschmann I: Divergent effects of GM-CSF and TGFbeta1 on bone marrow-derived macrophage arginase-1 activity, MCP-1 expression, and matrix metalloproteinase-12: A potential role during arteriogenesis. FASEB J. 17:2281–2283. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Chen M, Zhao J, Ali IHA, Marry S, Augustine J, Bhuckory M, Lynch A, Kissenpfennig A and Xu H: Cytokine signaling protein 3 deficiency in myeloid cells promotes retinal degeneration and angiogenesis through arginase-1 up-regulation in experimental autoimmune uveoretinitis. Am J Pathol. 188:1007–1020. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Benitez JT and Bouchard KR: Brain stem auditory evoked response correlates in patients with spinocerebellar lesions. Am J Otol. 7:183–187. 1986.PubMed/NCBI | |
|
Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB and Joachim SC: Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. J Neuroinflamm. 10:1202013. View Article : Google Scholar | |
|
Cui Q, Yin Y and Benowitz LI: The role of macrophages in optic nerve regeneration. Neuroscience. 158:1039–1048. 2009. View Article : Google Scholar | |
|
Starossom SC, Veremeyko T, Yung AWY, Dukhinova M, Au C, Lau AY, Weiner HL and Ponomarev ED: Platelets play differential role during the initiation and progression of autoimmune neuroinflammation. Circ Res. 117:779–792. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI | |
|
McGeachy MJ: GM-CSF: The secret weapon in the T(H)17 arsenal. Nat Immunol. 12:521–522. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D and Dittel BN: GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol. 178:39–48. 2007. View Article : Google Scholar | |
|
Ponomarev ED, Shriver LP, Maresz K and Dittel BN: Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J Neurosci Res. 81:374–389. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Ponomarev ED, Maresz K, Tan Y and Dittel BN: CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci. 27:10714–10721. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HL, Hassan MY, Zheng XY, Azimullah S, Quezada HC, Amir N, Elwasila M, Mix E, Adem A and Zhu J: Attenuated EAN in TNF-α deficient mice is associated with an altered balance of M1/M2 macrophages. PLoS One. 7:e381572012. View Article : Google Scholar | |
|
Kroenke MA, Carlson TJ, Andjelkovic AV and Segal BM: IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. J Exp Med. 205:1535–1541. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ha Y, Liu H, Zhu S, Yi P, Liu W, Nathanson J, Kayed R, Loucas B, Sun J, Frishman LJ, et al: Critical Role of the CXCL10/C-X-C chemokine receptor 3 axis in promoting leukocyte recruitment and neuronal injury during traumatic optic neuropathy induced by optic nerve crush. Am J Pathol. 187:352–365. 2017. View Article : Google Scholar : | |
|
Kwon MJ, Shin HY, Cui Y, Kim H, Thi AH, Choi JY, Kim EY, Hwang DH and Kim BG: CCL2 mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. J Neurosci. 35:15934–15947. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Butti E, Bergami A, Recchia A, Brambilla E, Del Carro U, Amadio S, Cattalini A, Esposito M, Stornaiuolo A, Comi G, et al: IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther. 15:504–515. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Georgiou T, Wen YT, Chang CH, Kolovos P, Kalogerou M, Prokopiou E, Neokleous A, Huang CT and Tsai RK: Neuroprotective effects of Omega-3 polyunsaturated fatty acids in a rat model of anterior ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 58:1603–1611. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Locri F, Cammalleri M, Pini A, Dal Monte M, Rusciano D and Bagnoli P: Further evidence on efficacy of diet supplementation with fatty acids in ocular pathologies: Insights from the EAE model of optic neuritis. Nutrients. 10:14472018. View Article : Google Scholar : PubMed/NCBI | |
|
Sen HN and Nussenblatt RB: Sympathetic ophthalmia: What have we learned? Am J Ophthalmol. 148:632–633. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Castiblanco CP and Adelman RA: Sympathetic ophthalmia. Graefes Arch Clin Exp Ophthalmol. 247:289–302. 2009. View Article : Google Scholar | |
|
Jakobiec FA, Marboe CC, Knowles DN II, Iwamoto T, Harrison W, Chang S and Coleman DJ: Human sympathetic ophthalmia. An analysis of the inflammatory infiltrate by hybridoma-monoclonal antibodies, immunochemistry, and correlative electron microscopy. Ophthalmology. 90:76–95. 1983. View Article : Google Scholar : PubMed/NCBI | |
|
Shah DN, Piacentini MA, Burnier MN, McLean IW, Nussenblatt RB and Chan CC: Inflammatory cellular kinetics in sympathetic ophthalmia a study of 29 traumatized (exciting) eyes. Ocul Immunol Inflamm. 1:255–262. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Abu El-Asrar AM, Struyf S, Van den Broeck C, Van Damme J, Opdenakker G, Geboes K and Kestelyn P: Expression of chemokines and gelatinase B in sympathetic ophthalmia. Eye (Lond). 21:649–657. 2007. View Article : Google Scholar | |
|
Aziz HA, Flynn HW Jr, Young RC, Davis JL and Dubovy SR: Sympathetic ophthalmia: Clinicopathologic correlation in a consecutive case series. Retina. 35:1696–1703. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chan CC, Nussenblatt RB, Fujikawa LS, Palestine AG, Stevens G Jr, Parver LM, Luckenbach MW and Kuwabara T: Sympathetic ophthalmia. Immunopathological findings. Ophthalmology. 93:690–695. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Furusato E, Shen D, Cao X, Furusato B, Nussenblatt RB, Rushing EJ and Chan CC: Inflammatory cytokine and chemokine expression in sympathetic ophthalmia: A pilot study. Histol Histopathol. 26:1145–1151. 2011.PubMed/NCBI | |
|
Marak GE Jr: Recent advances in sympathetic ophthalmia. Surv Ophthalmol. 24:141–156. 1979. View Article : Google Scholar : PubMed/NCBI | |
|
Ben M'Barek K and Monville C: Cell therapy for retinal dystrophies: From cell suspension formulation to complex retinal tissue bioengineering. Stem Cells Int. 2019:45689792019.PubMed/NCBI | |
|
Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ and Cheetham ME: The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retin Eye Res. 62:1–23. 2018. View Article : Google Scholar : | |
|
Kyger M, Worley A and Adamus G: Autoimmune responses against photoreceptor antigens during retinal degeneration and their role in macrophage recruitment into retinas of RCS rats. J Neuroimmunol. 254:91–100. 2013. View Article : Google Scholar : | |
|
Sevenich L: Brain-resident microglia and blood-borne macrophages orchestrate central nervous system inflammation in neurodegenerative disorders and brain cancer. Front Immunol. 9:6972018. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Chen M and Forrester JV: Para-inflammation in the aging retina. Prog Retin Eye Res. 28:348–368. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wohleb ES: Neuron-microglia interactions in mental health disorders: 'For better, and for worse'. Front Immunol. 7:5442016. View Article : Google Scholar | |
|
Edholm ES, Rhoo KH and Robert J: Evolutionary aspects of macrophages polarization. Results Probl Cell Differ. 62:3–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Neves J, Zhu J, Sousa-Victor P, Konjikusic M, Riley R, Chew S, Qi Y, Jasper H and Lamba DA: Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 353:aaf36462016. View Article : Google Scholar : PubMed/NCBI | |
|
Xie J, Li Y, Dai J, He Y, Sun D, Dai C, Xu H and Yin ZQ: Olfactory ensheathing cells grafted into the retina of RCS rats suppress inflammation by down-regulating the JAK/STAT pathway. Front Cell Neurosci. 13:3412019. View Article : Google Scholar : PubMed/NCBI | |
|
Olivares-González L, Velasco S, Gallego I, Esteban-Medina M, Puras G, Loucera C, Martínez-Romero A, Peña-Chilet M, Pedraz JL and Rodrigo R: An SPM-enriched marine oil supplement shifted microglia polarization toward M2, ameliorating retinal degeneration in rd10 mice. Antioxidants (Basel). 12:982022. View Article : Google Scholar | |
|
Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ and Zack DJ: Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 36:774–786. 1995.PubMed/NCBI | |
|
Levkovitch-Verbin H, Dardik R, Vander S, Nisgav Y, Kalev-Landoy M and Melamed S: Experimental glaucoma and optic nerve transection induce simultaneous upregulation of proapoptotic and prosurvival genes. Invest Ophthalmol Vis Sci. 47:2491–2497. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Prilloff S, Henrich-Noack P and Sabel BA: Recovery of axonal transport after partial optic nerve damage is associated with secondary retinal ganglion cell death in vivo. Invest Ophthalmol Vis Sci. 53:1460–1466. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Levkovitch-Verbin H, Quigley HA, Martin KRG, Zack DJ, Pease ME and Valenta DF: A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Ophthalmol Vis Sci. 44:3388–3393. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, D'Anna SA, Kerrigan D and Pease ME: Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci. 42:975–982. 2001.PubMed/NCBI | |
|
Yoles E and Schwartz M: Degeneration of spared axons following partial white matter lesion: Implications for optic nerve neuropathies. Exp Neurol. 153:1–7. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Li HY, Huang M, Luo QY, Hong X, Ramakrishna S and So KF: Lycium barbarum (wolfberry) increases retinal ganglion cell survival and affects both microglia/macrophage polarization and autophagy after rat partial optic nerve transection. Cell Transplant. 28:607–618. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wada Y, Nakamachi T, Endo K, Seki T, Ohtaki H, Tsuchikawa D, Hori M, Tsuchida M, Yoshikawa A, Matkovits A, et al: PACAP attenuates NMDA-induced retinal damage in association with modulation of the microglia/macrophage status into an acquired deactivation subtype. J Mol Neurosci. 51:493–502. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Schwartz M: Macrophages and microglia in central nervous system injury: Are they helpful or harmful? J Cereb Blood Flow Metab. 23:385–394. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Hayreh SS: Ischemic optic neuropathy. Prog Retin Eye Res. 28:34–62. 2009. View Article : Google Scholar | |
|
Salgado C, Vilson F, Miller NR and Bernstein SL: Cellular inflammation in nonarteritic anterior ischemic optic neuropathy and its primate model. Arch Ophthalmol. 129:1583–1591. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Guo Y, Miller NR and Bernstein SL: Optic nerve infarction and post-ischemic inflammation in the rodent model of anterior ischemic optic neuropathy (rAION). Brain Res. 1264:67–75. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Nicholson JD, Leiba H and Goldenberg-Cohen N: Translational preclinical research may lead to improved medical management of non-arteritic anterior ischemic optic neuropathy. Front Neurol. 5:1222014. View Article : Google Scholar : PubMed/NCBI | |
|
Hayreh SS and Zimmerman MB: Nonarteritic anterior ischemic optic neuropathy: Natural history of visual outcome. Ophthalmology. 115:298–305.e2. 2008. View Article : Google Scholar | |
|
Bernstein SL, Johnson MA and Miller NR: Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models. Prog Retin Eye Res. 30:167–187. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR and Benowitz LI: Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci. 23:2284–2293. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Orihuela R, McPherson CA and Harry GJ: Microglial M1/M2 polarization and metabolic states. Brit J Pharmacol. 173:649–665. 2016. View Article : Google Scholar | |
|
Wen YT, Huang TL, Huang SP, Chang CH and Tsai RK: Early applications of granulocyte colony-stimulating factor (G-CSF) can stabilize the blood-optic-nerve barrier and ameliorate inflammation in a rat model of anterior ischemic optic neuropathy (rAION). Dis Model Mech. 9:1193–1202. 2016.PubMed/NCBI | |
|
Desai TD, Wen YT, Daddam JR, Cheng F, Chen CC, Pan CL, Lin KL and Tsai RK: Long term therapeutic effects of icariin-loaded PLGA microspheres in an experimental model of optic nerve ischemia via modulation of CEBP-β/G-CSF/noncanonical NF-κB axis. Bioeng Transl Med. 7:e102892022. View Article : Google Scholar | |
|
Nguyen Ngo Le MA, Wen YT, Ho YC, Kapupara K and Tsai RK: Therapeutic effects of puerarin against anterior ischemic optic neuropathy through antiapoptotic and anti-inflammatory actions. Invest Ophthalmol Vis Sci. 60:3481–3491. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Arranz A, Doxaki C, Vergadi E, Martinez de la Torre Y, Vaporidi K, Lagoudaki ED, Ieronymaki E, Androulidaki A, Venihaki M, Margioris AN, et al: Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci USA. 109:9517–9522. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Friedlander M: Fibrosis and diseases of the eye. J Clin Invest. 117:576–586. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wynn TA: Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest. 117:524–529. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wermuth PJ and Jimenez SA: The significance of macrophage polarization subtypes for animal models of tissue fibrosis and human fibrotic diseases. Clin Transl Med. 4:22015. View Article : Google Scholar : PubMed/NCBI | |
|
Pastor JC, de la Rúa ER and Martin F: Proliferative vitreoretinopathy: Risk factors and pathobiology. Prog Retin Eye Res. 21:127–144. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Cordeiro MF, Schultz GS, Ali RR, Bhattacharya SS and Khaw PT: Molecular therapy in ocular wound healing. Br J Ophthalmol. 83:1219–1224. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Agrawal RN, He S, Spee C, Cui JZ, Ryan SJ and Hinton DR: In vivo models of proliferative vitreoretinopathy. Nat Protoc. 2:67–77. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Esser P, Heimann K and Wiedemann P: Macrophages in proliferative vitreoretinopathy and proliferative diabetic retinopathy: Differentiation of subpopulations. Br J Ophthalmol. 77:731–733. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Martin F, Pastor JC, De La Rúa ER, Mayo-Iscar A, García-Arumí J, Martínez V, Fernández N and Saornil MA: Proliferative vitreoretinopathy: Cytologic findings in vitreous samples. Ophthalmic Res. 35:232–238. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Garweg JG, Tappeiner C and Halberstadt M: Pathophysiology of proliferative vitreoretinopathy in retinal detachment. Surv Ophthalmol. 58:321–329. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wong CW, Cheung N, Ho C, Barathi V, Storm G and Wong TT: Characterisation of the inflammatory cytokine and growth factor profile in a rabbit model of proliferative vitreoretinopathy. Sci Rep. 9:154192019. View Article : Google Scholar : PubMed/NCBI | |
|
Ishikawa K, Kannan R and Hinton DR: Molecular mechanisms of subretinal fibrosis in age-related macular degeneration. Exp Eye Res. 142:19–25. 2016. View Article : Google Scholar | |
|
Song Y, Liao M, Zhao X, Han H, Dong X, Wang X, Du M and Yan H: Vitreous M2 macrophage-derived microparticles promote RPE cell proliferation and migration in traumatic proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 62:262021. View Article : Google Scholar : PubMed/NCBI | |
|
Kobayashi Y, Yoshida S, Nakama T, Zhou Y, Ishikawa K, Arita R, Nakao S, Miyazaki M, Sassa Y, Oshima Y, et al: Overexpression of CD163 in vitreous and fibrovascular membranes of patients with proliferative diabetic retinopathy: possible involvement of periostin. Br J Ophthalmol. 99:451–456. 2015. View Article : Google Scholar | |
|
Zhang J, Zhou Q, Yuan G, Dong M and Shi W: Notch signaling regulates M2 type macrophage polarization during the development of proliferative vitreoretinopathy. Cell Immunol. 298:77–82. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lim LS, Mitchell P, Seddon JM, Holz FG and Wong TY: Age-related macular degeneration. Lancet. 379:1728–1738. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Greaves NS, Ashcroft KJ, Baguneid M and Bayat A: Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci. 72:206–217. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kent D and Sheridan C: Choroidal neovascularization: A wound healing perspective. Mol Vis. 9:747–755. 2003. | |
|
Cherepanoff S, McMenamin P, Gillies MC, Kettle E and Sarks SH: Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol. 94:918–925. 2010. View Article : Google Scholar | |
|
Bo Q, Shen M, Xiao M, Liang J, Zhai Y, Zhu H, Jiang M, Wang F, Luo X and Sun X: 3-Methyladenine alleviates experimental subretinal fibrosis by inhibiting macrophages and M2 polarization through the PI3K/Akt pathway. J Ocul Pharmacol Ther. 36:618–628. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
He L and Marneros AG: Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am J Pathol. 182:2407–2417. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cao X, Shen D, Patel MM, Tuo J, Johnson TM, Olsen TW and Chan CC: Macrophage polarization in the maculae of age-related macular degeneration: A pilot study. Pathol Int. 61:528–535. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lai K, Li Y, Li L, Gong Y, Huang C, Zhang Y, Cheng L, Xu F, Zhao H, Li C, et al: Intravitreal injection of triptolide attenuates subretinal fibrosis in laser-induced murine model. Phytomedicine. 93:1537472021. View Article : Google Scholar : PubMed/NCBI | |
|
Mehla K and Singh PK: Metabolic regulation of macrophage polarization in cancer. Trends Cancer. 5:822–834. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Egan KM, Seddon JM, Glynn RJ, Gragoudas ES and Albert DM: Epidemiologic aspects of uveal melanoma. Surv Ophthalmol. 32:239–251. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson DB and Daniels AB: Continued poor survival in metastatic uveal melanoma: Implications for molecular prognostication, surveillance imaging, adjuvant therapy, and clinical trials. JAMA Ophthalmol. 136:986–988. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hood JL: The association of exosomes with lymph nodes. Semin Cell Dev Biol. 67:29–38. 2017. View Article : Google Scholar | |
|
Bardi GT, Smith MA and Hood JL: Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 105:63–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Delwar ZM, Kuo Y, Wen YH, Rennie PS and Jia W: Oncolytic virotherapy blockade by microglia and macrophages requires STAT1/3. Cancer Res. 78:718–730. 2018. View Article : Google Scholar | |
|
Zhou D, Huang C, Lin Z, Zhan S, Kong L, Fang C and Li J: Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 26:192–197. 2014. View Article : Google Scholar | |
|
Liu S, Zhang J, Fang S, Zhang Q, Zhu G, Tian Y, Zhao M and Liu F: Macrophage polarization contributes to the efficacy of an oncolytic HSV-1 targeting human uveal melanoma in a murine xenograft model. Exp Eye Res. 202:1082852021. View Article : Google Scholar | |
|
Spiller KL, Anfang RR, Spiller KJ, Ng J, Nakazawa KR, Daulton JW and Vunjak-Novakovic G: The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials. 35:4477–4488. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MPJ and Donners MMPC: Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis. 17:109–118. 2014. View Article : Google Scholar | |
|
Cheung N, Mitchell P and Wong TY: Diabetic retinopathy. Lancet. 376:124–136. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O'Neal DN and Januszewski AS: Biomarkers in diabetic retinopathy. Rev Diabet Stud. 12:159–195. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu JH, Li YN, Chen AQ, Hong CD, Zhang CL, Wang HL, Zhou YF, Li PC, Wang Y, Mao L, et al: Inhibition of Sema4D/PlexinB1 signaling alleviates vascular dysfunction in diabetic retinopathy. EMBO Mol Med. 12:e101542020. View Article : Google Scholar : PubMed/NCBI | |
|
Madonna R, Balistreri CR, Geng YJ and De Caterina R: Diabetic microangiopathy: Pathogenetic insights and novel therapeutic approaches. Vasc Pharmacol. 90:1–7. 2017. View Article : Google Scholar | |
|
Chen C, Wu S, Hong Z, Chen X, Shan X, Fischbach S and Xiao X: Chronic hyperglycemia regulates microglia polarization through ERK5. Aging (Albany NY). 11:697–706. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen T, Zhu W, Wang C, Dong X, Yu F, Su Y, Huang J, Huo L and Wan P: ALKBH5-mediated m6A modification of A20 regulates microglia polarization in diabetic retinopathy. Front Immunol. 13:8139792022. View Article : Google Scholar | |
|
Yao Y, Li J, Zhou Y, Wang S, Zhang Z, Jiang Q and Li K: Macrophage/microglia polarization for the treatment of diabetic retinopathy. Front Endocrinol (Lausanne). 14:12762252023. View Article : Google Scholar : PubMed/NCBI | |
|
Tang L, Zhang C, Lu L, Tian H, Liu K, Luo D, Qiu Q, Xu GT and Zhang J: Melatonin maintains inner blood-retinal barrier by regulating microglia via inhibition of PI3K/Akt/Stat3/NF-κB signaling pathways in experimental diabetic retinopathy. Front Immunol. 13:8316602022. View Article : Google Scholar | |
|
Fang M, Wan W, Li Q, Wan W, Long Y, Liu H and Yang X: Asiatic acid attenuates diabetic retinopathy through TLR4/MyD88/NF-κB p65 mediated modulation of microglia polarization. Life Sci. 277:1195672021. View Article : Google Scholar | |
|
Good WV, Hardy RJ, Dobson V, Palmer EA, Phelps DL, Quintos M and Tung B; Early Treatment for Retinopathy of Prematurity Cooperative Group: The incidence and course of retinopathy of prematurity: Findings from the early treatment for retinopathy of prematurity study. Pediatrics. 116:15–23. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Dogra MR, Katoch D and Dogra M: An update on retinopathy of prematurity (ROP). Indian J Pediatr. 84:930–936. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Dhawan A, Dogra M, Vinekar A, Gupta A and Dutta S: Structural sequelae and refractive outcome after successful laser treatment for threshold retinopathy of prematurity. J Pediatr Ophthalmol Strabismus. 45:356–361. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Katoch D, Sanghi G, Dogra MR, Beke N and Gupta A: Structural sequelae and refractive outcome 1 year after laser treatment for type 1 prethreshold retinopathy of prematurity in Asian Indian eyes. Indian J Ophthalmol. 59:423–426. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J, Kim KE, Choi DK, Jang JY, Jung JJ, Kiyonari H, Shioi G, Chang W, Suda T, Mochizuki N, et al: Angiopoietin-1 guides directional angiogenesis through integrin αvβ5 signaling for recovery of ischemic retinopathy. Sci Transl Med. 5:203ra1272013. View Article : Google Scholar | |
|
Ma J, Mehta M, Lam G, Cyr D, Ng TF, Hirose T, Tawansy KA, Taylor AW and Lashkari K: Influence of subretinal fluid in advanced stage retinopathy of prematurity on proangiogenic response and cell proliferation. Mol Vis. 20:881–893. 2014.PubMed/NCBI | |
|
Li J, Yu S, Lu X, Cui K, Tang X, Xu Y and Liang X: The phase changes of M1/M2 phenotype of microglia/macrophage following oxygen-induced retinopathy in mice. Inflamm Res. 70:183–192. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Outtz HH, Tattersall IW, Kofler NM, Steinbach N and Kitajewski J: Notch1 controls macrophage recruitment and Notch signaling is activated at sites of endothelial cell anastomosis during retinal angiogenesis in mice. Blood. 118:3436–3439. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Marchetti V, Yanes O, Aguilar E, Wang M, Friedlander D, Moreno S, Storm K, Zhan M, Naccache S, Nemerow G, et al: Differential macrophage polarization promotes tissue remodeling and repair in a model of ischemic retinopathy. Sci Rep. 1:762011. View Article : Google Scholar : | |
|
Sun X, Ma L, Li X, Wang J, Li Y and Huang Z: Ferulic acid alleviates retinal neovascularization by modulating microglia/macrophage polarization through the ROS/NF-κB axis. Front Immunol. 13:9767292022. View Article : Google Scholar | |
|
Sui A, Chen X, Demetriades AM, Shen J, Cai Y, Yao Y, Yao Y, Zhu Y, Shen X and Xie B: Inhibiting NF-κB signaling activation reduces retinal neovascularization by promoting a polarization shift in macrophages. Invest Ophthalmol Vis Sci. 61:42020. View Article : Google Scholar | |
|
Zhu Y, Tan W, Demetriades AM, Cai Y, Gao Y, Sui A, Lu Q, Shen X, Jiang C, Xie B and Sun X: Interleukin-17A neutralization alleviated ocular neovascularization by promoting M2 and mitigating M1 macrophage polarization. Immunology. 147:414–428. 2016. View Article : Google Scholar : | |
|
Gao S, Li C, Zhu Y, Wang Y, Sui A, Zhong Y, Xie B and Shen X: PEDF mediates pathological neovascularization by regulating macrophage recruitment and polarization in the mouse model of oxygen-induced retinopathy. Sci Rep. 7:428462017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Yoshida S, Nakao S, Yoshimura T, Kobayashi Y, Nakama T, Kubo Y, Miyawaki K, Yamaguchi M, Ishikawa K, et al: M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 56:4767–4777. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ritter MR, Banin E, Moreno SK, Aguilar E, Dorrell MI and Friedlander M: Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest. 116:3266–3276. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Fine SL, Berger JW, Maguire MG and Ho AC: Age-related macular degeneration. New Engl J Med. 342:483–492. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenfeld PJ, Shapiro H, Tuomi L, Webster M, Elledge J and Blodi B; MARINA and ANCHOR Study Groups: Characteristics of patients losing vision after 2 years of monthly dosing in the phase III ranibizumab clinical trials. Ophthalmology. 118:523–530. 2011. View Article : Google Scholar | |
|
CATT Research Group; Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL and Jaffe GJ: Ranibizumab and bevacizumab for neovascular age-related macular degeneration. New Engl J Med. 364:1897–1908. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Takeda A, Baffi JZ, Kleinman ME, Cho WG, Nozaki M, Yamada K, Kaneko H, Albuquerque RJ, Dridi S, Saito K, et al: CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature. 460:225–230. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY and Kim RY; MARINA Study Group: Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 355:1419–1431. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP and Schneider S; ANCHOR Study Group: Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 355:1432–1444. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Grisanti S and Tatar O: The role of vascular endothelial growth factor and other endogenous interplayers in age-related macular degeneration. Prog Retin Eye Res. 27:372–390. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Zarbin MA: Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol. 122:598–614. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
He L and Marneros AG: Doxycycline inhibits polarization of macrophages to the proangiogenic M2-type and subsequent neovascularization. J Biol Chem. 289:8019–8028. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura R, Sene A, Santeford A, Gdoura A, Kubota S, Zapata N and Apte RS: IL10-driven STAT3 signalling in senescent macrophages promotes pathological eye angiogenesis. Nat Commun. 6:78472015. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Liu F, Tang M, Yuan M, Hu A, Zhan Z, Li Z, Li J, Ding X and Lu L: Macrophage polarization in experimental and clinical choroidal neovascularization. Sci Rep. 6:309332016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Zhang R, Zhang Q, Jin H, Wei C, Wu C, Mei L, Liu Y and Zhang P: Cytokine profiles and the effect of intravitreal aflibercept treatment on experimental choroidal neovascularization. Ophthalmic Res. 65:68–76. 2022. View Article : Google Scholar | |
|
Manthey CL, Moore BA, Chen Y, Loza MJ, Yao X, Liu H, Belkowski SM, Raymond-Parks H, Dunford PJ, Leon F, et al: The CSF-1-receptor inhibitor, JNJ-40346527 (PRV-6527), reduced inflammatory macrophage recruitment to the intestinal mucosa and suppressed murine T cell mediated colitis. PLoS One. 14:e2239182019. View Article : Google Scholar | |
|
Braza MS, Conde P, Garcia M, Cortegano I, Brahmachary M, Pothula V, Fay F, Boros P, Werner SA, Ginhoux F, et al: Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. Am J Transplant. 18:1247–1255. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Zeng J, Tu Y, Li L, Du S, Zhu L, Cang X, Lu J, Zhu M and Liu X: CSF1/CSF1R-mediated crosstalk between choroidal vascular endothelial cells and macrophages promotes choroidal neovascularization. Invest Ophthalmol Vis Sci. 62:372021. View Article : Google Scholar | |
|
Zhang P, Lu B, Zhang Q, Xu F, Zhang R, Wang C, Liu Y, Wei C and Mei L: LncRNA NEAT1 sponges MiRNA-148a-3p to suppress choroidal neovascularization and M2 macrophage polarization. Mol Immunol. 127:212–222. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zandi S, Nakao S, Chun KH, Fiorina P, Sun D, Arita R, Zhao M, Kim E, Schueller O, Campbell S, et al: ROCK-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep. 10:1173–1186. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Cui K, Li J, Tang X, Lin J, Lu X, Huang R, Yang B, Shi Y, Ye D, et al: Melatonin attenuates choroidal neovascularization by regulating macrophage/microglia polarization via inhibition of RhoA/ROCK signaling pathway. J Pineal Res. 69:e126602020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao S, Lu L, Liu Q, Chen J, Yuan Q, Qiu S and Wang X: MiR-505 promotes M2 polarization in choroidal neovascularization model mice by targeting transmembrane protein 229B. Scand J Immunol. 90:e128322019. View Article : Google Scholar : PubMed/NCBI | |
|
Gao L, Jiang W, Liu H, Chen Z and Lin Y: Receptor-selective interleukin-4 mutein attenuates laser-induced choroidal neovascularization through the regulation of macrophage polarization in mice. Exp Ther Med. 22:13672021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Mao X, Yang Q, Zhang X, Xu J, Ma Q, Zhou Y, Da Q, Cai Y, Sopeyin A, et al: Suppression of myeloid PFKFB3-driven glycolysis protects mice from choroidal neovascularization. Br J Pharmacol. 179:5109–5131. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Cheng T and Qu Y: TIMP-3 suppression induces choroidal neovascularization by moderating the polarization of macrophages in age-related macular degeneration. Mol Immunol. 106:119–126. 2019. View Article : Google Scholar | |
|
Lai K, Gong Y, Zhao W, Li L, Huang C, Xu F, Zhong X and Jin C: Triptolide attenuates laser-induced choroidal neovascularization via M2 macrophage in a mouse model. Biomed Pharmacother. 129:1103122020. View Article : Google Scholar : PubMed/NCBI | |
|
Chanmee T, Ontong P, Konno K and Itano N: Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 6:1670–1690. 2014. View Article : Google Scholar : PubMed/NCBI |