Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2024 Volume 53 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2024 Volume 53 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review)

  • Authors:
    • Yajing Zhan
    • Ankang Yin
    • Xiyang Su
    • Nan Tang
    • Zebin Zhang
    • Yi Chen
    • Wei Wang
    • Juan Wang
  • View Affiliations / Copyright

    Affiliations: School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China, Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China, Department of Clinical Laboratory, Wangcheng District People's Hospital, Changsha, Hunan 410000, P.R. China, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
    Copyright: © Zhan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 48
    |
    Published online on: April 2, 2024
       https://doi.org/10.3892/ijmm.2024.5372
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Histone chaperones serve a pivotal role in maintaining human physiological processes. They interact with histones in a stable manner, ensuring the accurate and efficient execution of DNA replication, repair and transcription. Retinoblastoma binding protein (RBBP)4 and RBBP7 represent a crucial pair of histone chaperones, which not only govern the molecular behavior of histones H3 and H4, but also participate in the functions of several protein complexes, such as polycomb repressive complex 2 and nucleosome remodeling and deacetylase, thereby regulating the cell cycle, histone modifications, DNA damage and cell fate. A strong association has been indicated between RBBP4/7 and some major human diseases, such as cancer, age‑related memory loss and infectious diseases. The present review assesses the molecular mechanisms of RBBP4/7 in regulating cellular biological processes, and focuses on the variations in RBBP4/7 expression and their potential mechanisms in various human diseases, thus providing new insights for their diagnosis and treatment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Hammond CM, Strømme CB, Huang H, Patel DJ and Groth A: Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol. 18:141–158. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Laskey RA, Honda BM, Mills AD and Finch JT: Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 275:416–420. 1978. View Article : Google Scholar : PubMed/NCBI

3 

De Koning L, Corpet A, Haber JE and Almouzni G: Histone chaperones: An escort network regulating histone traffic. Nat Struct Mol Biol. 14:997–1007. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Burgess RJ and Zhang Z: Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol. 20:14–22. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Yang C, Shao Y, Wang X and Wang J, Wang P, Huang C, Wang W and Wang J: The effect of the histone chaperones HSPA8 and DEK on tumor immunity in hepatocellular carcinoma. Int J Mol Sci. 24:26532023. View Article : Google Scholar : PubMed/NCBI

6 

Xu C and Min J: Structure and function of WD40 domain proteins. Protein Cell. 2:202–214. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Millard CJ, Varma N, Saleh A, Morris K, Watson PJ, Bottrill AR, Fairall L, Smith CJ and Schwabe JW: The structure of the core NuRD repression complex provides insights into its interaction with chromatin. Elife. 5:e139412016. View Article : Google Scholar : PubMed/NCBI

8 

Ciferri C, Lander GC, Maiolica A, Herzog F, Aebersold R and Nogales E: Molecular architecture of human polycomb repressive complex 2. Elife. 1:e000052012. View Article : Google Scholar : PubMed/NCBI

9 

Murzina NV, Pei XY, Zhang W, Sparkes M, Vicente-Garcia J, Pratap JV, McLaughlin SH, Ben-Shahar TR, Verreault A, Luisi BF and Laue ED: Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure. 16:1077–1085. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Schmitges FW, Prusty AB, Faty M, Stützer A, Lingaraju GM, Aiwazian J, Sack R, Hess D, Li L, Zhou S, et al: Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell. 42:330–341. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Feinberg AP, Koldobskiy MA and Göndör A: Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 17:284–299. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Li YD, Lv Z and Zhu WF: RBBP4 promotes colon cancer malignant progression via regulating Wnt/β-catenin pathway. World J Gastroenterol. 26:5328–5342. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Cao X, Li F, Shao J, Lv J, Chang A, Dong W and Zhu F: Circular RNA hsa_circ_0102231 sponges miR-145 to promote non-small cell lung cancer cell proliferation by up-regulating the expression of RBBP4. J Biochem. 169:65–73. 2021. View Article : Google Scholar

14 

Yu N, Zhang P, Wang L, He X, Yang S and Lu H: RBBP7 is a prognostic biomarker in patients with esophageal squamous cell carcinoma. Oncol Lett. 16:7204–7211. 2018.PubMed/NCBI

15 

Guo L, Xia Y, Li H, Wang Z, Xu H, Dai X, Zhang Y, Zhang H, Fan W, Wei F, et al: FIT links c-Myc and P53 acetylation by recruiting RBBP7 during colorectal carcinogenesis. Cancer Gene Ther. 30:1124–1133. 2023. View Article : Google Scholar : PubMed/NCBI

16 

Qian YW, Wang YC, Hollingsworth RE Jr, Jones D, Ling N and Lee EY: A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature. 364:648–652. 1993. View Article : Google Scholar : PubMed/NCBI

17 

Nicolas E, Morales V, Magnaghi-Jaulin L, Harel-Bellan A, Richard-Foy H and Trouche D: RbAp48 belongs to the histone deacetylase complex that associates with the retinoblastoma protein. J Biol Chem. 275:9797–9804. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Qian YW and Lee EY: Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem. 270:25507–25513. 1995. View Article : Google Scholar : PubMed/NCBI

19 

Brasen C, Dorosz J, Wiuf A, Boesen T, Mirza O and Gajhede M: Expression, purification and characterization of the human MTA2-RBBP7 complex. Biochim Biophys Acta Proteins Proteom. 1865:531–538. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P and Reinberg D: Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell. 89:357–364. 1997. View Article : Google Scholar : PubMed/NCBI

21 

Sauer PV, Gu Y, Liu WH, Mattiroli F, Panne D, Luger K and Churchill ME: Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res. 46:9907–9917. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Müller GA, Asthana A and Rubin SM: Structure and function of MuvB complexes. Oncogene. 41:2909–2919. 2022. View Article : Google Scholar : PubMed/NCBI

23 

Verreault A, Kaufman PD, Kobayashi R and Stillman B: Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol. 8:96–108. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Suganuma T, Pattenden SG and Workman JL: Diverse functions of WD40 repeat proteins in histone recognition. Genes Dev. 22:1265–1268. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Xiao L, Dang Y, Hu B, Luo L, Zhao P, Wang S and Zhang K: Overlapping functions of RBBP4 and RBBP7 in regulating cell proliferation and histone H3.3 deposition during mouse preimplantation development. Epigenetics. 17:1205–1218. 2022. View Article : Google Scholar :

26 

Satrimafitrah P, Barman HK, Ahmad A, Nishitoh H, Nakayama T, Fukagawa T and Takami Y: RbAp48 is essential for viability of vertebrate cells and plays a role in chromosome stability. Chromosome Res. 24:161–173. 2016. View Article : Google Scholar

27 

Guan LS, Li GC, Chen CC, Liu LQ and Wang ZY: Rb-associated protein 46 (RbAp46) suppresses the tumorigenicity of adenovirus-transformed human embryonic kidney 293 cells. Int J Cancer. 93:333–338. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Lee BC, Lin Z and Yuen KW: RbAp46/48(LIN-53) is required for Holocentromere assembly in Caenorhabditis elegans. Cell Rep. 14:1819–1828. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Mouysset J, Gilberto S, Meier MG, Lampert F, Belwal M, Meraldi P and Peter M: CRL4(RBBP7) is required for efficient CENP-A deposition at centromeres. J Cell Sci. 128:1732–1745. 2015.PubMed/NCBI

30 

Huang S, Lee WH and Lee EY: A cellular protein that competes with SV40 T antigen for binding to the retinoblastoma gene product. Nature. 350:160–162. 1991. View Article : Google Scholar : PubMed/NCBI

31 

Schultz-Rogers LE, Thayer ML, Kambakam S, Wierson WA, Helmer JA, Wishman MD, Wall KA, Greig JL, Forsman JL, Puchhalapalli K, et al: Rbbp4 loss disrupts neural progenitor cell cycle regulation independent of Rb and leads to Tp53 acetylation and apoptosis. Dev Dyn. 251:1267–1290. 2022. View Article : Google Scholar : PubMed/NCBI

32 

Dick FA and Rubin SM: Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol. 14:297–306. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Brehm A, Miska EA, McCance DJ, Reid JL, Bannister AJ and Kouzarides T: Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 391:597–601. 1998. View Article : Google Scholar : PubMed/NCBI

34 

Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P and Dowdy SF: Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. 3:2014. View Article : Google Scholar : PubMed/NCBI

35 

Gubern A, Joaquin M, Marquès M, Maseres P, Garcia-Garcia J, Amat R, González-Nuñez D, Oliva B, Real FX, de Nadal E and Posas F: The N-Terminal phosphorylation of RB by p38 bypasses its inactivation by CDKs and prevents proliferation in cancer cells. Mol Cell. 64:25–36. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Guiley KZ, Liban TJ, Felthousen JG, Ramanan P, Litovchick L and Rubin SM: Structural mechanisms of DREAM complex assembly and regulation. Genes Dev. 29:961–974. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Müller GA, Quaas M, Schümann M, Krause E, Padi M, Fischer M, Litovchick L, DeCaprio JA and Engeland K: The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes. Nucleic Acids Res. 40:1561–1578. 2012. View Article : Google Scholar :

38 

Mages CF, Wintsche A, Bernhart SH and Müller GA: The DREAM complex through its subunit Lin37 cooperates with Rb to initiate quiescence. Elife. 6:e268762017. View Article : Google Scholar : PubMed/NCBI

39 

Uxa S, Bernhart SH, Mages CFS, Fischer M, Kohler R, Hoffmann S, Stadler PF, Engeland K and Müller GA: DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Res. 47:9087–9103. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Schade AE, Fischer M and DeCaprio JA: RB, p130 and p107 differentially repress G1/S and G2/M genes after p53 activation. Nucleic Acids Res. 47:11197–11208. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A and Reinberg D: Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13:1924–1935. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Bao Y and Shen X: Chromatin remodeling in DNA double-strand break repair. Curr Opin Genet Dev. 17:126–131. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Zhang W, Tyl M, Ward R, Sobott F, Maman J, Murthy AS, Watson AA, Fedorov O, Bowman A, Owen-Hughes T, et al: Structural plasticity of histones H3-H4 facilitates their allosteric exchange between RbAp48 and ASF1. Nat Struct Mol Biol. 20:29–35. 2013. View Article : Google Scholar :

44 

Torchy MP, Hamiche A and Klaholz BP: Structure and function insights into the NuRD chromatin remodeling complex. Cell Mol Life Sci. 72:2491–2507. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Mu W, Murcia NS, Smith KN, Menon DU, Yee D and Magnuson T: RBBP4 dysfunction reshapes the genomic landscape of H3K27 methylation and acetylation and disrupts gene expression. G3 (Bethesda). 12:jkac0822022. View Article : Google Scholar : PubMed/NCBI

46 

Mei S, Liu Y, Bao Y, Zhang Y, Min S, Liu Y, Huang Y, Yuan X, Feng Y, Shi J and Yang R: Dendritic cell-associated miRNAs are modulated via chromatin remodeling in response to different environments. PLoS One. 9:e902312014. View Article : Google Scholar : PubMed/NCBI

47 

Shang WH, Hori T, Westhorpe FG, Godek KM, Toyoda A, Misu S, Monma N, Ikeo K, Carroll CW, Takami Y, et al: Acetylation of histone H4 lysine 5 and 12 is required for CENP-A deposition into centromeres. Nat Commun. 7:134652016. View Article : Google Scholar : PubMed/NCBI

48 

Vermaak D, Wade PA, Jones PL, Shi YB and Wolffe AP: Functional analysis of the SIN3-histone deacetylase RPD3-RbAp48-histone H4 connection in the Xenopus oocyte. Mol Cell Biol. 19:5847–5860. 1999. View Article : Google Scholar : PubMed/NCBI

49 

Balboula AZ, Stein P, Schultz RM and Schindler K: RBBP4 regulates histone deacetylation and bipolar spindle assembly during oocyte maturation in the mouse. Biol Reprod. 92:1052015. View Article : Google Scholar : PubMed/NCBI

50 

Yue Y, Yang WS, Zhang L, Liu CP and Xu RM: Topography of histone H3-H4 interaction with the Hat1-Hat2 acetyltransferase complex. Genes Dev. 36:408–413. 2022. View Article : Google Scholar : PubMed/NCBI

51 

Pardal AJ and Bowman AJ: A specific role for importin-5 and NASP in the import and nuclear hand-off of monomeric H3. Elife. 11:e817552022. View Article : Google Scholar : PubMed/NCBI

52 

Conway E, Healy E and Bracken AP: PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol. 37:42–48. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Kuzmichev A, Jenuwein T, Tempst P and Reinberg D: Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell. 14:183–193. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Oksuz O, Narendra V, Lee CH, Descostes N, LeRoy G, Raviram R, Blumenberg L, Karch K, Rocha PP, Garcia BA, et al: Capturing the onset of PRC2-Mediated repressive domain formation. Mol Cell. 70:1149–1162.e5. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Chen S, Jiao L and Liu X, Yang X and Liu X: A Dimeric structural scaffold for PRC2-PCL targeting to CpG island chromatin. Mol Cell. 77:1265–1278.e7. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Kitange GJ, Mladek AC, Schroeder MA, Pokorny JC, Carlson BL, Zhang Y, Nair AA, Lee JH, Yan H, Decker PA, et al: Retinoblastoma binding protein 4 modulates temozolomide sensitivity in glioblastoma by regulating DNA repair proteins. Cell Rep. 14:2587–2598. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Vaute O, Nicolas E, Vandel L and Trouche D: Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res. 30:475–481. 2002. View Article : Google Scholar : PubMed/NCBI

58 

Marin TL, Gongol B, Zhang F, Martin M, Johnson DA, Xiao H, Wang Y, Subramaniam S, Chien S and Shyy JY: AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal. 10:eaaf74782017. View Article : Google Scholar : PubMed/NCBI

59 

Li DQ and Kumar R: Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle. 9:2071–2079. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Yang B, Zhang W, Sun L, Lu B, Yin C, Zhang Y and Jiang H: Creatine kinase brain-type regulates BCAR1 phosphorylation to facilitate DNA damage repair. iScience. 26:1066842023. View Article : Google Scholar : PubMed/NCBI

61 

Yarden RI and Brody LC: BRCA1 interacts with components of the histone deacetylase complex. Proc Natl Acad Sci USA. 96:4983–4988. 1999. View Article : Google Scholar : PubMed/NCBI

62 

Chen GC, Guan LS, Yu JH, Li GC, Choi Kim HR and Wang ZY: Rb-associated protein 46 (RbAp46) inhibits transcriptional transactivation mediated by BRCA1. Biochem Biophys Res Commun. 284:507–514. 2001. View Article : Google Scholar : PubMed/NCBI

63 

Li J, Song C, Gu J, Li C, Zang W, Shi L, Chen L, Zhu L, Zhou M, Wang T, et al: RBBP4 regulates the expression of the Mre11-Rad50-NBS1 (MRN) complex and promotes DNA double-strand break repair to mediate glioblastoma chemoradiotherapy resistance. Cancer Lett. 557:2160782023. View Article : Google Scholar : PubMed/NCBI

64 

Li GC, Guan LS and Wang ZY: Overexpression of RbAp46 facilitates stress-induced apoptosis and suppresses tumorigenicity of neoplastigenic breast epithelial cells. Int J Cancer. 105:762–768. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Yang J, Kiefer S and Rauchman M: Characterization of the gene encoding mouse retinoblastoma binding protein-7, a component of chromatin-remodeling complexes. Genomics. 80:407–415. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Horihata K, Inoue N, Uenoyama Y, Maeda KI and Tsukamura H: Retinoblastoma binding protein 7 is involved in Kiss1 mRNA upregulation in rodents. J Reprod Dev. 66:125–133. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Giri R, Yeh HH, Wu CH and Liu HS: SUMO-1 overexpression increases RbAp46 protein stability and suppresses cell growth. Anticancer Res. 28:3749–3756. 2008.

68 

Ping W, Sheng Y, Hu G, Zhong H, Li Y, Liu Y, Luo W, Yan C, Wen Y, Wang X, et al: RBBP4 is an epigenetic barrier for the induced transition of pluripotent stem cells into totipotent 2C-like cells. Nucleic Acids Res. 51:5414–5431. 2023. View Article : Google Scholar : PubMed/NCBI

69 

Garnatz AS, Gao Z, Broman M, Martens S, Earley JU and Svensson EC: FOG-2 mediated recruitment of the NuRD complex regulates cardiomyocyte proliferation during heart development. Dev Biol. 395:50–61. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Bonuccelli L, Rossi L, Lena A, Scarcelli V, Rainaldi G, Evangelista M, Iacopetti P, Gremigni V and Salvetti A: An RbAp48-like gene regulates adult stem cells in planarians. J Cell Sci. 123:690–698. 2010. View Article : Google Scholar : PubMed/NCBI

71 

He H, Kong S, Liu F, Zhang S, Jiang Y, Liao Y, Jiang Y, Li Q, Wang B, Zhou Z, et al: Rbbp7 is required for uterine stromal decidualization in mice. Biol Reprod. 93:132015. View Article : Google Scholar : PubMed/NCBI

72 

Shore AN, Kabotyanski EB, Roarty K, Smith MA, Zhang Y, Creighton CJ, Dinger ME and Rosen JM: Pregnancy-induced noncoding RNA (PINC) associates with polycomb repressive complex 2 and regulates mammary epithelial differentiation. PLoS Genet. 8:e10028402012. View Article : Google Scholar : PubMed/NCBI

73 

Xin J, Li J, Feng Y, Wang L, Zhang Y and Yang R: Downregulation of long noncoding RNA HOTAIRM1 promotes monocyte/dendritic cell differentiation through competitively binding to endogenous miR-3960. Onco Targets Ther. 10:1307–1315. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Rico M, Mukherjee A, Konieczkowski M, Bruggeman LA, Miller RT, Khan S, Schelling JR and Sedor JR: WT1-interacting protein and ZO-1 translocate into podocyte nuclei after puromycin aminonucleoside treatment. Am J Physiol Renal Physiol. 289:F431–F441. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Scuto A, Zhang H, Zhao H, Rivera M, Yeatman TJ, Jove R and Torres-Roca JF: RbAp48 regulates cytoskeletal organization and morphology by increasing K-Ras activity and signaling through mitogen-activated protein kinase. Cancer Res. 67:10317–10324. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Gasca S, Pellestor F, Assou S, Loup V, Anahory T, Dechaud H, De Vos J and Hamamah S: Identifying new human oocyte marker genes: A microarray approach. Reprod Biomed Online. 14:175–183. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Balboula AZ, Stein P, Schultz RM and Schindler K: Knockdown of RBBP7 unveils a requirement of histone deacetylation for CPC function in mouse oocytes. Cell Cycle. 13:600–611. 2014. View Article : Google Scholar

78 

Guan LS, Rauchman M and Wang ZY: Induction of Rb-associated protein (RbAp46) by Wilms' tumor suppressor WT1 mediates growth inhibition. J Biol Chem. 273:27047–27050. 1998. View Article : Google Scholar : PubMed/NCBI

79 

Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K and Misteli T: Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol. 11:1261–1267. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Hunt LC, Stover J, Haugen B, Shaw TI, Li Y, Pagala VR, Finkelstein D, Barton ER, Fan Y, Labelle M, et al: A key role for the ubiquitin ligase UBR4 in myofiber hypertrophy in drosophila and mice. Cell Rep. 28:1268–1281.e1266. 2019. View Article : Google Scholar : PubMed/NCBI

81 

Pavlopoulos E, Jones S, Kosmidis S, Close M, Kim C, Kovalerchik O, Small SA and Kandel ER: Molecular mechanism for age-related memory loss: The histone-binding protein RbAp48. Sci Transl Med. 5:200ra1152013. View Article : Google Scholar : PubMed/NCBI

82 

Tsujii A, Miyamoto Y, Moriyama T, Tsuchiya Y, Obuse C, Mizuguchi K, Oka M and Yoneda Y: Retinoblastoma-binding protein 4-regulated classical nuclear transport is involved in cellular senescence. J Biol Chem. 290:29375–29388. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Ginger MR, Gonzalez-Rimbau MF, Gay JP and Rosen JM: Persistent changes in gene expression induced by estrogen and progesterone in the rat mammary gland. Mol Endocrinol. 15:1993–2009. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Gao M, Li Y, Huang H, Fan Y, Shi R, Su L, Chen C, Li X, Zhu G and Wu D: Exploring the association between PRC2 genes variants and lung cancer risk in chinese han population. Onco Targets Ther. 16:499–513. 2023. View Article : Google Scholar : PubMed/NCBI

85 

Hao D, Li Y, Shi J and Jiang J: Circ_0110498 facilitates the cisplatin resistance of non-small cell lung cancer by mediating the miR-1287-5p/RBBP4 axis. Thorac Cancer. 14:662–672. 2023. View Article : Google Scholar : PubMed/NCBI

86 

Wang N, Wang W, Mao W, Kuerbantayi N, Jia N, Chen Y, Zhou F, Yin L and Wang Y: RBBP4 enhances platinum chemo resistance in lung adenocarcinoma. Biomed Res Int. 2021:69059852021.PubMed/NCBI

87 

Jin X, Zhang B, Zhang H and Yu H: Smoking-associated upregulation of CBX3 suppresses ARHGAP24 expression to activate Rac1 signaling and promote tumor progression in lung adenocarcinoma. Oncogene. 41:538–549. 2022. View Article : Google Scholar :

88 

Zhu H, Zheng C, Liu H, Kong F, Kong S, Chen F and Tian Y: Significance of macrophage infiltration in the prognosis of lung adenocarcinoma patients evaluated by scRNA and bulkRNA analysis. Front Immunol. 13:10284402022. View Article : Google Scholar : PubMed/NCBI

89 

Wang H, Lu X and Chen J: Construction and experimental validation of an acetylation-related gene signature to evaluate the recurrence and immunotherapeutic response in early-stage lung adenocarcinoma. BMC Med Genomics. 15:2542022. View Article : Google Scholar : PubMed/NCBI

90 

Wang CL, Wang CI, Liao PC, Chen CD, Liang Y, Chuang WY, Tsai YH, Chen HC, Chang YS, Yu JS, et al: Discovery of retinoblastoma-associated binding protein 46 as a novel prognostic marker for distant metastasis in nonsmall cell lung cancer by combined analysis of cancer cell secretome and pleural effusion proteome. J Proteome Res. 8:4428–4440. 2009. View Article : Google Scholar : PubMed/NCBI

91 

Tsao AS, Pass HI, Rimner A and Mansfield AS: New era for malignant pleural mesothelioma: Updates on therapeutic options. J Clin Oncol. 40:681–692. 2022. View Article : Google Scholar : PubMed/NCBI

92 

Vavougios GD, Solenov EI, Hatzoglou C, Baturina GS, Katkova LE, Molyvdas PA, Gourgoulianis KI and Zarogiannis SG: Computational genomic analysis of PARK7 interactome reveals high BBS1 gene expression as a prognostic factor favoring survival in malignant pleural mesothelioma. Am J Physiol Lung Cell Mol Physiol. 309:L677–L686. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Barzegar Behrooz A, Latifi-Navid H, da Silva Rosa SC, Swiat M, Wiechec E, Vitorino C, Vitorino R, Jamalpoor Z and Ghavami S: Integrating Multi-Omics analysis for enhanced diagnosis and treatment of glioblastoma: A comprehensive Data-Driven approach. Cancers (Basel). 15:31582023. View Article : Google Scholar : PubMed/NCBI

94 

Shou J, Gao H, Cheng S, Wang B and Guan H: LncRNA HOXA-AS2 promotes glioblastoma carcinogenesis by targeting miR-885-5p/RBBP4 axis. Cancer Cell Int. 21:392021. View Article : Google Scholar : PubMed/NCBI

95 

Mladek AC, Yan H, Tian S, Decker PA, Burgenske DM, Bakken K, Hu Z, He L, Connors MA, Carlson BL, et al: RBBP4-p300 axis modulates expression of genes essential for cell survival and is a potential target for therapy in glioblastoma. Neuro Oncol. 24:1261–1272. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Schultz LE, Haltom JA, Almeida MP, Wierson WA, Solin SL, Weiss TJ, Helmer JA, Sandquist EJ, Shive HR and McGrail M: Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis Model Mech. 11:dmm0341242018. View Article : Google Scholar : PubMed/NCBI

97 

Li D, Song H, Mei H, Fang E, Wang X, Yang F, Li H, Chen Y, Huang K, Zheng L and Tong Q: Armadillo repeat containing 12 promotes neuroblastoma progression through interaction with retinoblastoma binding protein 4. Nat Commun. 9:28292018. View Article : Google Scholar : PubMed/NCBI

98 

Crea F, Hurt EM and Farrar WL: Clinical significance of Polycomb gene expression in brain tumors. Mol Cancer. 9:2652010. View Article : Google Scholar : PubMed/NCBI

99 

Khrimian L, Obri A, Ramos-Brossier M, Rousseaud A, Moriceau S, Nicot AS, Mera P, Kosmidis S, Karnavas T, Saudou F, et al: Gpr158 mediates osteocalcin's regulation of cognition. J Exp Med. 214:2859–2873. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Kosmidis S, Polyzos A, Harvey L, Youssef M, Denny CA, Dranovsky A and Kandel ER: RbAp48 protein is a critical component of GPR158/OCN signaling and ameliorates Age-Related memory loss. Cell Rep. 25:959–973.e6. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Barral S, Reitz C, Small SA and Mayeux R: Genetic variants in a 'cAMP element binding protein' (CREB)-dependent histone acetylation pathway influence memory performance in cognitively healthy elderly individuals. Neurobiol Aging. 35:2881.e7–2881.e10. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Lejon S, Thong SY, Murthy A, AlQarni S, Murzina NV, Blobel GA, Laue ED and Mackay JP: Insights into association of the NuRD complex with FOG-1 from the crystal structure of an RbAp48•FOG-1 complex. J Biol Chem. 286:1196–1203. 2011. View Article : Google Scholar

103 

Huang HJ, Lee CC and Chen CY: Lead discovery for Alzheimer's disease related target protein RbAp48 from traditional Chinese medicine. Biomed Res Int. 2014:7649462014. View Article : Google Scholar : PubMed/NCBI

104 

Ramis MR, Sarubbo F, Tejada S, Jiménez M, Esteban S, Miralles A and Moranta D: chronic Polyphenon-60 or catechin treatments increase brain monoamines syntheses and hippocampal SIRT1 levels improving cognition in aged rats. Nutrients. 12:3262020. View Article : Google Scholar : PubMed/NCBI

105 

Dave N, Vural AS, Piras IS, Winslow W, Surendra L, Winstone JK, Beach TG, Huentelman MJ and Velazquez R: Identification of retinoblastoma binding protein 7 (Rbbp7) as a mediator against tau acetylation and subsequent neuronal loss in Alzheimer's disease and related tauopathies. Acta Neuropathol. 142:279–294. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Khateb A, Deshpande A, Feng Y, Finlay D, Lee JS, Lazar I, Fabre B, Li Y, Fujita Y and Zhang T: The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors. Nat Commun. 12:53972021. View Article : Google Scholar : PubMed/NCBI

107 

Casas S, Ollila J, Aventín A, Vihinen M, Sierra J and Knuutila S: Changes in apoptosis-related pathways in acute myelocytic leukemia. Cancer Genet Cytogenet. 146:89–101. 2003. View Article : Google Scholar : PubMed/NCBI

108 

Sakhinia E, Faranghpour M, Liu Yin JA, Brady G, Hoyland JA and Byers RJ: Routine expression profiling of microarray gene signatures in acute leukaemia by real-time PCR of human bone marrow. Br J Haematol. 130:233–248. 2005. View Article : Google Scholar : PubMed/NCBI

109 

Gao H, Wang H and Yang W: Identification of key genes and construction of microRNA-mRNA regulatory networks in multiple myeloma by integrated multiple GEO datasets using bioinformatics analysis. Int J Hematol. 106:99–107. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Merkerova M, Bruchova H, Kracmarova A, Klamova H and Brdicka R: Bmi-1 over-expression plays a secondary role in chronic myeloid leukemia transformation. Leuk Lymphoma. 48:793–801. 2007. View Article : Google Scholar : PubMed/NCBI

111 

Hu SY, Chen ZX, Cen JN, Gu M, Zhao Y, Shen HL and Wang W: RbAp46 gene activates the expression of IGFBP-rP1 gene in K562 leukemic cells. Zhonghua Xue Ye Xue Za Zhi. 27:107–110. 2006.In Chinese. PubMed/NCBI

112 

Hu SY, Chen ZX, Gu WY, Cen JN, Zhao Y and Gu M: Detection of RbAp46 expression in bone marrow cells of leukemia patients by real-time quantitative RT-PCR. Zhonghua Xue Ye Xue Za Zhi. 26:417–420. 2005.In Chinese. PubMed/NCBI

113 

Hu SY, Chen ZX, Gu WY, Cen JN and Zhao Y: High expression of RbAp46 gene in patients with acute leukemia or chronic myelogenous leukemia in blast crisis. Chin Med J (Engl). 118:1295–1298. 2005.PubMed/NCBI

114 

Duan WM, Chen ZX, Wang W, Fu JX, Bai X, Zhao XJ and Yao L: Establishment and characterization of leukemic cell line U937 stably expressing exogenous RbAp46. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 12:416–419. 2004.In Chinese. PubMed/NCBI

115 

Ritter J and Bielack SS: Osteosarcoma. Ann Oncol. 21(Suppl 7): vii320–vii325. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Zhang TF, Yu SQ, Loggie BW and Wang ZY: Inducible expression of RbAp46 activates c-Jun NH2-terminal kinase-dependent apoptosis and suppresses progressive growth of tumor xenografts in nude mice. Anticancer Res. 23:4621–4627. 2003.

117 

Li YD, Lv Z, Xie HY and Zheng SS: Retinoblastoma binding protein 4 up-regulation is correlated with hepatic metastasis and poor prognosis in colon cancer patients. Hepatobiliary Pancreat Dis Int. 18:446–451. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Zhu X, Luo X, Long X, Jiang S, Xie X, Zhang Q and Wang H: CircAGO2 promotes colorectal cancer progression by inhibiting heat shock protein family B (small) member 8 via miR-1-3p/retinoblastoma binding protein 4 axis. Funct Integr Genomics. 23:782023. View Article : Google Scholar : PubMed/NCBI

119 

Zhuo FF, Guo Q, Zheng YZ, Liu TT, Yang Z, Xu QH, Jiang Y, Liu D, Zeng KW and Tu PF: Photoaffinity Labeling-Based chemoproteomic strategy reveals RBBP4 as a cellular target of protopanaxadiol against colorectal cancer cells. Chembiochem. 23:e2022000382022. View Article : Google Scholar : PubMed/NCBI

120 

Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu X, Li Z, Wei J, Liu M and Li G: Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. Mol Cancer. 18:452019. View Article : Google Scholar : PubMed/NCBI

121 

Jin X, Jiang R, Xiang Y, Fan Z, Wu Z, Yang B, Yang L, Wei S and Yang Y: Overexpression of retinoblastoma-binding protein 4 contributes to the radiosensitivity of AGS gastric cancer cells via phosphoinositide3-kinase/protein kinase B pathway suppression. Mol Med Rep. 18:1571–1581. 2018.PubMed/NCBI

122 

Choi MC, Jong HS, Kim TY, Song SH, Lee DS, Lee JW, Kim TY, Kim NK and Bang YJ: AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity. Oncogene. 23:7095–7103. 2004. View Article : Google Scholar : PubMed/NCBI

123 

Liu Y, Gao L and Gelman IH: SSeCKS/Gravin/AKAP12 attenuates expression of proliferative and angiogenic genes during suppression of v-Src-induced oncogenesis. BMC Cancer. 6:1052006. View Article : Google Scholar : PubMed/NCBI

124 

Song H, Xia SL, Liao C, Li YL, Wang YF, Li TP and Zhao MJ: Genes encoding Pir51, Beclin 1, RbAp48 and aldolase b are up or down-regulated in human primary hepatocellular carcinoma. World J Gastroenterol. 10:509–513. 2004. View Article : Google Scholar : PubMed/NCBI

125 

Liu BH, Jobichen C, Chia CSB, Chan THM, Tang JP, Chung TXY, Li J, Poulsen A, Hung AW, Koh-Stenta X, et al: Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide. Proc Natl Acad Sci USA. 115:E7119–E7128. 2018.PubMed/NCBI

126 

Li L, Tang J, Zhang B, Yang W, LiuGao M, Wang R, Tan Y, Fan J, Chang Y, Fu J, et al: Epigenetic modification of MiR-429 promotes liver tumour-initiating cell properties by targeting Rb binding protein 4. Gut. 64:156–167. 2015. View Article : Google Scholar

127 

Tang HH, Zhou M and Liang G: Impact of epigallocatechin gallate on gene expression profiles of human hepatocellular carcinoma cell lines BEL7404/ADM and BEL7402/5-FU. Ai Zheng. 27:1056–1064. 2008.In Chinese. PubMed/NCBI

128 

Younossi ZM: Non-alcoholic fatty liver disease-A global public health perspective. J Hepatol. 70:531–544. 2019. View Article : Google Scholar

129 

Yao Y, Li X, Wang W, Liu Z, Chen J, Ding M and Huang X: MRT, Functioning with NURF complex, regulates lipid droplet size. Cell Rep. 24:2972–2984. 2018. View Article : Google Scholar : PubMed/NCBI

130 

Zhi S, Congcong Z, Zhiling G, Yihan Q, Yijing X, Guanjie L, Fang W, Xuehua S, Hongjie L, Xiaoni K and Yueqiu G: Quantitative proteomics of HFD-induced fatty liver uncovers novel transcription factors of lipid metabolism. Int J Biol Sci. 18:3298–3312. 2022. View Article : Google Scholar : PubMed/NCBI

131 

Chen L, Lu J, Xu T, Yan Z, Guo Y, Dong Z and Guo W: KTN1-AS1, a SOX2-mediated lncRNA, activates epithelial-mesenchymal transition process in esophageal squamous cell carcinoma. Sci Rep. 12:201862022. View Article : Google Scholar : PubMed/NCBI

132 

Bai X, Wang D, Ji H, Zheng L, Lu Y, Tang W, Zhang H, Xu W, Li J, Fei Z and Wang H: RbAp48 is critical for the proliferation of hypopharyngeal carcinoma. ORL J Otorhinolaryngol Relat Spec. 77:310–319. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Wang R, Huang Z, Lin Z, Chen B, Pang X, Du C and Fan H: Hypoxia-induced RBBP7 promotes esophagus cancer progression by inducing CDK4 expression. Acta Biochim Biophys Sin (Shanghai). 54:179–186. 2022. View Article : Google Scholar : PubMed/NCBI

134 

Xie ZF, Li HT, Xie SH and Ma M: Circular RNA hsa_ circ_0006168 contributes to cell proliferation, migration and invasion in esophageal cancer by regulating miR-384/RBBP7 axis via activation of S6K/S6 pathway. Eur Rev Med Pharmacol Sci. 24:151–163. 2020.PubMed/NCBI

135 

Pacifico F, Paolillo M, Chiappetta G, Crescenzi E, Arena S, Scaloni A, Monaco M, Vascotto C, Tell G, Formisano S and Leonardi A: RbAp48 is a target of nuclear factor-kappaB activity in thyroid cancer. J Clin Endocrinol Metab. 92:1458–1466. 2007. View Article : Google Scholar : PubMed/NCBI

136 

Saul D, Ninkovic M, Komrakova M, Wolff L, Simka P, Gasimov T, Menger B, Hoffmann DB, Rohde V and Sehmisch S: Effect of zileuton on osteoporotic bone and its healing, expression of bone, and brain genes in rats. J Appl Physiol (1985). 124:118–130. 2018. View Article : Google Scholar

137 

Gong R, Ren S, Chen M, Wang Y, Zhang G, Shi L, Zhang C, Su R and Li Y: Bioinformatics analysis reveals the altered gene expression of patients with postmenopausal osteoporosis using liuweidihuang pills treatment. Biomed Res Int. 2019:19079062019.PubMed/NCBI

138 

Yang C, Ren J, Li B, Jin C, Ma C, Cheng C, Sun Y and Shi X: Identification of gene biomarkers in patients with postmenopausal osteoporosis. Mol Med Rep. 19:1065–1073. 2019.

139 

Ishimaru N, Arakaki R, Omotehara F, Yamada K, Mishima K, Saito I and Hayashi Y: Novel role for RbAp48 in tissue-specific, estrogen deficiency-dependent apoptosis in the exocrine glands. Mol Cell Biol. 26:2924–2935. 2006. View Article : Google Scholar : PubMed/NCBI

140 

Ishimaru N, Arakaki R, Yoshida S, Yamada A, Noji S and Hayashi Y: Expression of the retinoblastoma protein RbAp48 in exocrine glands leads to Sjögren's syndrome-like autoimmune exocrinopathy. J Exp Med. 205:2915–2927. 2008. View Article : Google Scholar : PubMed/NCBI

141 

Guo Q, Cheng K, Wang X, Li X, Yu Y, Hua Y and Yang Z: Expression of HDAC1 and RBBP4 correlate with clinicopathologic characteristics and prognosis in breast cancer. Int J Clin Exp Pathol. 13:563–572. 2020.PubMed/NCBI

142 

Gong X, Dong T, Niu M, Liang X, Sun S, Zhang Y, Li Y and Li D: lncRNA LCPAT1 upregulation promotes breast cancer progression via enhancing MFAP2 transcription. Mol Ther Nucleic Acids. 21:804–813. 2020. View Article : Google Scholar : PubMed/NCBI

143 

Creekmore AL, Walt KA, Schultz-Norton JR, Ziegler YS, McLeod IX, Yates JR and Nardulli AM: The role of retinoblastoma-associated proteins 46 and 48 in estrogen receptor alpha mediated gene expression. Mol Cell Endocrinol. 291:79–86. 2008. View Article : Google Scholar : PubMed/NCBI

144 

Zheng Z, Yao X and Liu Y: RBBP4 plays a vital role in the malignant progression of triple-negative breast cancer by regulating epithelial-mesenchymal transition. Genes Genomics. 44:1301–1309. 2022. View Article : Google Scholar : PubMed/NCBI

145 

Moody RR, Lo MC, Meagher JL, Lin CC, Stevers NO, Tinsley SL, Jung I, Matvekas A, Stuckey JA and Sun D: Probing the interaction between the histone methyltransferase/deacetylase subunit RBBP4/7 and the transcription factor BCL11A in epigenetic complexes. J Biol Chem. 293:2125–2136. 2018. View Article : Google Scholar :

146 

Zhang TF, Yu SQ, Deuel TF and Wang ZY: Constitutive expression of Rb associated protein 46 (RbAp46) reverts transformed phenotypes of breast cancer cells. Anticancer Res. 23:3735–3740. 2003.PubMed/NCBI

147 

Zhang TF, Yu SQ and Wang ZY: RbAp46 inhibits estrogen-stimulated progression of neoplastigenic breast epithelial cells. Anticancer Res. 27:3205–3209. 2007.PubMed/NCBI

148 

Fu J, Qin L, He T, Qin J, Hong J, Wong J, Liao L and Xu J: The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res. 21:275–289. 2011. View Article : Google Scholar

149 

Li GC and Wang ZY: Constitutive expression of RbAp46 induces epithelial-mesenchymal transition in mammary epithelial cells. Anticancer Res. 26:3555–3560. 2006.PubMed/NCBI

150 

Thakur A, Rahman KW, Wu J, Bollig A, Biliran H, Lin X, Nassar H, Grignon DJ, Sarkar FH and Liao JD: Aberrant expression of X-linked genes RbAp46, Rsk4, and Cldn2 in breast cancer. Mol Cancer Res. 5:171–181. 2007. View Article : Google Scholar : PubMed/NCBI

151 

Ebata A, Suzuki T, Takagi K, Miki Y, Onodera Y, Nakamura Y, Fujishima F, Ishida K, Watanabe M, Tamaki K, et al: Oestrogen-induced genes in ductal carcinoma in situ: Their comparison with invasive ductal carcinoma. Endocr Relat Cancer. 19:485–496. 2012. View Article : Google Scholar : PubMed/NCBI

152 

Mieczkowska IK, Pantelaiou-Prokaki G, Prokakis E, Schmidt GE, Müller-Kirschbaum LC, Werner M, Sen M, Velychko T, Jannasch K, Dullin C, et al: Decreased PRC2 activity supports the survival of basal-like breast cancer cells to cytotoxic treatments. Cell Death Dis. 12:11182021. View Article : Google Scholar : PubMed/NCBI

153 

Kong L, Yu XP, Bai XH, Zhang WF, Zhang Y, Zhao WM, Jia JH, Tang W, Zhou YB and Liu CJ: RbAp48 is a critical mediator controlling the transforming activity of human papillomavirus type 16 in cervical cancer. J Biol Chem. 282:26381–26391. 2007. View Article : Google Scholar : PubMed/NCBI

154 

Wu SX, Ren XY, Pan YL, Guan DD, Liu S, Zou XY, Shi CG, Li YZ and Zhang YZ: Effects of ALA-PDT on HPV16-immortalized cervical epithelial cell. Neoplasma. 64:175–181. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Wu S, Wang L, Ren X, Pan Y, Peng Y, Zou X, Shi C and Zhang Y: Involvement of retinoblastoma-associated protein 48 during photodynamic therapy of cervical cancer cells. Mol Med Rep. 15:1393–1400. 2017. View Article : Google Scholar : PubMed/NCBI

156 

Zhong J, Yang X, Mai M, Wang D, Lv L and Rao J: Effect of RbAp48 knockdown on migration and invasion of human cervical cancer cell line MS751 in vitro. Nan Fang Yi Ke Da Xue Xue Bao. 35:1564–1569. 2015.In Chinese. PubMed/NCBI

157 

Zheng L, Tang W, Wei F, Wang H, Liu J, Lu Y, Cheng Y, Bai X, Yu X and Zhao W: Radiation-inducible protein RbAp48 contributes to radiosensitivity of cervical cancer cells. Gynecol Oncol. 130:601–608. 2013. View Article : Google Scholar : PubMed/NCBI

158 

Li HJ, Yu PN, Huang KY, Su HY, Hsiao TH, Chang CP, Yu MH and Lin YW: NKX6.1 functions as a metastatic suppressor through epigenetic regulation of the epithelial-mesenchymal transition. Oncogene. 35:2266–2278. 2016. View Article : Google Scholar

159 

Cai L, Wang D, Fisher AL and Wang Z: Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells. Biochem Biophys Res Commun. 447:292–298. 2014. View Article : Google Scholar : PubMed/NCBI

160 

Barreiro-Alonso A, Lamas-Maceiras M, Lorenzo-Catoira L, Pardo M, Yu L, Choudhary JS and Cerdán ME: HMGB1 Protein interactions in prostate and ovary cancer models reveal links to RNA processing and ribosome biogenesis through NuRD, THOC and septin complexes. Cancers (Basel). 13:46862021. View Article : Google Scholar : PubMed/NCBI

161 

Wang J, He C, Gao P, Wang S, Lv R, Zhou H, Zhou Q, Zhang K, Sun J, Fan C, et al: HNF1B-mediated repression of SLUG is suppressed by EZH2 in aggressive prostate cancer. Oncogene. 39:1335–1346. 2020. View Article : Google Scholar :

162 

Tournaye H, Krausz C and Oates RD: Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 5:544–553. 2017. View Article : Google Scholar

163 

Riera-Escamilla A, Vockel M, Nagirnaja L, Xavier MJ, Carbonell A, Moreno-Mendoza D, Pybus M, Farnetani G, Rosta V, Cioppi F, et al: Large-scale analyses of the X chromosome in 2,354 infertile men discover recurrently affected genes associated with spermatogenic failure. Am J Hum Genet. 109:1458–1471. 2022. View Article : Google Scholar : PubMed/NCBI

164 

Liu F, Cao L, Zhang T, Chang F, Xu Y, Li Q, Deng J, Li L and Shao G: CRL4BRBBP7 targets HUWE1 for ubiquitination and proteasomal degradation. Biochem Biophys Res Commun. 501:440–447. 2018. View Article : Google Scholar : PubMed/NCBI

165 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

166 

Yeh HH, Tseng YF, Hsu YC, Lan SH, Wu SY, Raghavaraju G, Cheng DE, Lee YR, Chang TY, Chow NH, et al: Ras induces experimental lung metastasis through up-regulation of RbAp46 to suppress RECK promoter activity. BMC Cancer. 15:1722015. View Article : Google Scholar : PubMed/NCBI

167 

Wang Y, Wang Y, Zhang D, Zhang H, Wang W and Hu X: Identifying RBBP7 as a promising diagnostic biomarker for BK virus-associated nephropathy. J Immunol Res. 2022:69347442022. View Article : Google Scholar : PubMed/NCBI

168 

Kim DS, Choi YP, Kang S, Gao MQ, Kim B, Park HR, Choi YD, Lim JB, Na HJ, Kim HK, et al: Panel of candidate biomarkers for renal cell carcinoma. J Proteome Res. 9:3710–3719. 2010. View Article : Google Scholar : PubMed/NCBI

169 

Wang J, Yang J, Yang Z, Lu X, Jin C, Cheng L and Wu N: RbAp48, a novel inhibitory factor that regulates the transcription of human immunodeficiency virus type 1. Int J Mol Med. 38:267–274. 2016. View Article : Google Scholar : PubMed/NCBI

170 

Wang J, Yang Z, Cheng L, Lu L, Pan K, Yang J and Wu N: Retinoblastoma binding protein 4 represses HIV-1 long terminal repeat-mediated transcription by recruiting NR2F1 and histone deacetylase. Acta Biochim Biophys Sin (Shanghai). 51:934–944. 2019. View Article : Google Scholar : PubMed/NCBI

171 

Biswas S, Haleyurgirisetty M, Ragupathy V, Wang X, Lee S, Hewlett I and Devadas K: Differentially expressed host long intergenic noncoding RNA and mRNA in HIV-1 and HIV-2 infection. Sci Rep. 8:25462018. View Article : Google Scholar : PubMed/NCBI

172 

Xu W, Wu Y, Zhao J, Chen J and Zhang W: Human immunodeficiency virus type 1 transcription is regulated by thieno[3,4-d] pyrimidine. Exp Ther Med. 19:3090–3096. 2020.PubMed/NCBI

173 

Schwartz SM, Daling JR, Doody DR, Wipf GC, Carter JJ, Madeleine MM, Mao EJ, Fitzgibbons ED, Huang S, Beckmann AM, et al: Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection. J Natl Cancer Inst. 90:1626–1636. 1998. View Article : Google Scholar : PubMed/NCBI

174 

Lohavanichbutr P, Houck J, Fan W, Yueh B, Mendez E, Futran N, Doody DR, Upton MP, Farwell DG, Schwartz SM, et al: Genomewide gene expression profiles of HPV-positive and HPV-negative oropharyngeal cancer: Potential implications for treatment choices. Arch Otolaryngol Head Neck Surg. 135:180–188. 2009. View Article : Google Scholar : PubMed/NCBI

175 

Wurlitzer M, Möckelmann N, Kriegs M, Vens M, Omidi M, Hoffer K, Bargen CV, Möller-Koop C, Witt M, Droste C, et al: Mass spectrometric comparison of HPV-Positive and HPV-Negative oropharyngeal cancer. Cancers (Basel). 12:15312020. View Article : Google Scholar : PubMed/NCBI

176 

Kaushik M, Nehra A, Gakhar SK, Gill SS and Gill R: The multifaceted histone chaperone RbAp46/48 in Plasmodium falciparum: Structural insights, production, and characterization. Parasitol Res. 119:1753–1765. 2020. View Article : Google Scholar : PubMed/NCBI

177 

Kaushik M, Nehra A, Gill SS and Gill R: Unraveling CAF-1 family in Plasmodium falciparum: Comparative genome-wide identification and phylogenetic analysis among eukaryotes, expression profiling and protein-protein interaction studies. 3 Biotech. 10:1432020. View Article : Google Scholar : PubMed/NCBI

178 

Chen H, Zhang W, Luo S, Li Y, Zhu Q, Xia Y, Tan H, Bian Y, Li Y, Ma J, et al: Lead exposure induces neuronal apoptosis via NFκB p65/RBBP4/Survivin signaling pathway. Toxicology. 499:1536542023. View Article : Google Scholar

179 

Jia W, Shen J, Wei S, Li C, Shi J, Zhao L and Jia H: Ropivacaine inhibits the malignant behavior of lung cancer cells by regulating retinoblastoma-binding protein 4. PeerJ. 11:e164712023. View Article : Google Scholar : PubMed/NCBI

180 

Torres-Roca JF, Eschrich S, Zhao H, Bloom G, Sung J, McCarthy S, Cantor AB, Scuto A, Li C, Zhang S, et al: Prediction of radiation sensitivity using a gene expression classifier. Cancer Res. 65:7169–7176. 2005. View Article : Google Scholar : PubMed/NCBI

181 

Hart P, Hommen P, Noisier A, Krzyzanowski A, Schüler D, Porfetye AT, Akbarzadeh M, Vetter IR, Adihou H and Waldmann H: Structure based design of bicyclic peptide inhibitors of RbAp48. Angew Chem Int Ed Engl. 60:1813–1820. 2021. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhan Y, Yin A, Su X, Tang N, Zhang Z, Chen Y, Wang W and Wang J: Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review). Int J Mol Med 53: 48, 2024.
APA
Zhan, Y., Yin, A., Su, X., Tang, N., Zhang, Z., Chen, Y. ... Wang, J. (2024). Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review). International Journal of Molecular Medicine, 53, 48. https://doi.org/10.3892/ijmm.2024.5372
MLA
Zhan, Y., Yin, A., Su, X., Tang, N., Zhang, Z., Chen, Y., Wang, W., Wang, J."Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review)". International Journal of Molecular Medicine 53.5 (2024): 48.
Chicago
Zhan, Y., Yin, A., Su, X., Tang, N., Zhang, Z., Chen, Y., Wang, W., Wang, J."Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review)". International Journal of Molecular Medicine 53, no. 5 (2024): 48. https://doi.org/10.3892/ijmm.2024.5372
Copy and paste a formatted citation
x
Spandidos Publications style
Zhan Y, Yin A, Su X, Tang N, Zhang Z, Chen Y, Wang W and Wang J: Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review). Int J Mol Med 53: 48, 2024.
APA
Zhan, Y., Yin, A., Su, X., Tang, N., Zhang, Z., Chen, Y. ... Wang, J. (2024). Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review). International Journal of Molecular Medicine, 53, 48. https://doi.org/10.3892/ijmm.2024.5372
MLA
Zhan, Y., Yin, A., Su, X., Tang, N., Zhang, Z., Chen, Y., Wang, W., Wang, J."Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review)". International Journal of Molecular Medicine 53.5 (2024): 48.
Chicago
Zhan, Y., Yin, A., Su, X., Tang, N., Zhang, Z., Chen, Y., Wang, W., Wang, J."Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review)". International Journal of Molecular Medicine 53, no. 5 (2024): 48. https://doi.org/10.3892/ijmm.2024.5372
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team