You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Vezzani B, Carinci M, Patergnani S, Pasquin MP, Guarino A, Aziz N, Pinton P, Simonato M and Giorgi C: The Dichotomous role of inflammation in the CNS: A mitochondrial point of view. Biomolecules. 10:14372020. View Article : Google Scholar : PubMed/NCBI | |
|
Yilmaz C, Karali K, Fodelianaki G, Gravanis A, Chavakis T, Charalampopoulos I and Alexaki VI: Neurosteroids as regulators of neuroinflammation. Front Neuroendocrinol. 55:1007882019. View Article : Google Scholar : PubMed/NCBI | |
|
Fontana L, Ghezzi L, Cross AH and Piccio L: Effects of dietary restriction on neuroinflammation in neurodegenerative diseases. J Exp Med. 218:e201900862021. View Article : Google Scholar : PubMed/NCBI | |
|
Biswas K: Microglia mediated neuroinflammation in neurodegenerative diseases: A review on the cell signaling pathways involved in microglial activation. J Neuroimmunol. 383:5781802023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu A, Yu L, Li X, Zhang K, Zhang W, So KF, Tissir F, Qu Y and Zhou L: Celsr2-mediated morphological polarization and functional phenotype of reactive astrocytes in neural repair. Glia. 71:1985–2004. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Fan YY and Huo J: A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int. 148:1050802021. View Article : Google Scholar : PubMed/NCBI | |
|
Singh D: Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease. J Neuroinflammation. 19:2062022. View Article : Google Scholar : PubMed/NCBI | |
|
Gimenez MA, Sim J, Archambault AS, Klein RS and Russell JH: A tumor necrosis factor receptor 1-dependent conversation between central nervous system-specific T cells and the central nervous system is required for inflammatory infiltration of the spinal cord. Am J Pathol. 168:1200–1209. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Da Mesquita S, Fu Z and Kipnis J: The meningeal lymphatic system: A new player in neurophysiology. Neuron. 100:375–388. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Flores-Romero H, Dadsena S and Garcia-Saez AJ: Mitochondrial pores at the crossroad between cell death and inflammatory signaling. Mol Cell. 83:843–856. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Y, Miao Q, Zhang Q, Mao S, Li M, Xu X, Xia X, Wei K, Fan Y, Zheng X, et al: Aerobic glycolysis is the predominant means of glucose metabolism in neuronal somata, which protects against oxidative damage. Nat Neurosci. 26:2081–2089. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI, Powers R and Franco R: Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology. 391:109–115. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rizzuto R, De Stefani D, Raffaello A and Mammucari C: Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 13:566–578. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Satarker S, Bojja SL, Gurram PC, Mudgal J, Arora D and Nampoothiri M: Astrocytic glutamatergic transmission and its implications in neurodegenerative disorders. Cells. 11:11392022. View Article : Google Scholar : PubMed/NCBI | |
|
Morales-Ropero JM, Arroyo-Urea S, Neubrand VE, Martín-Oliva D, Marín-Teva JL, Cuadros MA, Vangheluwe P, Navascués J, Mata AM and Sepúlveda MR: The endoplasmic reticulum Ca(2+) -ATPase SERCA2b is upregulated in activated microglia and its inhibition causes opposite effects on migration and phagocytosis. Glia. 69:842–857. 2021. View Article : Google Scholar | |
|
Neel DV, Basu H, Gunner G, Bergstresser MD, Giadone RM, Chung H, Miao R, Chou V, Brody E, Jiang X, et al: Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration. Neuron. 111:1222–1240 e1229. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Borsche M, Pereira SL, Klein C and Grünewald A: Mitochondria and Parkinson's disease: Clinical, molecular, and translational aspects. J Parkinsons Dis. 11:45–60. 2021. View Article : Google Scholar : | |
|
Hinkle JT, Patel J, Panicker N, Karuppagounder SS, Biswas D, Belingon B, Chen R, Brahmachari S, Pletnikova O, Troncoso JC, et al: STING mediates neurodegeneration and neuroinflammation in nigrostriatal α-synucleinopathy. Proc Natl Acad Sci USA. 119:e21188191192022. View Article : Google Scholar | |
|
Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV and Gabrielli A: inflammation and DNA damage: Cause, effect or both. Nat Rev Rheumatol. 19:200–211. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Duarte JN: Neuroinflammatory mechanisms of mitochondrial dysfunction and neurodegeneration in glaucoma. J Ophthalmol. 2021:45819092021.PubMed/NCBI | |
|
Yang Y, Liu Y, Zhu J, Song S, Huang Y, Zhang W, Sun Y, Hao J, Yang X, Gao Q, et al: Neuroinflammation-mediated mitochondrial dysregulation involved in postoperative cognitive dysfunction. Free Radic Biol Med. 178:134–146. 2022. View Article : Google Scholar | |
|
Pan RY, Ma J, Kong XX, Wang XF, Li SS, Qi XL, Yan YH, Cheng J, Liu Q, Jin W, et al: Sodium rutin ameliorates Alzheimer's disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv. 5:eaau63282019. View Article : Google Scholar | |
|
Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW II and Mochly-Rosen D: Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 22:1635–1648. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mi Y, Qi G, Vitali F, Shang Y, Raikes AC, Wang T, Jin Y, Brinton RD, Gu H and Yin F: Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat Metab. 5:445–465. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cenini G, Rub C, Bruderek M and Voos W: Amyloid β-peptides interfere with mitochondrial preprotein import competence by a coaggregation process. Mol Biol Cell. 27:3257–3272. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Foreman O, Kirkpatrick DS and Sheng M: The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 510:370–375. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Annesley SJ and Fisher PR: Mitochondria in health and disease. Cells. 8:6802019. View Article : Google Scholar : PubMed/NCBI | |
|
Lin MT and Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 443:787–795. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson J, Mercado-Ayon E, Mercado-Ayon Y, Dong YN, Halawani S, Ngaba L and Lynch DR: Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch Biochem Biophys. 702:1086982021. View Article : Google Scholar | |
|
Adebayo M, Singh S, Singh AP and Dasgupta S: Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB J. 35:e216202021. View Article : Google Scholar : PubMed/NCBI | |
|
Alevriadou BR, Patel A, Noble M, Ghosh S, Gohil VM, Stathopulos PB and Madesh M: Molecular nature and physiological role of the mitochondrial calcium uniporter channel. Am J Physiol Cell Physiol. 320:C465–C482. 2021. View Article : Google Scholar : | |
|
Fischer R and Maier O: Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid Med Cell Longev. 2015:6108132015. View Article : Google Scholar : PubMed/NCBI | |
|
Teleanu DM, Niculescu AG, Lungu II, Radu CI, Vladâcenco O, Roza E, Costăchescu B, Grumezescu AM and Teleanu RI: An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J Mol Sci. 23:59382022. View Article : Google Scholar : PubMed/NCBI | |
|
Tsang T, Davis CI and Brady DC: Copper biology. Curr Biol. 31:R421–R427. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Borisov VB, Siletsky SA, Nastasi MR and Forte E: ROS defense systems and terminal oxidases in bacteria. Antioxidants (Basel). 10:8392021. View Article : Google Scholar : PubMed/NCBI | |
|
Haider S, Batool Z, Ahmad S, Siddiqui RA and Haleem DJ: Walnut supplementation reverses the scopolamine-induced memory impairment by restoration of cholinergic function via mitigating oxidative stress in rats: A potential therapeutic intervention for age related neurodegenerative disorders. Metab Brain Dis. 33:39–51. 2018. View Article : Google Scholar | |
|
Luque-Contreras D, Carvajal K, Toral-Rios D, Franco-Bocanegra D and Campos-Pena V: Oxidative stress and metabolic syndrome: Cause or consequence of Alzheimer's disease? Oxid Med Cell Longev. 2014:4978022014. View Article : Google Scholar : PubMed/NCBI | |
|
Singh A, Kukreti R, Saso L and Kukreti S: Oxidative stress: A key modulator in neurodegenerative diseases. Molecules. 24:15832019. View Article : Google Scholar : PubMed/NCBI | |
|
Bhatia V and Sharma S: Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease. J Neurol Sci. 421:1172532021. View Article : Google Scholar : PubMed/NCBI | |
|
Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B and Samarghandian S: Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: A review. Environ Sci Pollut Res Int. 27:24799–24814. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rowley S, Liang LP, Fulton R, Shimizu T, Day B and Patel M: Mitochondrial respiration deficits driven by reactive oxygen species in experimental temporal lobe epilepsy. Neurobiol Dis. 75:151–158. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Bordoni L and Gabbianelli R: Mitochondrial DNA and neurodegeneration: Any role for dietary antioxidants? Antioxidants (Basel). 9:7642020. View Article : Google Scholar : PubMed/NCBI | |
|
Coppede F: Mitochondrial DNA methylation and mitochondria-related epigenetics in neurodegeneration. Neural Regen Res. 19:405–406. 2024. View Article : Google Scholar | |
|
Sharma VK, Singh TG and Mehta V: Stressed mitochondria: A target to intrude alzheimer's disease. Mitochondrion. 59:48–57. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin J and Epel E: Stress and telomere shortening: Insights from cellular mechanisms. Ageing Res Rev. 73:1015072022. View Article : Google Scholar : | |
|
Ortiz JM and Swerdlow RH: Mitochondrial dysfunction in Alzheimer's disease: Role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol. 176:3489–3507. 2019. View Article : Google Scholar | |
|
Liu H, Zhang H, Zhang Y, Xu S, Zhao H, He H and Liu X: Modeling mtDNA hypermethylation vicious circle mediating Aβ-induced endothelial damage memory in HCMEC/D3 cell. Aging (Albany NY). 12:18343–18362. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rasheed M, Liang J, Wang C, Deng Y and Chen Z: Epigenetic regulation of neuroinflammation in Parkinson's disease. Int J Mol Sci. 22:49562021. View Article : Google Scholar : PubMed/NCBI | |
|
Youle RJ and van der Bliek AM: Mitochondrial fission, fusion, and stress. Science. 337:1062–1065. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Xu Y, Liu Y, Gao J, Feng L, Zhang Y, Shi L and Zhang M, Guo D, Qi B and Zhang M: Mitochondrial quality control in the maintenance of cardiovascular homeostasis: The roles and interregulation of UPS, mitochondrial dynamics and mitophagy. Oxid Med Cell Longev. 2021:39607732021. View Article : Google Scholar : PubMed/NCBI | |
|
Xie JH, Li YY and Jin J: The essential functions of mitochondrial dynamics in immune cells. Cell Mol Immunol. 17:712–721. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chakrabarti S and Bisaglia M: Oxidative stress and neuroinflammation in Parkinson's disease: The role of dopamine oxidation products. Antioxidants (Basel). 12:9552023. View Article : Google Scholar : PubMed/NCBI | |
|
Picca A, Ferri E, Calvani R, Coelho-Junior HJ, Marzetti E and Arosio B: Age-Associated glia remodeling and mitochondrial dysfunction in neurodegeneration: Antioxidant supplementation as a possible intervention. Nutrients. 14:24062022. View Article : Google Scholar : PubMed/NCBI | |
|
Dhapola R, Hota SS, Sarma P, Bhattacharyya A, Medhi B and Reddy DH: Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer's disease. Inflammopharmacology. 29:1669–1681. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chang YH, Lin HY, Shen FC, Su YJ, Chuang JH, Lin TK, Liou CW, Lin CY, Weng SW and Wang PW: The causal role of mitochondrial dynamics in regulating innate immunity in diabetes. Front Endocrinol (Lausanne). 11:4452020. View Article : Google Scholar : PubMed/NCBI | |
|
Paik S, Kim JK, Silwal P, Sasakawa C and Jo EK: An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 18:1141–1160. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yurtsever I, Ustundag UV, Ünal I, Ateş PS and Emekli-Alturfan E: Rifampicin decreases neuroinflammation to maintain mitochondrial function and calcium homeostasis in rotenone-treated zebrafish. Drug Chem Toxicol. 45:1544–1551. 2022. View Article : Google Scholar | |
|
Kannurpatti SS: Mitochondrial calcium homeostasis: Implications for neurovascular and neurometabolic coupling. J Cereb Blood Flow Metab. 37:381–395. 2017. View Article : Google Scholar : | |
|
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE and Lang AE: Parkinson disease. Nat Rev Dis Primers. 3:170132017. View Article : Google Scholar : PubMed/NCBI | |
|
Binvignat O and Olloquequi J: Excitotoxicity as a target against neurodegenerative processes. Curr Pharm Des. 26:1251–1262. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yao L, Wu J, Koc S and Lu G: Genetic imaging of neuroinflammation in Parkinson's disease: Recent advancements. Front Cell Dev Biol. 9:6558192021. View Article : Google Scholar : PubMed/NCBI | |
|
Obrador E, Salvador R, Lopez-Blanch R, Jihad-Jebbar A, Valles SL and Estrela JM: Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants (Basel). 9:9012020. View Article : Google Scholar : PubMed/NCBI | |
|
Cyrino LAR, Delwing-de Lima D, Ullmann OM and Maia TP: Concepts of neuroinflammation and their relationship with impaired mitochondrial functions in bipolar disorder. Front Behav Neurosci. 15:6094872021. View Article : Google Scholar : PubMed/NCBI | |
|
Verkhratsky A, Rodriguez-Arellano JJ, Parpura V and Zorec R: Astroglial calcium signalling in Alzheimer's disease. Biochem Biophys Res Commun. 483:1005–1012. 2017. View Article : Google Scholar | |
|
Casaril AM, Katsalifis A, Schmidt RM and Bas-Orth C: Activated glia cells cause bioenergetic impairment of neurons that can be rescued by knock-down of the mitochondrial calcium uniporter. Biochem Biophys Res Commun. 608:45–51. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Garbincius JF and Elrod JW: Mitochondrial calcium exchange in physiology and disease. Physiol Rev. 102:893–992. 2022. View Article : Google Scholar : | |
|
Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, Petersen OH, Sutton R, Watson AJ and Gerasimenko OV: Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. J Biol Chem. 284:20796–20803. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Green DR and Kroemer G: The pathophysiology of mitochondrial cell death. Science. 305:626–629. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Rimessi A, Previati M, Nigro F, Wieckowski MR and Pinton P: Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int J Biochem Cell Biol. 81:281–293. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C and Pinton P: Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 69:62–72. 2018. View Article : Google Scholar | |
|
Ooi K, Hu L, Feng Y, Han C, Ren X, Qian X, Huang H, Chen S, Shi Q, Lin H, et al: Sigma-1 receptor activation suppresses microglia M1 polarization via regulating endoplasmic reticulum-mitochondria contact and mitochondrial functions in stress-induced hypertension rats. Mol Neurobiol. 58:6625–6646. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Harland M, Torres S, Liu J and Wang X: Neuronal mitochondria modulation of LPS-induced neuroinflammation. J Neurosci. 40:1756–1765. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lim D, Dematteis G, Tapella L, Genazzani AA, Calì T, Brini M and Verkhratsky A: Ca(2+) handling at the mitochondria-ER contact sites in neurodegeneration. Cell Calcium. 98:1024532021. View Article : Google Scholar : PubMed/NCBI | |
|
Krols M, van Isterdael G, Asselbergh B, Kremer A, Lippens S, Timmerman V and Janssens S: Mitochondria-associated membranes as hubs for neurodegeneration. Acta Neuropathol. 131:505–523. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sunanda T, Ray B, Mahalakshmi AM, Bhat A, Rashan L, Rungratanawanich W, Song BJ, Essa MM, Sakharkar MK and Chidambaram SB: Mitochondria-endoplasmic reticulum crosstalk in Parkinson's disease: The role of brain renin angiotensin system components. Biomolecules. 11:16692021. View Article : Google Scholar : PubMed/NCBI | |
|
Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM, Yan Y, Wang C, Zhang H, Molkentin JD, et al: Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med. 14:1097–1105. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ayabe T, Takahashi C, Ohya R and Ano Y: β-Lactolin improves mitochondrial function in Abeta-treated mouse hippocampal neuronal cell line and a human iPSC-derived neuronal cell model of Alzheimer's disease. FASEB J. 36:e222772022. View Article : Google Scholar | |
|
Reddy PH and Beal MF: Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med. 14:45–53. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dursun E, Alaylioglu M, Bilgic B, Hanağası H, Gürvit H, Emre M and Gezen-Ak D: Amyloid beta adsorption problem with transfer plates in amyloid beta 1-42 IVD Kits. J Mol Neurosci. 67:534–539. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Park H, Maharana C, Gwon AR, Park J, Baek SH, Bae HG, Cho Y, Kim HK, Sul JH, et al: Alzheimer's disease-causing presenilin-1 mutations have deleterious effects on mitochondrial function. Theranostics. 11:8855–8873. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bai R, Guo J, Ye XY, Xie Y and Xie T: Oxidative stress: The core pathogenesis and mechanism of Alzheimer's disease. Ageing Res Rev. 77:1016192022. View Article : Google Scholar : PubMed/NCBI | |
|
Kowalczyk P, Sulejczak D, Kleczkowska P, Bukowska-Ośko I, Kucia M, Popiel M, Wietrak E, Kramkowski K, Wrzosek K and Kaczyńska K: Mitochondrial oxidative stress-A causative factor and therapeutic target in many diseases. Int J Mol Sci. 22:133842021. View Article : Google Scholar : PubMed/NCBI | |
|
Park MW, Cha HW, Kim J, Kim JH, Yang H, Yoon S, Boonpraman N, Yi SS, Yoo ID and Moon JS: NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer's diseases. Redox Biol. 41:1019472021. View Article : Google Scholar : PubMed/NCBI | |
|
Islam MT: Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 39:73–82. 2017. View Article : Google Scholar | |
|
Simpson DSA and Oliver PL: ROS generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants (Basel). 9:7432020. View Article : Google Scholar : PubMed/NCBI | |
|
ElAli A, Bordeleau M, Theriault P, Filali M, Lampron A and Rivest S: Tissue-plasminogen activator attenuates Alzheimer's disease-related pathology development in APPswe/PS1 mice. Neuropsychopharmacology. 41:1297–1307. 2016. View Article : Google Scholar : | |
|
Li Y, Xia X, Wang Y and Zheng JC: Mitochondrial dysfunction in microglia: A novel perspective for pathogenesis of Alzheimer's disease. J Neuroinflammation. 19:2482022. View Article : Google Scholar : PubMed/NCBI | |
|
Massey N, Shrestha D, Bhat SM, Kondru N, Charli A, Karriker LA, Kanthasamy AG and Charavaryamath C: Organic dust-induced mitochondrial dysfunction could be targeted via cGAS-STING or cytoplasmic NOX-2 inhibition using microglial cells and brain slice culture models. Cell Tissue Res. 384:465–486. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S, McManus RM, Tejera D, et al: NLRP3 inflammasome activation drives tau pathology. Nature. 575:669–673. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kelley N, Jeltema D, Duan Y and He Y: The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI | |
|
Jassim AH, Inman DM and Mitchell CH: Crosstalk between dysfunctional mitochondria and inflammation in glaucomatous neurodegeneration. Front Pharmacol. 12:6996232021. View Article : Google Scholar : PubMed/NCBI | |
|
Shaftel SS, Griffin WS and O'Banion MK: The role of interleukin-1 in neuroinflammation and Alzheimer disease: An evolving perspective. J Neuroinflammation. 5:72008. View Article : Google Scholar : PubMed/NCBI | |
|
Gonzalez-Reyes RE, Nava-Mesa MO, Vargas-Sanchez K, Ariza-Salamanca D and Mora-Munoz L: Involvement of astrocytes in Alzheimer's disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci. 10:4272017. View Article : Google Scholar | |
|
Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, Van Eldik LJ and Griffin WS: In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging. 17:761–766. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Bossu P, Ciaramella A, Moro ML, Bellincampi L, Bernardini S, Federici G, Trequattrini A, Macciardi F, Spoletini I, Di Iulio F, et al: Interleukin 18 gene polymorphisms predict risk and outcome of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 78:807–811. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gasser T: Molecular pathogenesis of Parkinson disease: Insights from genetic studies. Expert Rev Mol Med. 11:e222009. View Article : Google Scholar : PubMed/NCBI | |
|
Braak H, Del Tredici K, Rub U, de Vos RA, Jansen EN and Braak E: Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging. 24:197–211. 2003. View Article : Google Scholar | |
|
Han C, Liu Y, Dai R, Ismail N, Su W and Li B: Ferroptosis and its potential role in human diseases. Front Pharmacol. 11:2392020. View Article : Google Scholar : PubMed/NCBI | |
|
Panicker N, Ge P, Dawson VL and Dawson TM: The cell biology of Parkinson's disease. J Cell Biol. 220:e2020120952021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu G, Zhang C, Yin J, Li X, Cheng F, Li Y, Yang H, Uéda K, Chan P and Yu S: alpha-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci Lett. 454:187–192. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Thomas RR, Keeney PM and Bennett JP: Impaired complex-I mitochondrial biogenesis in Parkinson disease frontal cortex. J Parkinsons Dis. 2:67–76. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, et al: High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet. 38:515–517. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, Albanese A and Wood NW: Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet. 68:895–900. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Fan Z, Pan YT, Zhang ZY, Yang H, Yu SY, Zheng Y, Ma JH and Wang XM: Systemic activation of NLRP3 inflammasome and plasma α-synuclein levels are correlated with motor severity and progression in Parkinson's disease. J Neuroinflammation. 17:112020. View Article : Google Scholar | |
|
Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD, Burman JL, Li Y, Zhang Z and Narendra DP: Parkin and PINK1 mitigate STING-induced inflammation. Nature. 561:258–262. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hou X, Fiesel FC, Truban D, Casey MC, Lin WL, Soto AI, Tacik P, Rousseau LG, Diehl NN, Heckman MG, et al: Age- and disease-dependent increase of the mitophagy marker phospho-ubiquitin in normal aging and Lewy body disease. Autophagy. 14:1404–1418. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Di Maio R, Barrett PJ, Hoffman EK, Barrett CW, Zharikov A, Borah A, Hu X, McCoy J, Chu CT, Burton EA, et al: α-synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease. Sci Transl Med. 8:342ra3782016. View Article : Google Scholar | |
|
Vicario M, Cieri D, Vallese F, Catoni C, Barazzuol L, Berto P, Grinzato A, Barbieri L, Brini M and Calì T: A split-GFP tool reveals differences in the sub-mitochondrial distribution of wt and mutant alpha-synuclein. Cell Death Dis. 10:8572019. View Article : Google Scholar : PubMed/NCBI | |
|
Devi L, Raghavendran V, Prabhu BM, Avadhani NG and Anandatheerthavarada HK: Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 283:9089–9100. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Mahul-Mellier AL, Burtscher J, Maharjan N, Weerens L, Croisier M, Kuttler F, Leleu M, Knott GW and Lashuel HA: The process of Lewy body formation, rather than simply alpha-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci USA. 117:4971–4982. 2020. View Article : Google Scholar | |
|
Hsieh CH, Shaltouki A, Gonzalez AE, da Cruz AB, Burbulla LF, St Lawrence E, Schüle B, Krainc D, Palmer TD and Wang X: Functional impairment in miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson's disease. Cell Stem Cell. 19:709–724. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Godena VK, Brookes-Hocking N, Moller A, Shaw G, Oswald M, Sancho RM, Miller CC, Whitworth AJ and De Vos KJ: Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun. 5:52452014. View Article : Google Scholar : PubMed/NCBI | |
|
Bonello F, Hassoun SM, Mouton-Liger F, Shin YS, Muscat A, Tesson C, Lesage S, Bear PM, Brice A, Krupp J, et al: LRRK2 impairs PINK1/Parkin-dependent mitophagy via its kinase activity: Pathologic insights into Parkinson's disease. Hum Mol Genet. 28:1645–1660. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Chi J, Huang D, Ding L, Zhao X, Jiang L, Yu Y and Gao F: α-synuclein promotes progression of Parkinson's disease by upregulating autophagy signaling pathway to activate NLRP3 inflammasome. Exp Ther Med. 19:931–938. 2020.PubMed/NCBI | |
|
Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, Palanisamy BN, Rokad D, Jin H, Anantharam V, et al: Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson's disease. NPJ Parkinsons Dis. 3:302017. View Article : Google Scholar : PubMed/NCBI | |
|
Mouton-Liger F, Rosazza T, Sepulveda-Diaz J, Ieang A, Hassoun SM, Claire E, Mangone G, Brice A, Michel PP, Corvol JC and Corti O: Parkin deficiency modulates NLRP3 inflammasome activation by attenuating an A20-dependent negative feedback loop. Glia. 66:1736–1751. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Zhao M, Wang B, Su Z, Guo B, Qin L, Zhang W and Zheng R: The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of celastrol in Parkinson's disease. Redox Biol. 47:1021342021. View Article : Google Scholar : PubMed/NCBI | |
|
Faissner S, Plemel JR, Gold R and Yong VW: Progressive multiple sclerosis: From pathophysiology to therapeutic strategies. Nat Rev Drug Discov. 18:905–922. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Barcelos IP, Troxell RM and Graves JS: Mitochondrial dysfunction and multiple sclerosis. Biology (Basel). 8:372019.PubMed/NCBI | |
|
Steinman L: Multiple sclerosis: A two-stage disease. Nat Immunol. 2:762–764. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Lassmann H, van Horssen J and Mahad D: Progressive multiple sclerosis: Pathology and pathogenesis. Nat Rev Neurol. 8:647–656. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez-Domenech G and Kittler JT: Mitochondrial regulation of local supply of energy in neurons. Curr Opin Neurobiol. 81:1027472023. View Article : Google Scholar : PubMed/NCBI | |
|
Touil H, Li R, Zuroff L, Moore CS, Healy L, Cignarella F, Piccio L, Ludwin S, Prat A, Gommerman J, et al: Cross-talk between B cells, microglia and macrophages, and implications to central nervous system compartmentalized inflammation and progressive multiple sclerosis. EBioMedicine. 96:1047892023. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM and Mahad DJ: Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol. 69:481–492. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Witte ME, Nijland PG, Drexhage JA, Gerritsen W, Geerts D, van Het Hof B, Reijerkerk A, de Vries HE, van der Valk P and van Horssen J: Reduced expression of PGC-1alpha partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol. 125:231–243. 2013. View Article : Google Scholar | |
|
Haider L, Fischer MT, Frischer JM, Bauer J, Höftberger R, Botond G, Esterbauer H, Binder CJ, Witztum JL and Lassmann H: Oxidative damage in multiple sclerosis lesions. Brain. 134:1914–1924. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dziedzic T, Metz I, Dallenga T, König FB, Müller S, Stadelmann C and Brück W: Wallerian degeneration: A major component of early axonal pathology in multiple sclerosis. Brain Pathol. 20:976–985. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Madsen PM, Pinto M, Patel S, McCarthy S, Gao H, Taherian M, Karmally S, Pereira CV, Dvoriantchikova G, Ivanov D, et al: Mitochondrial DNA double-strand breaks in oligodendrocytes cause demyelination, axonal injury, and CNS inflammation. J Neurosci. 37:10185–10199. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Singhal NK, Alkhayer K, Shelestak J, Clements R, Freeman E and McDonough J: Erythropoietin upregulates brain hemoglobin expression and supports neuronal mitochondrial activity. Mol Neurobiol. 55:8051–8058. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Aboul-Enein F, Krssak M, Hoftberger R, Prayer D and Kristoferitsch W: Reduced NAA-levels in the NAWM of patients with MS is a feature of progression. A study with quantitative magnetic resonance spectroscopy at 3 tesla. PLoS One. 5:e116252010. View Article : Google Scholar : PubMed/NCBI | |
|
Dominicis A, Del Giovane A, Torreggiani M, Recchia AD, Ciccarone F, Ciriolo MR and Ragnini-Wilson A: N-Acetylaspartate drives oligodendroglial differentiation via histone deacetylase activation. Cells. 12:18612023. View Article : Google Scholar : PubMed/NCBI | |
|
Kadowaki A and Quintana FJ: The NLRP3 inflammasome in progressive multiple sclerosis. Brain. 143:1286–1288. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ferecsko AS, Smallwood MJ, Moore A, Liddle C, Newcombe J, Holley J, Whatmore J, Gutowski NJ and Eggleton P: STING-triggered CNS inflammation in human neurodegenerative diseases. Biomedicines. 11:13752023. View Article : Google Scholar : PubMed/NCBI | |
|
Thijs RD, Surges R, O'Brien TJ and Sander JW: Epilepsy in adults. Lancet. 393:689–701. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fabisiak T and Patel M: Crosstalk between neuroinflammation and oxidative stress in epilepsy. Front Cell Dev Biol. 10:9769532022. View Article : Google Scholar : PubMed/NCBI | |
|
Loscher W and Klein P: The pharmacology and clinical efficacy of antiseizure medications: From bromide salts to cenobamate and beyond. CNS Drugs. 35:935–963. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pearson-Smith JN and Patel M: Metabolic dysfunction and oxidative stress in epilepsy. Int J Mol Sci. 18:23652017. View Article : Google Scholar : PubMed/NCBI | |
|
Geronzi U, Lotti F and Grosso S: Oxidative stress in epilepsy. Expert Rev Neurother. 18:427–434. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Terrone G, Balosso S, Pauletti A, Ravizza T and Vezzani A: Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology. 167:1077422020. View Article : Google Scholar | |
|
Ahras-Sifi N and Laraba-Djebari F: Immunomodulatory and protective effects of interleukin-4 on the neuropathological alterations induced by a potassium channel blocker. J Neuroimmunol. 355:5775492021. View Article : Google Scholar : PubMed/NCBI | |
|
Rahman S: Pathophysiology of mitochondrial disease causing epilepsy and status epilepticus. Epilepsy Behav. 49:71–75. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liang LP, Waldbaum S, Rowley S, Huang TT, Day BJ and Patel M: Mitochondrial oxidative stress and epilepsy in SOD2 deficient mice: Attenuation by a lipophilic metalloporphyrin. Neurobiol Dis. 45:1068–1076. 2012. View Article : Google Scholar : | |
|
Fulton RE, Pearson-Smith JN, Huynh CQ, Fabisiak T, Liang LP, Aivazidis S, High BA, Buscaglia G, Corrigan T, Valdez R, et al: Neuron-specific mitochondrial oxidative stress results in epilepsy, glucose dysregulation and a striking astrocyte response. Neurobiol Dis. 158:1054702021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Chen F, Zhai F and Liang S: Role of HMGB1/TLR4 and IL-1β/IL-1R1 signaling pathways in epilepsy. Front Neurol. 13:9042252022. View Article : Google Scholar | |
|
Kim JE and Kang TC: Differential roles of mitochondrial translocation of active caspase-3 and HMGB1 in neuronal death induced by status epilepticus. Front Cell Neurosci. 12:3012018. View Article : Google Scholar : PubMed/NCBI | |
|
Hyun HW, Ko AR and Kang TC: Mitochondrial translocation of high mobility group box 1 facilitates LIM kinase 2-mediated programmed necrotic neuronal death. Front Cell Neurosci. 10:992016. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JE, Park H, Kim TH and Kang TC: LONP1 regulates mitochondrial accumulations of HMGB1 and Caspase-3 in CA1 and PV neurons following status epilepticus. Int J Mol Sci. 22:22752021. View Article : Google Scholar : PubMed/NCBI | |
|
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, Pascente R, Liang LP, Villa BR, et al: Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain. 142:e392019. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar P, Osahon OW and Sekhar RV: GlyNAC (Glycine and N-Acetylcysteine) supplementation in mice increases length of life by correcting glutathione deficiency, oxidative stress, mitochondrial dysfunction, abnormalities in mitophagy and nutrient sensing, and genomic damage. Nutrients. 14:11142022. View Article : Google Scholar : PubMed/NCBI | |
|
Mohseni-Moghaddam P, Roghani M, Khaleghzadeh-Ahangar H, Sadr SS and Sala C: A literature overview on epilepsy and inflammasome activation. Brain Res Bull. 172:229–235. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Abais JM, Zhang C, Xia M, Liu Q, Gehr TW, Boini KM and Li PL: NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxid Redox Signal. 18:1537–1548. 2013. View Article : Google Scholar : | |
|
Subramanian N, Natarajan K, Clatworthy MR, Wang Z and Germain RN: The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 153:348–361. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou R, Yazdi AS, Menu P and Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–225. 2011. View Article : Google Scholar | |
|
Rong S, Wan D, Fan Y, Liu S, Sun K, Huo J, Zhang P, Li X, Xie X, Wang F and Sun T: Amentoflavone affects epileptogenesis and exerts neuroprotective effects by inhibiting NLRP3 inflammasome. Front Pharmacol. 10:8562019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Xian H, Ye X, Chen J, Ma Y and Huang W: Increased levels of NLRP3 in children with febrile seizures. Brain Dev. 42:336–341. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
de Brito Toscano EC, Vieira EL, Dias BB, Caliari MV, Gonçalves AP, Giannetti AV, Siqueira JM, Suemoto CK, Leite RE, Nitrini R, et al: NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res. 1752:1472302021. View Article : Google Scholar | |
|
Tan CC, Zhang JG, Tan MS, Chen H, Meng DW, Jiang T, Meng XF, Li Y, Sun Z, Li MM, et al: NLRP1 inflammasome is activated in patients with medial temporal lobe epilepsy and contributes to neuronal pyroptosis in amygdala kindling-induced rat model. J Neuroinflammation. 12:182015. View Article : Google Scholar : PubMed/NCBI | |
|
Samidurai M, Tarale P, Janarthanam C, Estrada CG, Gordon R, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG and Kanthasamy A: tumor necrosis factor-like weak inducer of apoptosis (TWEAK) enhances activation of STAT3/NLRC4 inflammasome signaling axis through PKCdelta in AStrocytes: Implications for Parkinson's disease. Cells. 9:18312020. View Article : Google Scholar | |
|
Zadori D, Klivenyi P, Szalardy L, Fulop F, Toldi J and Vecsei L: Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: Novel therapeutic strategies for neurodegenerative disorders. J Neurol Sci. 322:187–191. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Prasuhn J, Davis RL and Kumar KR: Targeting mitochondrial impairment in Parkinson's disease: Challenges and opportunities. Front Cell Dev Biol. 8:6154612020. View Article : Google Scholar | |
|
Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, Van Meensel S, Schaap O, De Strooper B, Meganathan R, et al: Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 336:1306–1310. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bronzuoli MR, Iacomino A, Steardo L and Scuderi C: Targeting neuroinflammation in Alzheimer's disease. J Inflamm Res. 9:199–208. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fu AK, Hung KW, Yuen MY, Zhou X, Mak DS, Chan IC, Cheung TH, Zhang B, Fu WY, Liew FY and Ip NY: IL-33 ameliorates Alzheimer's disease-like pathology and cognitive decline. Proc Natl Acad Sci USA. 113:E2705–E2713. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, Xie Z, Chu X, Yang J, Wang H, et al: Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer's disease progression. Cell Res. 29:787–803. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Regen F, Hellmann-Regen J, Costantini E and Reale M: Neuroinflammation and Alzheimer's disease: Implications for microglial activation. Curr Alzheimer Res. 14:1140–1148. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
La Torre ME, Cianciulli A, Monda V, Monda M, Filannino FM, Antonucci L, Valenzano A, Cibelli G, Porro C, Messina G, et al: α-Tocopherol protects lipopolysaccharide-activated BV2 microglia. Molecules. 28:33402023. View Article : Google Scholar | |
|
Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA and Mohan G: Neuroinflammation pathways: A general review. Int J Neurosci. 127:624–633. 2017. View Article : Google Scholar | |
|
Heger LM, Wise RM, Hees JT, Harbauer AB and Burbulla LF: Mitochondrial phenotypes in Parkinson's diseases-a focus on human iPSC-derived dopaminergic neurons. Cells. 10:34362021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu G, Wang Y and Zhao J: Inhibitory effect of mitoquinone against the α-synuclein fibrillation and relevant neurotoxicity: Possible role in inhibition of Parkinson's disease. Biol Chem. 403:253–263. 2022. View Article : Google Scholar | |
|
Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O'Sullivan JD, Fung V, Smith RA, Murphy MP and Taylor KM; Protect Study Group: A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov Disord. 25:1670–1674. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lehmann S, Loh SH and Martins LM: Enhancing NAD(+) salvage metabolism is neuroprotective in a PINK1 model of Parkinson's disease. Biol Open. 6:141–147. 2017. | |
|
Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Bazzan AJ, Zhong L, Bowens BK, Chervoneva I, Intenzo C and Newberg AB: N-Acetyl cysteine is associated with dopaminergic improvement in Parkinson's disease. Clin Pharmacol Ther. 106:884–890. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sathe AG, Tuite P, Chen C, Ma Y, Chen W, Cloyd J, Low WC, Steer CJ, Lee BY, Zhu XH and Coles LD: Pharmacokinetics, safety, and tolerability of orally administered ursodeoxycholic acid in patients with Parkinson's disease-a pilot study. J Clin Pharmacol. 60:744–750. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bell SM, Barnes K, Clemmens H, Al-Rafiah AR, Al-Ofi EA, Leech V, Bandmann O, Shaw PJ, Blackburn DJ, Ferraiuolo L and Mortiboys H: Ursodeoxycholic acid improves mitochondrial function and redistributes Drp1 in fibroblasts from patients with either sporadic or familial Alzheimer's Disease. J Mol Biol. 430:3942–3953. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin MW, Lin CC, Chen YH, Yang HB and Hung SY: Celastrol inhibits dopaminergic neuronal death of Parkinson's disease through activating mitophagy. Antioxidants (Basel). 9:372019. View Article : Google Scholar | |
|
Bido S, Soria FN, Fan RZ, Bezard E and Tieu K: Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson's disease. Sci Rep. 7:74952017. View Article : Google Scholar | |
|
Curtis WM, Seeds WA, Mattson MP and Bradshaw PC: NADPH and mitochondrial quality control as targets for a circadian-based fasting and exercise therapy for the treatment of Parkinson's disease. Cells. 11:24162022. View Article : Google Scholar : PubMed/NCBI | |
|
Ferreira AFF, Binda KH, Singulani MP, Pereira CPM, Ferrari GD, Alberici LC, Real CC and Britto LR: Physical exercise protects against mitochondria alterations in the 6-hidroxydopamine rat model of Parkinson's disease. Behav Brain Res. 387:1126072020. View Article : Google Scholar : PubMed/NCBI | |
|
Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, Vermersch P, Arnold DL, Arnould S, Scherz T, et al: Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomised, phase 3 study. Lancet. 391:1263–1273. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, de Seze J, Giovannoni G, Hartung HP, Hemmer B, et al: Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 376:209–220. 2017. View Article : Google Scholar | |
|
Lublin F, Miller DH, Freedman MS, Cree BAC, Wolinsky JS, Weiner H, Lubetzki C, Hartung HP, Montalban X, Uitdehaag BMJ, et al: Oral fingolimod in primary progressive multiple sclerosis (INFORMS): A phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 387:1075–1084. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Waxman SG: Axonal conduction and injury in multiple sclerosis: The role of sodium channels. Nat Rev Neurosci. 7:932–941. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Picone P and Nuzzo D: Promising treatment for multiple sclerosis: Mitochondrial transplantation. Int J Mol Sci. 23:22452022. View Article : Google Scholar : PubMed/NCBI | |
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, et al: Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion. 72:84–101. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Silvestro S, Mammana S, Cavalli E, Bramanti P and Mazzon E: Use of cannabidiol in the treatment of epilepsy: Efficacy and security in clinical trials. Molecules. 24:14592019. View Article : Google Scholar : PubMed/NCBI | |
|
Ramirez A, Old W, Selwood DL and Liu X: Cannabidiol activates PINK1-Parkin-dependent mitophagy and mitochondrial-derived vesicles. Eur J Cell Biol. 101:1511852022. View Article : Google Scholar : | |
|
Bhunia S, Kolishetti N, Arias AY, Vashist A and Nair M: Cannabidiol for neurodegenerative disorders: A comprehensive review. Front Pharmacol. 13:9897172022. View Article : Google Scholar : PubMed/NCBI | |
|
Britch SC, Babalonis S and Walsh SL: Cannabidiol: Pharmacology and therapeutic targets. Psychopharmacology (Berl). 238:9–28. 2021. View Article : Google Scholar | |
|
Aledo-Serrano A, Hariramani R, Gonzalez-Martinez A, Álvarez-Troncoso J, Toledano R, Bayat A, Garcia-Morales I, Becerra JL, Villegas-Martínez I, Beltran-Corbellini A and Gil-Nagel A: Anakinra and tocilizumab in the chronic phase of febrile infection-related epilepsy syndrome (FIRES): Effectiveness and safety from a case-series. Seizure. 100:51–55. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Stienen MN, Haghikia A, Dambach H, Thöne J, Wiemann M, Gold R, Chan A, Dermietzel R, Faustmann PM, Hinkerohe D and Prochnow N: Anti-inflammatory effects of the anticonvulsant drug levetiracetam on electrophysiological properties of astroglia are mediated via TGFβ1 regulation. Br J Pharmacol. 162:491–507. 2011. View Article : Google Scholar : | |
|
Stockburger C, Miano D, Baeumlisberger M, Pallas T, Arrey TN, Karas M, Friedland K and Müller WE: A mitochondrial role of sv2a protein in aging and Alzheimer's disease: Studies with levetiracetam. J Alzheimers Dis. 50:201–215. 2016. View Article : Google Scholar | |
|
Yang N, Guan QW, Chen FH, Xia QX, Yin XX, Zhou HH and Mao XY: Antioxidants targeting mitochondrial oxidative stress: Promising neuroprotectants for epilepsy. Oxid Med Cell Longev. 2020:66871852020. View Article : Google Scholar : PubMed/NCBI | |
|
Fields M, Marcuzzi A, Gonelli A, Celeghini C, Maximova N and Rimondi E: Mitochondria-Targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: Perspectives and limitations. Int J Mol Sci. 24:37392023. View Article : Google Scholar : PubMed/NCBI | |
|
Huenchuguala S and Segura-Aguilar J: Single-neuron neurodegeneration as a degenerative model for Parkinson's disease. Neural Regen Res. 19:529–535. 2024. View Article : Google Scholar | |
|
Leitao-Rocha A, Guedes-Dias P, Pinho BR and Oliveira JM: Trends in mitochondrial therapeutics for neurological disease. Curr Med Chem. 22:2458–2467. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshinaga N and Numata K: Rational designs at the forefront of mitochondria-targeted gene delivery: Recent progress and future perspectives. ACS Biomater Sci Eng. 8:348–359. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Silva-Pinheiro P and Minczuk M: The potential of mitochondrial genome engineering. Nat Rev Genet. 23:199–214. 2022. View Article : Google Scholar |