
Effects of DNA methylation and its application in inflammatory bowel disease (Review)
- Authors:
- Francis Atim Akanyibah
- Yi Zhu
- Aijun Wan
- Dickson Kofi Wiredu Ocansey
- Yuxuan Xia
- An-Ning Fang
- Fei Mao
-
Affiliations: Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu 222006, P.R. China, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu 212300, P.R. China, Zhenjiang College, Zhenjiang, Jiangsu 212028, P.R. China, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China, Basic Medical School, Anhui Medical College, Hefei, Anhui 230061, P.R. China - Published online on: April 30, 2024 https://doi.org/10.3892/ijmm.2024.5379
- Article Number: 55
-
Copyright: © Akanyibah et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Rajamäki K, Taira A, Katainen R, Välimäki N, Kuosmanen A, Plaketti RM, Seppälä TT, Ahtiainen M, Wirta EV, Vartiainen E, et al: Genetic and epigenetic characteristics of inflammatory bowel Disease-associated colorectal cancer. Gastroenterology. 161:592–607. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Wu G, Wu Q, Peng L and Yuan L: METTL3 overexpression aggravates LPS-induced cellular inflammation in mouse intestinal epithelial cells and DSS-induced IBD in mice. Cell Death Discov. 8:622022. View Article : Google Scholar : PubMed/NCBI | |
Patankar JV, Müller TM, Kantham S, Acera MG, Mascia F, Scheibe K, Mahapatro M, Heichler C, Yu Y, Li W, et al: E-type prostanoid receptor 4 drives resolution of intestinal inflammation by blocking epithelial necroptosis. Nat Cell Biol. 23:796–807. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Yim AYF, Duijvis NW, Zhao J, de Jonge WJ, D'Haens GRAM, Mannens MMAM, Mul ANPM, Te Velde AA and Henneman P: Peripheral blood methylation profiling of female Crohn's disease patients. Clin Epigenetics. 8:652016. View Article : Google Scholar : PubMed/NCBI | |
Nóbrega VG, Silva INN, Brito BS, Silva J, Silva M and Santana GO: The onset of clinical manifestations in inflammatory bowel disease patients. Arq Gastroenterol. 55:290–295. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, et al: Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet. 390:2769–2778. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gearry RB: IBD and environment: Are there differences between east and west. Dig Dis. 34:84–89. 2016. View Article : Google Scholar : PubMed/NCBI | |
Park SC and Jeen YT: Genetic studies of inflammatory bowel Disease-focusing on Asian patients. Cells. 8:4042019. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka K and Kanai T: The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 37:47–55. 2015. View Article : Google Scholar : | |
Rindflesch TC, Blake CL, Cairelli MJ, Fiszman M, Zeiss CJ and Kilicoglu H: Investigating the role of interleukin-1 beta and glutamate in inflammatory bowel disease and epilepsy using discovery browsing. J Biomed Semantics. 9:252018. View Article : Google Scholar : PubMed/NCBI | |
Bank S, Julsgaard M, Abed OK, Burisch J, Broder Brodersen J, Pedersen NK, Gouliaev A, Ajan R, Nytoft Rasmussen D, Honore Grauslund C, et al: Polymorphisms in the NFkB, TNF-alpha, IL-1beta, and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients with inflammatory bowel disease. Aliment Pharmacol Ther. 49:890–903. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Z and Wang H: Probiotics alleviate inflammatory bowel disease in mice by regulating intestinal microorganisms-bile acid-NLRP3 inflammasome pathway. Acta Biochim Pol. 68:687–693. 2021.PubMed/NCBI | |
Cooke J, Zhang H, Greger L, Silva AL, Massey D, Dawson C, Metz A, Ibrahim A and Parkes M: Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm Bowel Dis. 18:2128–2137. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin Z, Hegarty JP, Yu W, Cappel JA, Chen X, Faber PW, Wang Y, Poritz LS, Fan JB and Koltun WA: Identification of disease-associated DNA methylation in B cells from Crohn's disease and ulcerative colitis patients. Dig Dis Sci. 57:3145–3153. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Zhang H, Kugathasan S, Annese V, Bradfield JP, Russell RK, Sleiman PM, Imielinski M, Glessner J, Hou C, et al: Diverse genome-wide association studies associate the IL12/IL23 pathway with Crohn disease. Am J Hum Genet. 84:399–405. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim SW, Kim ES, Moon CM, Park JJ, Kim TI, Kim WH and Cheon JH: Genetic polymorphisms of IL-23R and IL-17A and novel insights into their associations with inflammatory bowel disease. Gut. 60:1527–1536. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bae JH, Park J, Yang KM, Kim TO and Yi JM: Detection of DNA hypermethylation in sera of patients with Crohn's disease. Mol Med Rep. 9:725–729. 2014. View Article : Google Scholar | |
Sanati G, Jafari D, Noruzinia M, Ebrahimi Daryani N, Ahmadvand M, Teimourian S and Rezaei N: Association of aberrant promoter methylation changes in the suppressor of cytokine signaling 3 (SOCS3) gene with susceptibility to Crohn's disease. Avicenna J Med Biotechnol. 14:165–169. 2022.PubMed/NCBI | |
Yousefi PD, Suderman M, Langdon R, Whitehurst O, Davey Smith G and Relton CL: DNA methylation-based predictors of health: Applications and statistical considerations. Nat Rev Genet. 23:369–383. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Fu J and Fang X: A novel DNA methylation-related gene signature for the prediction of overall survival and immune characteristics of ovarian cancer patients. J Ovarian Res. 16:622023. View Article : Google Scholar : PubMed/NCBI | |
Pan Y, Liu G, Zhou F, Su B and Li Y: DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med. 18:1–14. 2018. View Article : Google Scholar | |
Glezeva N, Moran B, Collier P, Moravec CS, Phelan D, Donnellan E, Russell-Hallinan A, O'Connor DP, Gallagher WM, Gallagher J, et al: Targeted DNA methylation profiling of human cardiac tissue reveals novel epigenetic traits and gene deregulation across different heart failure patient subtypes. Circ Heart Fail. 12:e0057652019. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Yang Y, Zhang Q and Liang T: Epigenetic dysregulation-mediated COL12A1 upregulation predicts worse outcome in intrahepatic cholangiocarcinoma patients. Clin Epigenetics. 15:132023. View Article : Google Scholar : PubMed/NCBI | |
Smail HO and Mohamad DA: Identification of DNA methylation change in TCF7L2 gene in the blood of type 2 diabetes mellitus as a predictive biomarker in Iraq Kurdistan region by using methylation-specific PCR. Endocr Regul. 57:53–60. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ehtesham N, Habibi Kavashkohie MR, Mazhari SA, Azhdari S, Ranjbar H, Mosallaei M, Hazrati E and Behroozi J: DNA methylation alterations in systemic lupus erythematosus: A systematic review of case-control studies. Lupus. 32:363–379. 2023. View Article : Google Scholar | |
Xu HM, Xu J, Yang MF, Liang YJ, Peng QZ, Zhang Y, Tian CM, Nie YQ, Wang LS, Yao J and Li DF: Epigenetic DNA methylation of Zbtb7b regulates the population of double-positive CD4+CD8+ T cells in ulcerative colitis. J Transl Med. 20:2892022. View Article : Google Scholar | |
Lin Y, Lin L, Yang Y, Guo Q, Long Y, He H, Bao Y, Lin T, Chen J, Chen Z, et al: DNA methylation architecture provides insight into the pathogenesis of upper tract urothelial carcinoma: A systematic review and Meta-Analysis. Clin Genitourin Cancer. 21:32–42. 2023. View Article : Google Scholar | |
Aquino EM, Benton MC, Haupt LM, Sutherland HG, Griffiths LR and Lea RA: Current understanding of DNA methylation and age-related disease. OBM Genetics. 2:1–16. 2018. View Article : Google Scholar | |
Lin CC, Chen YP, Yang WZ, Shen JCK and Yuan HS: Structural insights into CpG-specific DNA methylation by human DNA methyltransferase 3B. Nucleic Acids Res. 48:3949–3961. 2020. View Article : Google Scholar : PubMed/NCBI | |
Uysal F, Sukur G and Cinar O: DNMT enzymes differentially alter global DNA methylation in a stage-dependent manner during spermatogenesis. Andrologia. 54:e143572022. View Article : Google Scholar : PubMed/NCBI | |
Fujii S, Katake Y and Tanaka H: Increased expression of DNA methyltransferase-1 in non-neoplastic epithelium helps predict colorectal neoplasia risk in ulcerative colitis. Digestion. 82:179–186. 2010. View Article : Google Scholar : PubMed/NCBI | |
Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, Kaji E, Kondo Y and Yamamoto K: DNA methylation of colon mucosa in ulcerative colitis patients: Correlation with inflammatory status. Inflamm Bowel Dis. 17:1955–1965. 2011. View Article : Google Scholar : PubMed/NCBI | |
Scarpa M, Scarpa M, Castagliuolo I, Erroi F, Kotsafti A, Basato S, Brun P, D'Incà R, Rugge M, Angriman I and Castoro C: Aberrant gene methylation in non-neoplastic mucosa as a predictive marker of ulcerative colitis-associated CRC. Oncotarget. 7:10322–10331. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ueda H, Tanaka H, Ichikawa K, Itabashi M, Kameoka S, Fujii S, Saito N, Kimura R, Shida Y, Fujimori Y, et al: Immunohistochemical analysis of the DNA methyltransferase 3b expression is associated with significant improvements in the discrimination of ulcerative colitis-associated neoplastic lesions. Surg Today. 43:1275–1280. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lv Q, Shi C, Qiao S, Cao N, Guan C, Dai Y and Wei Z: Alpinetin exerts anti-colitis efficacy by activating AhR, regulating miR-302/DNMT-1/CREB signals, and therefore promoting Treg differentiation. Cell Death Dis. 9:8902018. View Article : Google Scholar : PubMed/NCBI | |
Foran E, Garrity-Park MM, Mureau C, Newell J, Smyrk TC, Limburg PJ and Egan LJ: Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol Cancer Res. 8:471–481. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Wang HY, Woetmann A, Raghunath PN, Odum N and Wasik MA: STAT3 induces transcription of the DNA methyltransferase 1 gene (DNMT1) in malignant T lymphocytes. Blood. 108:1058–1064. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T and Wasik MA: STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci USA. 102:6948–6953. 2005. View Article : Google Scholar : PubMed/NCBI | |
Doi R, Fukumura Y, Lu R, Hirabayashi K, Kinowaki Y, Nakanuma Y, Kanai Y, Nakahodo J, Sasahara N, Saito T and Yao T: DNMT1 expression and DNA methylation in intraductal papillary neoplasms of the bile duct. Anticancer Res. 42:2893–2902. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fazio A, Bordoni D, Kuiper JWP, Weber-Stiehl S, Stengel ST, Arnold P, Ellinghaus D, Ito G, Tran F, Messner B, et al: DNA methyltransferase 3A controls intestinal epithelial barrier function and regeneration in the colon. Nat Commun. 13:62662022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Ma L, Deng Y, Du Z, Guo B, Yue J, Liu X and Zhang Y: The Notch1/Hes1 signaling pathway affects autophagy by adjusting DNA methyltransferases expression in a valproic acid-induced autism spectrum disorder model. Neuropharmacology. 239:1096822023. View Article : Google Scholar : PubMed/NCBI | |
Lio CJ and Rao A: TET Enzymes and 5hmC in adaptive and innate immune systems. Front Immunol. 10:2102019. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez EA, Liu Y, Wang D, Jeziorek M, Bandyopadhyay S, Rao A, Gao N and Etchegaray JP: TET3-mediated DNA oxidation is essential for intestinal epithelial cell response to stressors. Proc Natl Acad Sci USA. 120:e22214051202023. View Article : Google Scholar : PubMed/NCBI | |
El-Harakeh M, Saliba J, Sharaf Aldeen K, Haidar M, El Hajjar L, Awad MK, Hashash JG, Shirinian M and El-Sabban M: Expression of the methylcytosine dioxygenase ten-eleven translocation-2 and connexin 43 in inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 28:5845–5864. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sharaf Al Deen K: TET2 Expression as a function of Cx43 regulation: An in-vitro archival tissue study of IBD and human colon cancer. 2020, http://hdl.handle.net/10938/21961. | |
Takeshima H, Niwa T, Yamashita S, Takamura-Enya T, Iida N, Wakabayashi M, Nanjo S, Abe M, Sugiyama T, Kim YJ and Ushijima T: TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest. 130:5370–5379. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li Z, Gao Q, Peng Y, Yu Y, Hu T and Wang W: Correlation of DNA methylation of DNMT3A and TET2 with oral squamous cell carcinoma. Discov Oncol. 15:152024. View Article : Google Scholar : PubMed/NCBI | |
Ansari I, Solé-Boldo L, Ridnik M, Gutekunst J, Gilliam O, Korshko M, Liwinski T, Jickeli B, Weinberg-Corem N, Shoshkes-Carmel M, et al: TET2 and TET3 loss disrupts small intestine differentiation and homeostasis. Nat Commun. 14:40052023. View Article : Google Scholar : PubMed/NCBI | |
Gupta T, Morgan HR, Bailey JA and Certel SJ: Functional conservation of MBD proteins: MeCP2 and Drosophila MBD proteins alter sleep. Genes Brain Behav. 15:757–774. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ludwig AK, Zhang P, Hastert FD, Meyer S, Rausch C, Herce HD, Müller U, Lehmkuhl A, Hellmann I, Trummer C, et al: Binding of MBD proteins to DNA blocks Tet1 function thereby modulating transcriptional noise. Nucleic Acids Res. 45:2438–2457. 2017. View Article : Google Scholar : | |
Wang LS, Kuo CT, Stoner K, Yearsley M, Oshima K, Yu J, Huang TH, Rosenberg D, Peiffer D, Stoner G and Huang YW: Dietary black raspberries modulate DNA methylation in dextran sodium sulfate (DSS)-induced ulcerative colitis. Carcinogenesis. 34:2842–2850. 2013. View Article : Google Scholar : PubMed/NCBI | |
McGovern D and Powrie F: The IL23 axis plays a key role in the pathogenesis of IBD. Gut. 56:1333–1336. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Zhu H, Mao YJ, Cao N, Yu YL, Li LY, Zhao Q, Wu M and Ye M: Regulation of IL12B expression in human macrophages by TALEN-mediated epigenome editing. Curr Med Sci. 40:900–909. 2020. View Article : Google Scholar : PubMed/NCBI | |
Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, et al: A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 314:1461–1463. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pidasheva S, Trifari S, Phillips A, Hackney JA, Ma Y, Smith A, Sohn SJ, Spits H, Little RD, Behrens TW, et al: Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLoS One. 6:e250382011. View Article : Google Scholar : PubMed/NCBI | |
Dhir M, Montgomery EA, Glöckner SC, Schuebel KE, Hooker CM, Herman JG, Baylin SB, Gearhart SL and Ahuja N: Epigenetic regulation of WNT signaling pathway genes in inflammatory bowel disease (IBD) associated neoplasia. J Gastrointest Surg. 12:1745–1753. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yoshimi K, Tanaka T, Serikawa T and Kuramoto T: Tumor suppressor APC protein is essential in mucosal repair from colonic inflammation through angiogenesis. Am J Pathol. 182:1263–1274. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zhao J, Sun J, Tian C, Jiang Q, Ding C, Gan Q, Shu P, Wang X, Qin J and Sun Y: Demethylation of the SFRP4 promoter drives gastric cancer progression via the Wnt pathway. Mol Cancer Res. 19:1454–1464. 2021. View Article : Google Scholar : PubMed/NCBI | |
Deshmukh A, Arfuso F, Newsholme P and Dharmarajan A: Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signalling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol. 109:23–32. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim TO, Han YK and Yi JM: Hypermethylated promoters of tumor suppressor genes were identified in Crohn's disease patients. Intest Res. 18:297–305. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Deuring J, Peppelenbosch MP, Kuipers EJ, de Haar C and van der Woude CJ: IL-6-induced DNMT1 activity mediates SOCS3 promoter hypermethylation in ulcerative colitis-related colorectal cancer. Carcinogenesis. 33:1889–1896. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li J, Su X, Dai L, Chen N, Fang C, Dong Z, Fu J, Yu Y, Wang W, Zhang H, et al: Temporal DNA methylation pattern and targeted therapy in colitis-associated cancer. Carcinogenesis. 41:235–244. 2020. View Article : Google Scholar | |
Huang YS, Jie N, Zhang YX, Zou KJ and Weng Y: shRNA-induced silencing of Ras-related C3 botulinum toxin substrate 1 inhibits the proliferation of colon cancer cells through upregulation of BAD and downregulation of cyclin D1. Int J Mol Med. 41:1397–1408. 2018. | |
Somineni HK, Venkateswaran S, Kilaru V, Marigorta UM, Mo A, Okou DT, Kellermayer R, Mondal K, Cobb D, Walters TD, et al: Blood-Derived DNA methylation signatures of Crohn's disease and severity of intestinal inflammation. Gastroenterology. 156:2254–2265.e3. 2019. View Article : Google Scholar : PubMed/NCBI | |
Venkateswaran S, Somineni HK, Kilaru V, Katrinli S, Prince J, Okou DT, Hyams JS, Denson LA, Kellermayer R, Gibson G, et al: Methylation quantitative trait loci are largely consistent across disease states in Crohn's disease. G3 (Bethesda). 12:jkac0412022. View Article : Google Scholar : PubMed/NCBI | |
Tan ZY and Ding M: DNA extraction from formalin fixed and paraffin embedded tissues. Fa Yi Xue Za Zhi. 22:455–458. 2006.In Chinese. | |
Berrino E, Bellomo SE, Chesta A, Detillo P, Bragoni A, Gagliardi A, Naccarati A, Cereda M, Witel G, Sapino A, et al: Alternative tissue fixation protocols dramatically reduce the impact of DNA artifacts, unraveling the interpretation of clinical comprehensive genomic profiling. Lab Invest. 104:1002802024. View Article : Google Scholar : PubMed/NCBI | |
Azuara D, Rodriguez-Moranta F, de Oca J, Sanjuan X, Guardiola J, Lobaton T, Wang A, Boadas J, Piqueras M, Monfort D, et al: Novel methylation panel for the early detection of neoplasia in high-risk ulcerative colitis and Crohn's colitis patients. Inflamm Bowel Dis. 19:165–173. 2013. View Article : Google Scholar | |
Azuara D, Aussó S, Rodriguez-Moranta F, Guardiola J, Sanjuan X, Lobaton T, Boadas J, Piqueras M, Monfort D, Guinó E, et al: New methylation biomarker panel for early diagnosis of dysplasia or cancer in High-risk inflammatory bowel disease patients. Inflamm Bowel Dis. 24:2555–2564. 2018.PubMed/NCBI | |
Johnson DH, Taylor WR, Aboelsoud MM, Foote PH, Yab TC, Cao X, Smyrk TC, Loftus EV Jr, Mahoney DW, Ahlquist DA and Kisiel JB: DNA methylation and mutation of small colonic neoplasms in ulcerative colitis and Crohn's colitis: Implications for surveillance. Inflamm Bowel Dis. 22:1559–1567. 2016. View Article : Google Scholar : PubMed/NCBI | |
Maeda O, Ando T, Watanabe O, Ishiguro K, Ohmiya N, Niwa Y and Goto H: DNA hypermethylation in colorectal neoplasms and inflammatory bowel disease: A mini review. Inflammopharmacology. 14:204–206. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kisiel JB, Yab TC, Nazer Hussain FT, Taylor WR, Garrity-Park MM, Sandborn WJ, Loftus EV, Wolff BG, Smyrk TC, Itzkowitz SH, et al: Stool DNA testing for the detection of colorectal neoplasia in patients with inflammatory bowel disease. Aliment Pharmacol Ther. 37:546–554. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kang K, Bae JH, Han K, Kim ES, Kim TO and Yi JM: A Genome-wide methylation approach identifies a new hypermethylated gene panel in ulcerative colitis. Int J Mol Sci. 17:12912016. View Article : Google Scholar : PubMed/NCBI | |
Dooley TP, Curto EV, Reddy SP, Davis RL, Lambert GW, Wilborn TW and Elson CO: Regulation of gene expression in inflammatory bowel disease and correlation with IBD drugs: Screening by DNA microarrays. Inflamm Bowel Dis. 10:1–14. 2004. View Article : Google Scholar : PubMed/NCBI | |
Joustra V, Li Yim AYF, Hageman I, Levin E, Adams A, Satsangi J, de Jonge WJ, Henneman P and D'Haens G: Long-term temporal stability of peripheral blood DNA methylation profiles in patients with inflammatory bowel disease. Cell Mol Gastroenterol Hepatol. 15:869–885. 2023. View Article : Google Scholar : | |
Pekow J, Hernandez K, Meckel K, Deng Z, Haider HI, Khalil A, Zhang C, Talisila N, Siva S, Jasmine F, et al: IBD-associated colon cancers differ in DNA methylation and gene expression profiles compared with sporadic colon cancers. J Crohns Colitis. 13:884–893. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Hannon E, Reppell M, Waring JF, Smaoui N, Pivorunas V, Guay H, Chanchlani N, Bewshea C, Bai BYH, et al: Whole blood DNA methylation changes are associated with anti-TNF drug concentration in patients with Crohn's disease. J Crohns Colitis. jjad1332003. View Article : Google Scholar : Epub ahead of print. | |
Mishra N, Aden K, Blase JI, Baran N, Bordoni D, Tran F, Conrad C, Avalos D, Jaeckel C, Scherer M, et al: Longitudinal Multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease. Genome Med. 14:1102022. View Article : Google Scholar : PubMed/NCBI | |
McDermott E, Ryan EJ, Tosetto M, Gibson D, Burrage J, Keegan D, Byrne K, Crowe E, Sexton G, Malone K, et al: DNA methylation profiling in inflammatory bowel disease provides new insights into disease pathogenesis. J Crohns Colitis. 10:77–86. 2016. View Article : Google Scholar : | |
Vlantis K, Polykratis A, Welz PS, van Loo G, Pasparakis M and Wullaert A: TLR-independent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice. Gut. 65:935–943. 2016. View Article : Google Scholar | |
Kunz M, König IR, Schillert A, Kruppa J, Ziegler A, Grallert H, Müller-Nurasyid M, Lieb W, Franke A, Ranki A, et al: Genome-wide association study identifies new susceptibility loci for cutaneous lupus erythematosus. Exp Dermatol. 24:510–515. 2015. View Article : Google Scholar : PubMed/NCBI | |
Polani S, Dean M, Lichter-Peled A, Hendrickson S, Tsang S, Fang X, Feng Y, Qiao W, Avni G and Kahila Bar-Gal G: Sequence variant in the TRIM39-RPP21 gene readthrough is shared across a cohort of Arabian foals diagnosed with juvenile idiopathic epilepsy. J Genet Mutat Disord. 1:1032022.PubMed/NCBI | |
Nimmo ER, Prendergast JG, Aldhous MC, Kennedy NA, Henderson P, Drummond HE, Ramsahoye BH, Wilson DC, Semple CA and Satsangi J: Genome-wide methylation profiling in Crohn's disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis. 18:889–899. 2012. View Article : Google Scholar | |
Coit P, De Lott LB, Nan B, Elner VM and Sawalha AH: DNA methylation analysis of the temporal artery microenvironment in giant cell arteritis. Ann Rheum Dis. 75:1196–1202. 2016. View Article : Google Scholar | |
Wang Y, Jiang X, Zhu J, Dan Yue, Zhang X, Wang X, You Y, Wang B, Xu Y, Lu C, et al: IL-21/IL-21R signaling suppresses intestinal inflammation induced by DSS through regulation of Th responses in lamina propria in mice. Sci Rep. 6:318812016. View Article : Google Scholar : PubMed/NCBI | |
Holm TL, Tornehave D, Søndergaard H, Kvist PH, Sondergaard BC, Hansen L, Hermit MB, Holgersen K, Vergo S, Frederiksen KS, et al: Evaluating IL-21 as a potential therapeutic target in Crohn's disease. Gastroenterol Res Pract. 2018:59626242018. View Article : Google Scholar : PubMed/NCBI | |
Toskas A, Milias S, Delis G, Meditskou S, Sioga A and Papamitsou T: Expression of IL-21 and IL-33 in intestinal mucosa of inflammatory bowel disease: An immunohistochemical study. Diagnostics (Basel). 13:21852023. View Article : Google Scholar : PubMed/NCBI | |
Yang S, Zeng J, Hao W, Sun R, Tuo Y, Tan L, Zhang H, Liu R and Bai H: IL-21/IL-21R promotes the Pro-Inflammatory effects of macrophages during C. muridarum respiratory infection. Int J Mol Sci. 24:125572023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, de Haar C, Peppelenbosch MP and van der Woude CJ: SOCS3 in immune regulation of inflammatory bowel disease and inflammatory bowel disease-related cancer. Cytokine Growth Factor Rev. 23:127–138. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Yan Z, Yang W, Buckley JA, Al Diffalha S, Benveniste EN and Qin H: Socs3 expression in myeloid cells modulates the pathogenesis of dextran sulfate sodium (DSS)-induced colitis. Front Immunol. 14:11639872023. View Article : Google Scholar : PubMed/NCBI | |
Zheng H, Yan Y, Cheng J, Yu S and Wang Y: Association between SOCS3 hypermethylation and HBV-related hepatocellular carcinoma and effect of sex and age: A meta-analysis. Medicine. 100:e276042021. View Article : Google Scholar : PubMed/NCBI | |
Gonsky R, Deem RL and Targan SR: Distinct methylation of IFNG in the gut. J Interferon Cytokine Res. 29:407–414. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gonsky R, Deem RL, Landers CJ, Haritunians T, Yang S and Targan SR: IFNG rs1861494 polymorphism is associated with IBD disease severity and functional changes in both IFNG methylation and protein secretion. Inflamm Bowel Dis. 20:1794–1801. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto H, Watanabe M, Inoue N, Hirai N, Haga E, Kinoshita R, Hidaka Y and Iwatani Y: Association of IFNG gene methylation in peripheral blood cells with the development and prognosis of autoimmune thyroid diseases. Cytokine. 123:1547702019. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Chen J, Mo F, Bian Z, Jin C, Chen X and Liang C: Genetic polymorphisms of IFNG, IFNGR1, and androgen receptor and chronic prostatitis/chronic pelvic pain syndrome in a Chinese Han population. Dis Markers. 2021:28983362021. View Article : Google Scholar : PubMed/NCBI | |
Papadia C, Louwagie J, Del Rio P, Grooteclaes M, Coruzzi A, Montana C, Novelli M, Bordi C, de' Angelis GL, Bassett P, et al: FOXE1 and SYNE1 genes hypermethylation panel as promising biomarker in colitis-associated colorectal neoplasia. Inflamm Bowel Dis. 20:271–277. 2014. View Article : Google Scholar | |
Dhir M, Yachida S, Van Neste L, Glöckner SC, Jeschke J, Pappou EP, Montgomery EA, Herman JG, Baylin SB, Iacobuzio-Donahue C and Ahuja N: Sessile serrated adenomas and classical adenomas: An epigenetic perspective on premalignant neoplastic lesions of the gastrointestinal tract. Int J Cancer. 129:1889–1898. 2011. View Article : Google Scholar : | |
Weisenberger DJ, Trinh BN, Campan M, Sharma S, Long TI, Ananthnarayan S, Liang G, Esteva FJ, Hortobagyi GN, McCormick F, et al: DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight. Nucleic Acids Res. 36:4689–4698. 2008. View Article : Google Scholar : PubMed/NCBI | |
Venza I, Visalli M, Tripodo B, De Grazia G, Loddo S, Teti D and Venza M: FOXE1 is a target for aberrant methylation in cutaneous squamous cell carcinoma. Br J Dermatol. 162:1093–1097. 2010. View Article : Google Scholar | |
Qu Y, Gao N and Wu T: Expression and clinical significance of SYNE1 and MAGI2 gene promoter methylation in gastric cancer. Medicine. 100:e237882021. View Article : Google Scholar : PubMed/NCBI | |
Yi JM, Dhir M, Guzzetta AA, Iacobuzio-Donahue CA, Heo K, Yang KM, Suzuki H, Toyota M, Kim HM and Ahuja N: DNA methylation biomarker candidates for early detection of colon cancer. Tumour Biol. 33:363–372. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kim TO, Park J, Kang MJ, Lee SH, Jee SR, Ryu DY, Yang K and Yi JM: DNA hypermethylation of a selective gene panel as a risk marker for colon cancer in patients with ulcerative colitis. Int J Mol Med. 31:1255–1261. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alafaria HAA and Jalal AS: Novel DNA methylation biomarkers for early diagnosis of oral tongue squamous cell carcinoma (OTSCC). J Appl Genet. Mar 5–2024. View Article : Google Scholar : Epub ahead of print. | |
Liu F, Lu X, Zhou X and Huang H: APC gene promoter methylation as a potential biomarker for lung cancer diagnosis: A meta-analysis. Thoracic Cancer. 12:2907–2913. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cai C, Zhu Y, Mu J, Liu S, Yang Z, Wu Z, Zhao C, Song X, Ye Y, Gu J, et al: DNA methylation of RUNX3 promotes the progression of gallbladder cancer through repressing SLC7A11-mediated ferroptosis. Cell Signal. 108:1107102023. View Article : Google Scholar : PubMed/NCBI | |
Toyooka S, Toyooka KO, Harada K, Miyajima K, Makarla P, Sathyanarayana UG, Yin J, Sato F, Shivapurkar N, Meltzer SJ and Gazdar AF: Aberrant methylation of the CDH13 (H-cadherin) promoter region in colorectal cancers and adenomas. Cancer Res. 62:3382–3386. 2002.PubMed/NCBI | |
Kim TO, Park DI, Han YK, Kang K, Park SG, Park HR and Yi JM: Genome-Wide analysis of the DNA methylation profile identifies the fragile histidine triad (FHIT) gene as a new promising biomarker of Crohn's disease. J Clin Med. 9:13382020. View Article : Google Scholar : PubMed/NCBI | |
Bellon M, Bialuk I, Galli V, Bai XT, Farre L, Bittencourt A, Marçais A, Petrus MN, Ratner L, Waldmann TA, et al: Germinal epimutation of Fragile Histidine Triad (FHIT) gene is associated with progression to acute and chronic adult T-cell leukemia diseases. Mol Cancer. 20:862021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xu X, Chen Z and Zhao Z: Association of FHIT expression and FHIT gene hypermethylation with liver cancer risk: A PRISMA-compliant meta-analysis. Onco Targets Ther. 10:3083–3093. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Wu G, Yao X, Hou G and Jiang F: The clinicopathological significance and ethnic difference of FHIT hypermethylation in non-small-cell lung carcinoma: A meta-analysis and literature review. Drug Des Devel Ther. 10:699–709. 2016.PubMed/NCBI | |
Gerecke C, Scholtka B, Löwenstein Y, Fait I, Gottschalk U, Rogoll D, Melcher R and Kleuser B: Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: Putative risk markers for colitisassociated cancer. J Cancer Res Clin Oncol. 141:2097–2107. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ausch C, Kim YH, Tsuchiya KD, Dzieciatkowski S, Washington MK, Paraskeva C, Radich J and Grady WM: Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA. Clin Chem. 55:1559–1563. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bretz N, Noske A, Keller S, Erbe-Hofmann N, Schlange T, Salnikov AV, Moldenhauer G, Kristiansen G and Altevogt P: CD24 promotes tumor cell invasion by suppressing tissue factor pathway inhibitor-2 (TFPI-2) in a c-Src-dependent fashion. Clin Exp Metastasis. 29:27–38. 2012. View Article : Google Scholar | |
Enders A, Stankovic S, Teh C, Uldrich AP, Yabas M, Juelich T, Altin JA, Frankenreiter S, Bergmann H, Roots CM, et al: ZBTB7B (Th-POK) regulates the development of IL-17-producing CD1d-restricted mouse NKT cells. J Immunol. 189:5240–5249. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wildt KF, Sun G, Grueter B, Fischer M, Zamisch M, Ehlers M and Bosselut R: The transcription factor Zbtb7b promotes CD4 expression by antagonizing Runx-mediated activation of the CD4 silencer. J Immunol. 179:4405–4414. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dang Do AN, Sleat DE, Campbell K, Johnson NL, Zheng H, Wassif CA, Dale RK and Porter FD: Cerebrospinal fluid protein biomarker discovery in CLN3. J Proteome Res. 22:2493–2508. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li N, Yu K, Lin Z and Zeng D: Identifying a cervical cancer survival signature based on mRNA expression and genome-wide copy number variations. Exp Biol Med (Maywood). 247:207–220. 2022. View Article : Google Scholar | |
Pernat Drobež C, Repnik K, Gorenjak M, Ferkolj I, Weersma RK and Potočnik U: DNA polymorphisms predict time to progression from uncomplicated to complicated Crohn's disease. Eur J Gastroenterol Hepatol. 30:447–455. 2018. View Article : Google Scholar | |
Harris RA, Nagy-Szakal D, Mir SA, Frank E, Szigeti R, Kaplan JL, Bronsky J, Opekun A, Ferry GD, Winter H and Kellermayer R: DNA methylation-associated colonic mucosal immune and defense responses in treatment-naïve pediatric ulcerative colitis. Epigenetics. 9:1131–1137. 2014. View Article : Google Scholar : PubMed/NCBI | |
Okahara S, Arimura Y, Yabana T, Kobayashi K, Gotoh A, Motoya S, Imamura A, Endo T and Imai K: Inflammatory gene signature in ulcerative colitis with cDNA macroarray analysis. Aliment Pharmacol Ther. 21:1091–1097. 2005. View Article : Google Scholar : PubMed/NCBI | |
Román J, Planell N, Lozano JJ, Aceituno M, Esteller M, Pontes C, Balsa D, Merlos M, Panés J and Salas A: Evaluation of responsive gene expression as a sensitive and specific biomarker in patients with ulcerative colitis. Inflamm Bowel Dis. 19:221–229. 2013. View Article : Google Scholar | |
Ventham NT, Kennedy NA, Adams AT, Kalla R, Heath S, O'Leary KR, Drummond H; IBD BIOM consortium; IBD CHARACTER consortium; Wilson DC; et al: Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat Commun. 7:135072016. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Zhu C, Jin J, Wang J, Zhao X and Yang R: Identification of an association between coronary heart disease and ITGB2 methylation in peripheral blood by a case-control study. Clin Chim Acta. 552:1176272024. View Article : Google Scholar | |
Xing XL, Liu Y, Liu J, Zhou H, Zhang H, Zuo Q, Bu P, Duan T, Zhou Y and Xiao Z: Comprehensive analysis of ferroptosis- and immune-related signatures to improve the prognosis and diagnosis of kidney renal clear cell carcinoma. Front Immunol. 13:8513122022. View Article : Google Scholar : PubMed/NCBI | |
Peng C, Zhao G, Pei B, Wang K, Li H, Fei S, Song L, Wang C, Xiong S, Xue Y, et al: A novel plasma-based methylation panel for upper gastrointestinal cancer early detection. Cancers (Basel). 14:52822022. View Article : Google Scholar : PubMed/NCBI | |
Sun FK, Sun Q, Fan YC, Gao S, Zhao J, Li F, Jia YB, Liu C, Wang LY, Li XY, et al: Methylation of tissue factor pathway inhibitor 2 as a prognostic biomarker for hepatocellular carcinoma after hepatectomy. J Gastroenterol Hepatol. 31:484–492. 2016. View Article : Google Scholar | |
Karamitrousis EI, Balgkouranidou I, Xenidis N, Amarantidis K, Biziota E, Koukaki T, Trypsianis G, Karayiannakis A, Bolanaki H, Kolios G, et al: Prognostic role of RASSF1A, SOX17 and Wif-1 promoter methylation status in Cell-Free DNA of advanced gastric cancer patients. Technol Cancer Res Treat. 20:15330338209732792021. View Article : Google Scholar : PubMed/NCBI | |
Jia Y, Yang Y, Liu S, Herman JG, Lu F and Guo M: SOX17 antagonizes WNT/β-catenin signaling pathway in hepatocellular carcinoma. Epigenetics. 5:743–749. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hata T, Mizuma M, Kusakabe T, Amano H, Furukawa T, Iwao T and Unno M: Simultaneous and sequential combination of genetic and epigenetic biomarkers for the presence of high-grade dysplasia in patients with pancreatic cyst: Discovery in cyst fluid and test in pancreatic juice. Pancreatology. 23:218–226. 2023. View Article : Google Scholar : PubMed/NCBI | |
Akiyama Y, Watkins N, Suzuki H, Jair KW, van Engeland M, Esteller M, Sakai H, Ren CY, Yuasa Y, Herman JG and Baylin SB: GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol. 23:8429–8439. 2003. View Article : Google Scholar : PubMed/NCBI | |
Karatzas PS, Mantzaris GJ, Safioleas M and Gazouli M: DNA methylation profile of genes involved in inflammation and autoimmunity in inflammatory bowel disease. Medicine. 93:e3092014. View Article : Google Scholar : PubMed/NCBI | |
Taman H, Fenton CG, Hensel IV, Anderssen E, Florholmen J and Paulssen RH: Genome-wide DNA methylation in Treatment-naïve ulcerative colitis. J Crohns Colitis. 12:1338–1347. 2018. View Article : Google Scholar : PubMed/NCBI | |
Walz A, Schmutz P, Mueller C and Schnyder-Candrian S: Regulation and function of the CXC chemokine ENA-78 in monocytes and its role in disease. J Leukoc Biol. 62:604–611. 1997. View Article : Google Scholar : PubMed/NCBI | |
Friedrich M, Diegelmann J, Schauber J, Auernhammer CJ and Brand S: Intestinal neuroendocrine cells and goblet cells are mediators of IL-17A-amplified epithelial IL-17C production in human inflammatory bowel disease. Mucosal Immunol. 8:943–958. 2015. View Article : Google Scholar | |
West GA, Matsuura T, Levine AD, Klein JS and Fiocchi C: Interleukin 4 in inflammatory bowel disease and mucosal immune reactivity. Gastroenterology. 110:1683–1695. 1996. View Article : Google Scholar : PubMed/NCBI | |
Lin K, Zou R, Lin F, Zheng S, Shen X and Xue X: Expression and effect of CXCL14 in colorectal carcinoma. Mol Med Rep. 10:1561–1568. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Chen Z, Ding C, Lin S, Wan D and Ren K: Prognostic biomarkers and immunotherapeutic targets among CXC chemokines in pancreatic adenocarcinoma. Front Oncol. 11:7114022021. View Article : Google Scholar : PubMed/NCBI | |
Samarani S, Dupont-Lucas C, Marcil V, Mack D, Israel D, Deslandres C, Jantchou P, Ahmad A and Amre D: CpG Methylation in TGFβ1 and IL-6 genes as surrogate biomarkers for diagnosis of IBD in Children. Inflamm Bowel Dis. 26:1572–1578. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marincola Smith P, Choksi YA, Markham NO, Hanna DN, Zi J, Weaver CJ, Hamaamen JA, Lewis KB, Yang J, Liu Q, et al: Colon epithelial cell TGFβ signaling modulates the expression of tight junction proteins and barrier function in mice. Am J Physiol Gastrointest Liver Physiol. 320:G936–G957. 2021. View Article : Google Scholar | |
Troncone E, Marafini I, Stolfi C and Monteleone G: Transforming growth Factor-β1/Smad7 in intestinal immunity, inflammation, and cancer. Front Immunol. 9:14072018. View Article : Google Scholar | |
Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW and MacDonald TT: Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest. 108:601–609. 2001. View Article : Google Scholar : PubMed/NCBI | |
Ivanova MM, Dao J, Slayeh OA, Friedman A and Goker-Alpan O: Circulated TGF-β1 and VEGF-A as biomarkers for fabry Disease-associated cardiomyopathy. Cells. 12:21022023. View Article : Google Scholar | |
Ghobrial EE, Abdel-Aziz HA, Kaddah AM and Mubarak NA: Urinary transforming growth factor β-1 as a marker of renal dysfunction in sickle cell disease. Pediatr Neonatol. 57:174–180. 2016. View Article : Google Scholar | |
Chaverri D, Vivas D, Gallardo-Villares S, Granell-Escobar F, Pinto JA and Vives J: A pilot study of circulating levels of TGF-β1 and TGF-β2 as biomarkers of bone healing in patients with non-hypertrophic pseudoarthrosis of long bones. Bone Reports. 16:1011572022. View Article : Google Scholar | |
Wu DL, Wang Y, Zhang TJ, Chu MQ, Xu ZJ, Yuan Q, Ma JC, Lin J, Qian J and Zhou JD: SLIT2 promoter hypermethylation predicts disease progression in chronic myeloid leukemia. Eur J Med Res. 27:2592022. View Article : Google Scholar : PubMed/NCBI | |
Xie S, Zhang Y, Peng T, Guo J, Cao Y, Guo J, Shi X, Li Y, Liu Y, Qi S and Wang H: TMEFF2 promoter hypermethylation is an unfavorable prognostic marker in gliomas. Cancer Cell Int. 21:1482021. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Shang S, Yang Y, Lu P, Wang T, Cui X and Tang X: Identification of DNA methylation-driven genes by integrative analysis of DNA methylation and transcriptome data in pancreatic adenocarcinoma. Exp Ther Med. 19:2963–2972. 2020.PubMed/NCBI | |
Hu H, Chen X, Wang C, Jiang Y, Li J, Ying X, Yang Y, Li B, Zhou C, Zhong J, et al: The role of TFPI2 hypermethylation in the detection of gastric and colorectal cancer. Oncotarget. 8:84054–84065. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gasparetto M, Payne F, Nayak K, Kraiczy J, Glemas C, Philip-McKenzie Y, Ross A, Edgar RD, Zerbino DR, Salvestrini C, et al: Transcription and DNA methylation patterns of Blood-Derived CD8(+) T cells are associated with age and inflammatory bowel disease but do not predict prognosis. Gastroenterology. 160:232–244.e7. 2021. View Article : Google Scholar | |
Venkateswaran S, Somineni HK, Matthews JD, Kilaru V, Hyams JS, Denson LA, Kellamayer R, Gibson G, Cutler DJ, Conneely KN, et al: Longitudinal DNA methylation profiling of the rectal mucosa identifies cell-specific signatures of disease status, severity and clinical outcomes in ulcerative colitis cell-specific DNA methylation signatures of UC. Clin Epigenetics. 15:502023. View Article : Google Scholar : PubMed/NCBI | |
Corridoni D, Antanaviciute A, Gupta T, Fawkner-Corbett D, Aulicino A, Jagielowicz M, Parikh K, Repapi E, Taylor S, Ishikawa D, et al: Single-cell atlas of colonic CD8+ T cells in ulcerative colitis. Nat Med. 26:1480–1490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Yim AYF, Duijvis NW, Ghiboub M, Sharp C, Ferrero E, Mannens MMAM, D'Haens GR, de Jonge WJ, Te Velde AA and Henneman P: Whole-genome DNA methylation profiling of CD14+ monocytes reveals disease status and activity differences in Crohn's disease patients. J Clin Med. 9:10552020. View Article : Google Scholar : PubMed/NCBI | |
Grip O, Bredberg A, Lindgren S and Henriksson G: Increased subpopulations of CD16(+) and CD56(+) blood monocytes in patients with active Crohn's disease. Inflamm Bowel Dis. 13:566–572. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Braga-Neto MB, Xiong Y, Bhagwate AV, Gibbons HR, Sagstetter MR, Hamdan FH, Baheti S, Friton J, Nair A, et al: Hypomethylation and overexpression of Th17-associated genes is a hallmark of intestinal CD4+ lymphocytes in Crohn's disease. J Crohns Colitis. 17:1847–1857. 2023. View Article : Google Scholar : PubMed/NCBI | |
Howell KJ, Kraiczy J, Nayak KM, Gasparetto M, Ross A, Lee C, Mak TN, Koo BK, Kumar N, Lawley T, et al: DNA methylation and transcription patterns in intestinal epithelial cells from pediatric patients with inflammatory bowel diseases differentiate disease subtypes and associate with outcome. Gastroenterology. 154:585–598. 2018. View Article : Google Scholar | |
Mlambo T, Nitsch S, Hildenbeutel M, Romito M, Müller M, Bossen C, Diederichs S, Cornu TI, Cathomen T and Mussolino C: Designer epigenome modifiers enable robust and sustained gene silencing in clinically relevant human cells. Nucleic Acids Res. 46:4456–4468. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Wang F, Li S, Wang Y, Bai Y and Xu X: TALE: A tale of genome editing. Prog Biophys Mol Biol. 114:25–32. 2014. View Article : Google Scholar | |
Tang N, Zhang Y, Pedrera M, Chang P, Baigent S, Moffat K, Shen Z, Nair V and Yao Y: Generating recombinant avian herpesvirus vectors with CRISPR/Cas9 gene editing. J Vis Exp. Jan 7–2019. View Article : Google Scholar | |
Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E, et al: A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. 31:251–258. 2013. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Bloj B, Moses C, Sgro A, Plani-Lam J, Arooj M, Duffy C, Thiruvengadam S, Sorolla A, Rashwan R, Mancera RL, et al: Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget. 7:60535–60554. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bernstein DL, Le Lay JE, Ruano EG and Kaestner KH: TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J Clin Invest. 125:1998–2006. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ke Q, Li W, Lai X, Chen H, Huang L, Kang Z, Li K, Ren J, Lin X, Zheng H, et al: TALEN-based generation of a cynomolgus monkey disease model for human microcephaly. Cell Res. 26:1048–1061. 2016. View Article : Google Scholar : PubMed/NCBI | |
Whyte JM, Ellis JJ, Brown MA and Kenna TJ: Best practices in DNA methylation: Lessons from inflammatory bowel disease, psoriasis and ankylosing spondylitis. Arthritis Res Ther. 21:1332019. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Dong K and Dong R: The diagnosis effect of DNA methylation in inflammatory bowel diseases. Gastroenterology. 155:2292018. View Article : Google Scholar : PubMed/NCBI | |
McLarty J and Yeh C: Circulating cell-free DNA: The blood biopsy in cancer management. MOJ Cell Sci Rep. 2:000212015. | |
Hirahata T, Ul Quraish R, Quraish AU, Ul Quraish S, Naz M and Razzaq MA: Liquid biopsy: A distinctive approach to the diagnosis and prognosis of cancer. Cancer Inform. 21:117693512210760622022. View Article : Google Scholar : PubMed/NCBI | |
Karatzas PS, Gazouli M, Safioleas M and Mantzaris GJ: DNA methylation changes in inflammatory bowel disease. Ann Gastroenterol. 27:125–132. 2014.PubMed/NCBI | |
Warnecke PM, Stirzaker C, Melki JR, Millar DS, Paul CL and Clark SJ: Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res. 25:4422–4426. 1997. View Article : Google Scholar : PubMed/NCBI | |
Raine A, Manlig E, Wahlberg P, Syvänen AC and Nordlund J: SPlinted ligation adapter tagging (SPLAT), a novel library preparation method for whole genome bisulphite sequencing. Nucleic Acids Res. 45:e362017. View Article : Google Scholar : | |
Tost J: Current and emerging technologies for the analysis of the genome-wide and locus-specific DNA methylation patterns. Adv Exp Med Biol. 1389:395–469. 2022. View Article : Google Scholar : PubMed/NCBI |