Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review)
- Authors:
- Shan Chong
- Guangyan Mu
- Xinan Cen
- Qian Xiang
- Yimin Cui
-
Affiliations: Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China, Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China - Published online on: May 10, 2024 https://doi.org/10.3892/ijmm.2024.5381
- Article Number: 57
-
Copyright: © Chong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Mu G, Xiang Q, Zhou S, Liu Z, Qi L, Jiang J, Gong Y, Xie Q, Wang Z, Zhang H, et al: Efficacy and safety of PCSK9 monoclonal antibodies in patients at high cardiovascular risk: An updated systematic review and meta-analysis of 32 randomized controlled trial. Adv Ther. 37:1496–1521. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang DW, Garuti R, Tang WJ, Cohen JC and Hobbs HH: Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc Natl Acad Sci USA. 105:13045–13050. 2008. View Article : Google Scholar : PubMed/NCBI | |
Paciullo F, Momi S and Gresele P: PCSK9 in haemostasis and thrombosis: Possible pleiotropic effects of PCSK9 inhibitors in cardiovascular prevention. Thromb Haemost. 119:359–367. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, et al: 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 73:3168–3209. 2019. View Article : Google Scholar | |
Henein MY, Vancheri S, Longo G and Vancheri F: The role of inflammation in cardiovascular disease. Int J Mol Sci. 23:129062022. View Article : Google Scholar : PubMed/NCBI | |
Hunt SC, Hopkins PN, Bulka K, McDermott MT, Thorne TL, Wardell BB, Bowen BR, Ballinger DG, Skolnick MH, Samuels ME, et al: Genetic localization to chromosome 1p32 of the third locus for familial hypercholesterolemia in a Utah kindred. Arterioscler Thromb Vasc Biol. 20:1089–1093. 2000. View Article : Google Scholar : PubMed/NCBI | |
Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, et al: Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 34:154–156. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hummelgaard S, Vilstrup JP, Gustafsen C, Glerup S and Weyer K: Targeting PCSK9 to tackle cardiovascular disease. Pharmacol Ther. 249:1084802023. View Article : Google Scholar : PubMed/NCBI | |
Barale C, Bonomo K, Frascaroli C, Morotti A, Guerrasio A, Cavalot F and Russo I: Platelet function and activation markers in primary hypercholesterolemia treated with anti-PCSK9 monoclonal antibody: A 12-month follow-up. Nutr Metab Cardiovasc Dis. 30:282–291. 2020. View Article : Google Scholar | |
Andreadou I, Schulz R, Badimon L, Adameová A, Kleinbongard P, Lecour S, Nikolaou PE, Falcão-Pires I, Vilahur G, Woudberg N, et al: Hyperlipidaemia and cardioprotection: Animal models for translational studies. Br J Pharmacol. 177:5287–5311. 2020. View Article : Google Scholar : | |
Guo Y, Yan B, Tai S, Zhou S and Zheng XL: CSK9: Associated with cardiac diseases and their risk factors? Arch Biochem Biophys. 704:1087172021. View Article : Google Scholar | |
Song L, Zhao X, Chen R, Li J, Zhou J, Liu C, Zhou P, Wang Y, Chen Y, Zhao H and Yan H: Association of PCSK9 with inflammation and platelet activation markers and recurrent car-diovascular risks in STEMI patients undergoing primary PCI with or without diabetes. Cardiovasc Diabetol. 21:802022. View Article : Google Scholar | |
INC., F.M.I: PCSK9 inhibitor market outlook from 2024 to 2034. 2023, (cited 2023 March 31st); Available from: https://www.futuremarketinsights.com/reports/pcsk9-inhibitors-market. | |
Seidah NG, Awan Z, Chrétien M and Mbikay M: PCSK9: A key modulator of cardiovascular health. Circ Res. 114:1022–1036. 2014. View Article : Google Scholar : PubMed/NCBI | |
Garvie CW, Fraley CV, Elowe NH, Culyba EK, Lemke CT, Hubbard BK, Kaushik VK and Daniels DS: Point mutations at the catalytic site of PCSK9 inhibit folding, autoprocessing, and interaction with the LDL receptor. Protein Sci. 25:2018–2027. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, Varghese AH, Ammirati MJ, Culp JS, Hoth LR, et al: Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 14:413–419. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wiciński M, Żak J, Malinowski B, Popek G and Grześk G: PCSK9 signaling pathways and their potential importance in clinical practice. EPMA J. 8:391–402. 2017. View Article : Google Scholar | |
Yang L, Pu T, Zhang Y, Yan H, Yu H and Gao W: The R93C variant of PCSK9 reduces the risk of premature mi in a Chinese Han population. Front Genet. 13:8752692022. View Article : Google Scholar : PubMed/NCBI | |
Kwon HJ, Lagace TA, McNutt MC, Horton JD and Deisenhofer J: Molecular basis for LDL receptor recognition by PCSK9. Proc Natl Acad Sci USA. 105:1820–1825. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lo Surdo P, Bottomley MJ, Calzetta A, Settembre EC, Cirillo A, Pandit S, Ni YG, Hubbard B, Sitlani A and Carfí A: Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 12:1300–1305. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cameron J, Holla OL, Laerdahl JK, Kulseth MA, Ranheim T, Rognes T, Berge KE and Leren TP: Characterization of novel mutations in the catalytic domain of the PCSK9 gene. J Intern Med. 263:420–431. 2008. View Article : Google Scholar : PubMed/NCBI | |
Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammulapati S, Skolnick MH, Hopkins PN, Hunt SC and Shattuck DM: A mutation in PCSK9 causing autosomaldominant hypercholesterolemia in a Utah pedigree. Hum Genet. 114:349–353. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto T, Lu C and Ryan R: A Two-step binding model of PCSK9 interaction with the low density lipoprotein receptor. J Biol Chem. 286:5464–5470. 2011. View Article : Google Scholar : | |
Hampton EN, Knuth MW, Li J, Harris JL, Lesley SA and Spraggon G: The self-inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin within the C-terminal domain. Proc Natl Acad Sci USA. 104:14604–14609. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fang WQ, Zhang Q, Peng YB, Chen M, Lin XP, Wu JH, Cai CH, Mei YF and Jin H: Resistin level is positively correlated with thrombotic complications in Southern Chinese metabolic syndrome patients. J Endocrinol Invest. 34:e36–e42. 2011. View Article : Google Scholar | |
Jamaluddin MS, Weakley SM, Yao Q and Chen C: Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 165:622–632. 2012. View Article : Google Scholar : | |
Jeong HJ, Lee HS, Kim KS, Kim YK, Yoon D and Park SW: Sterol-dependent regulation of proprotein Convertase Subtilisin/Kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 49:399–409. 2008. View Article : Google Scholar | |
Costet P, Cariou B, Lambert G, Lalanne F, Lardeux B, Jarnoux AL, Grefhorst A, Staels B and Krempf M: Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem. 281:6211–6218. 2006. View Article : Google Scholar : PubMed/NCBI | |
Li H, Dong B, Park SW, Lee HS, Chen W and Liu J: Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem. 284:28885–28895. 2009. View Article : Google Scholar : PubMed/NCBI | |
Raal F, Panz V, Immelman A and Pilcher G: Elevated PCSK9 levels in untreated patients with heterozygous or homozygous familial hypercholesterolemia and the response to high-dose statin therapy. J Am Heart Assoc. 2:e0000282013. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, McCabe T, Condra JH, Ni YG, Peterson LB, Wang W, Strack AM, Wang F, Pandit S, Hammond H, et al: An anti-PCSK9 antibody reduces LDL-cholesterol on top of a statin and suppresses hepatocyte SREBP-regulated genes. Int J Biol Sci. 8:310–327. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dong B, Singh AB, Shende VR and Liu J: Hepatic HNF1 transcription factors control the induction of PCSK9 mediated by rosuvastatin in normolipidemic hamsters. Int J Mol Med. 39:749–756. 2017. View Article : Google Scholar : PubMed/NCBI | |
Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, et al: Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 372:1489–1499. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, et al: Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 376:1713–1722. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, Bisch JA, Richardson T, Jaros M, Wijngaard PLJ, et al: Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 382:1507–1519. 2020. View Article : Google Scholar : PubMed/NCBI | |
Björkegren JLM and Lusis AJ: Atherosclerosis: Recent developments. Cell. 185:1630–1645. 2022. View Article : Google Scholar : PubMed/NCBI | |
Santos RD, Gidding SS, Hegele RA, Cuchel MA, Barter PJ, Watts GF, Baum SJ, Catapano AL, Chapman MJ, Defesche JC, et al: Defining severe familial hypercholesterolaemia and the implications for clinical management: A consensus statement from the international atherosclerosis society severe familial hypercholesterolemia panel. Lancet Diabetes Endocrinol. 4:850–861. 2016. View Article : Google Scholar : PubMed/NCBI | |
Raal F, Fourie N, Scott R, Blom D, De Vries Basson M, Kayikcioglu M, Caldwell K, Kallend D and Stein E; LIBerate-HeFH Investigators: Long-term efficacy and safety of lerodalcibep in heterozygous familial hypercholesterolaemia: The LIBerate-HeFH trial. Eur Heart J. 44:4272–4280. 2023. View Article : Google Scholar : PubMed/NCBI | |
Agarwala A, Asim R and Ballantyne CM: Oral PCSK9 inhibitors. Curr Atheroscler Rep. Mar 27–2024. View Article : Google Scholar : Epub ahead of print. PubMed/NCBI | |
Gallego-Colon E, Daum A and Yosefy C: Statins and PCSK9 inhibitors: A new lipid-lowering therapy. Eur J Pharmacol. 878:1731142020. View Article : Google Scholar : PubMed/NCBI | |
Baumann S, Kettel L, Stach K, Özdemir GH, Renker M, Tesche C, Becher T, Hetjens S, Schoepf UJ, Akin I, et al: Serial changes in coronary plaque formation using CT angiography in patients undergoing PCSK9-Inhibitor therapy with 1-year Follow-up. J Thorac Imaging. 37:285–291. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ota H, Omori H, Kawasaki M, Hirakawa A and Matsuo H: Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: A near-infrared spectroscopy study. Eur Heart J Cardiovasc Imaging. 23:217–228. 2022. View Article : Google Scholar | |
Nishikido T: Clinical potential of inclisiran for patients with a high risk of atherosclerotic cardiovascular disease. Cardiovasc Diabetol. 22:202023. View Article : Google Scholar : PubMed/NCBI | |
Cammisotto V, Baratta F, Simeone PG, Barale C, Lupia E, Galardo G, Santilli F, Russo I and Pignatelli P: Proprotein convertase subtilisin Kexin type 9 (PCSK9) beyond lipids: The role in oxidative stress and thrombosis. Antioxidants (Basel). 11:5692022. View Article : Google Scholar : PubMed/NCBI | |
Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, Awan Z, Barreto GE and Sahebkar A: PCSK9 and inflammation: A review of experimental and clinical evidence. Eur Heart J Cardiovasc Pharmacother. 5:237–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luquero A, Badimon L and Borrell-Pages M: PCSK9 functions in atherosclerosis are not limited to plasmatic LDL-Cholesterol regulation. Front Cardiovasc Med. 8:6397272021. View Article : Google Scholar : PubMed/NCBI | |
Navarese EP, Kolodziejczak M, Winter MP, Alimohammadi A, Lang IM, Buffon A, Lip GY and Siller-Matula JM: Association of PCSK9 with platelet reactivity in patients with acute coronary syndrome treated with prasugrel or ticagrelor: The PCSK9-REACT study. Int J Cardiol. 227:644–649. 2017. View Article : Google Scholar | |
Marston NA, Gurmu Y, Melloni GEM, Bonaca M, Gencer B, Sever PS, Pedersen TR, Keech AC, Roselli C, Lubitz SA, et al: The effect of PCSK9 (Proprotein Convertase Subtilisin/Kexin type 9) inhibition on the risk of venous thromboembolism. Circulation. 141:1600–1607. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zaccardi F, Kunutsor SK, Seidu S, Davies MJ and Khunti K: Is the lower risk of venous thromboembolism with statins related to low-density-lipoprotein reduction? A network metaanalysis and meta-regression of randomised controlled trials. Atherosclerosis. 271:223–231. 2018. View Article : Google Scholar : PubMed/NCBI | |
Petersen-Uribe Á, Kremser M, Rohlfing AK, Castor T, Kolb K, Dicenta V, Emschermann F, Li B, Borst O, Rath D, et al: Platelet-derived PCSK9 is associated with LDL metabolism and modulates atherothrombotic mechanisms in coronary artery disease. Int J Mol Sci. 22:111792021. View Article : Google Scholar : PubMed/NCBI | |
Konarzewski M, Szolkiewicz M, Sucajtys-Szulc E, Blaszak J, Lizakowski S, Swierczynski J and Rutkowski B: Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am J Nephrol. 40:157–163. 2014. View Article : Google Scholar : PubMed/NCBI | |
Grimm J, Peschel G, Müller M, Schacherer D, Wiest R, Weigand K and Buechler C: Rapid decline of serum proprotein convertase Subtilisin/Kexin 9 (PCSK9) in Non-cirrhotic patients with chronic Hepatitis C infection receiving direct-acting antiviral therapy. J Clin Med. 10:16212021. View Article : Google Scholar : PubMed/NCBI | |
Wong Chong E, Joncas FH, Seidah NG, Calon F, Diorio C and Gangloff A: Circulating levels of PCSK9, ANGPTL3 and Lp(a) in stage III breast cancers. BMC Cancer. 22:10492022. View Article : Google Scholar : PubMed/NCBI | |
Stark K and Massberg S: Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 18:666–682. 2021. View Article : Google Scholar : PubMed/NCBI | |
Camera M, Rossetti L, Barbieri SS, Zanotti I, Canciani B, Trabattoni D, Ruscica M, Tremoli E and Ferri N: PCSK9 as a positive modulator of platelet activation. J Am Coll Cardiol. 71:952–954. 2018. View Article : Google Scholar : PubMed/NCBI | |
Panes O, González C, Hidalgo P, Valderas JP, Acevedo M, Contreras S, Sánchez X, Pereira J, Rigotti A and Mezzano D: Platelet tissue factor activity and membrane cholesterol are increased in hypercholesterolemia and normalized by rosuvastatin, but not by atorvastatin. Atherosclerosis. 257:164–171. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schwartz GG, Szarek M, Bittner VA, Diaz R, Goodman SG, Jukema JW, Landmesser U, López-Jaramillo P, Manvelian G, Pordy R, et al: Lipoprotein(a) and benefit of PCSK9 inhibition in patients with nominally controlled LDL cholesterol. J Am Coll Cardiol. 78:421–433. 2021. View Article : Google Scholar : PubMed/NCBI | |
Schwartz GG, Steg PG, Szarek M, Bittner VA, Diaz R, Goodman SG, Kim YU, Jukema JW, Pordy R, Roe MT, et al: Peripheral artery disease and venous thromboembolic events after acute coronary syndrome: Role of Lipoprotein(a) and modification by Alirocumab: Prespecified analysis of the ODYSSEY OUTCOMES randomized clinical trial. Circulation. 141:1608–1617. 2020. View Article : Google Scholar : PubMed/NCBI | |
Boffa MB: Beyond fibrinolysis: The confounding role of Lp(a) in thrombosis. Atherosclerosis. 349:72–81. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tsimikas S, Tsironis LD and Tselepis AD: New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease. Arterioscler Thromb Vasc Biol. 27:2094–2099. 2007. View Article : Google Scholar : PubMed/NCBI | |
Assinger A, Wang Y, Butler LM, Hansson GK, Yan ZQ, Söderberg-Nauclér C and Ketelhuth DF: Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses. Thromb Haemost. 112:332–341. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hagström E, Steg PG, Szarek M, Bhatt DL, Bittner VA, Danchin N, Diaz R, Goodman SG, Harrington RA, Jukema JW, et al: Apolipoprotein B, residual cardiovascular risk after acute coronary syndrome, and effects of alirocumab. Circulation. 146:657–672. 2022. View Article : Google Scholar : PubMed/NCBI | |
Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, Braunwald E and Sabatine MS: Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and Meta-analysis. JAMA. 316:1289–1297. 2016. View Article : Google Scholar : PubMed/NCBI | |
Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M, Poliakov E, Sun M, Finton PJ, Curtis BR, et al: Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med. 13:1086–1095. 2007. View Article : Google Scholar : PubMed/NCBI | |
Magwenzi S, Woodward C, Wraith KS, Aburima A, Raslan Z, Jones H, McNeil C, Wheatcroft S, Yuldasheva N, Febbriao M, et al: Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood. 125:2693–2703. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qi Z, Hu L, Zhang J, Yang W, Liu X, Jia D, Yao Z, Chang L, Pan G, Zhong H, et al: PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation. 143:45–61. 2021. View Article : Google Scholar | |
Pignatelli P, Carnevale R, Di Santo S, Bartimoccia S, Sanguigni V, Lenti L, Finocchi A, Mendolicchio L, Soresina AR, Plebani A and Violi F: Inherited human gp91phox deficiency is associated with impaired isoprostane formation and platelet dysfunction. Arterioscler Thromb Vasc Biol. 31:423–434. 2011. View Article : Google Scholar | |
Pastori D, Nocella C, Farcomeni A, Bartimoccia S, Santulli M, Vasaturo F, Carnevale R, Menichelli D, Violi F and Pignatelli P; ATHERO-AF Study Group: Relationship of PCSK9 and urinary thromboxane excretion to cardiovascular events in patients with atrial fibrillation. J Am Coll Cardiol. 70:1455–1462. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schlüter KD, Wolf A, Weber M, Schreckenberg R and Schulz R: Oxidized low-density lipoprotein (oxLDL) affects load-free cell shortening of cardiomyocytes in a proprotein convertase Subtilisin/Kexin 9 (PCSK9)-dependent way. Basic Res Cardiol. 112:632017. View Article : Google Scholar : PubMed/NCBI | |
Gurbel PA, Navarese EP and Tantry US: Exploration of PCSK9 as a cardiovascular risk factor: Is there a link to the platelet? J Am Coll Cardiol. 70:1463–1466. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kong N, Xu Q, Cui W, Feng X and Gao H: PCSK9 inhibitor inclisiran for treating atherosclerosis via regulation of endothelial cell pyroptosis. Ann Transl Med. 10:12052022. View Article : Google Scholar : PubMed/NCBI | |
Wang H and Bai X: Mechanisms of bone remodeling disorder in hemophilia. Semin Thromb Hemost. 47:43–52. 2021. View Article : Google Scholar | |
Bovenschen N, Mertens K, Hu L, Havekes LM and van Vlijmen BJ: LDL receptor cooperates with LDL receptor-related protein in regulating plasma levels of coagulation factor VIII in vivo. Blood. 106:906–912. 2005. View Article : Google Scholar : PubMed/NCBI | |
Paciullo F, Petito E, Falcinelli E, Gresele P and Momi S: Pleiotropic effects of PCSK9-inhibition on hemostasis: Anti-PCSK9 reduce FVIII levels by enhancing LRP1 expression. Thromb Res. 213:170–172. 2022. View Article : Google Scholar : PubMed/NCBI | |
Strickland DK, Au DT, Cunfer P and Muratoglu SC: Low-density lipoprotein receptor-related protein-1: Role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol. 34:487–498. 2014. View Article : Google Scholar : PubMed/NCBI | |
Scalise V, Sanguinetti C, Neri T, Cianchetti S, Lai M, Carnicelli V, Celi A and Pedrinelli R: PCSK9 induces tissue factor expression by activation of TLR4/NFkB signaling. Int J Mol Sci. 22:126402021. View Article : Google Scholar : PubMed/NCBI | |
Peng J, Liu MM, Liu HH, Guo YL, Wu NQ, Dong Q, Qian J, Dou KF, Zhu CG and Li JJ: Association of circulating proprotein convertase Subtilisin/Kexin type 9 concentration, pro-thrombin time and cardiovascular outcomes: A prospective cohort study. Thromb J. 19:902021. View Article : Google Scholar | |
Levine JA, Oleaga C, Eren M, Amaral AP, Shang M, Lux E, Khan SS, Shah SJ, Omura Y, Pamir N, et al: Role of PAI-1 in hepatic steatosis and dyslipidemia. Sci Rep. 11:4302021. View Article : Google Scholar : PubMed/NCBI | |
Cronjé HT, Nienaber-Rousseau C, Zandberg L, Chikowore T, de Lange Z, van Zyl T and Pieters M: Candidate gene analysis of the fibrinogen phenotype reveals the importance of polygenic co-regulation. Matrix Biol. 60-61:16–26. 2017. View Article : Google Scholar | |
Zhang Y, Zhu CG, Xu RX, Li S, Guo YL, Sun J and Li JJ: Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J Clin Lipidol. 8:494–500. 2014. View Article : Google Scholar : PubMed/NCBI | |
Basiak M, Hachula M, Kosowski M and Okopien B: Effect of PCSK9 inhibitors on hemostasis in patients with isolated hypercholesterolemia. J Clin Med. 11:25422022. View Article : Google Scholar : PubMed/NCBI | |
Schol-Gelok S, Galema-Boers JAMH, van Gelder T, Kruip MJHA, Roeters van Lennep JE and Versmissen J: No effect of PCSK9 inhibitors on D-dimer and fibrinogen levels in patients with familial hypercholesterolemia. Biomed Pharmacother. 108:1412–1414. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ahn JH, Tantry US, Kang MG, Park HW, Koh JS, Bae JS, Cho SY, Kim KH, Jang JY, Park JR, et al: Residual inflammatory risk and its association with events in east asian patients after coronary intervention. JACC Asia. 2:323–337. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, et al: Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 377:1119–1131. 2017. View Article : Google Scholar : PubMed/NCBI | |
Leung AKK, Xue YC, de Guzman A, Grzelkovski G, Kong HJ, Genga KR, Russell JA, Boyd JH, Francis GA and Walley KR: Modulation of vascular endothelial inflammatory response by proprotein convertase Subtilisin-Kexin type 9. Atherosclerosis. 362:29–37. 2022. View Article : Google Scholar : PubMed/NCBI | |
Raheem Lateef Al-Awsi G, Hadi Lafta M, Hashim Kzar H, Samieva G, Alsaikhan F, Ahmad I, Mahmood Saleh M, Alamin Altoum A, Aravindhan S, Fakri Mustafa Y, et al: PCSK9 pathway-noncoding RNAs crosstalk: Emerging opportunities for novel therapeutic approaches in inflammatory atherosclerosis. Int Immunopharmacol. 113:1093182022. View Article : Google Scholar : PubMed/NCBI | |
Kattoor AJ, Goel A and Mehta JL: LOX-1: Regulation, signaling and its role in atherosclerosis. Antioxidants (Basel). 8:2182019. View Article : Google Scholar : PubMed/NCBI | |
Theofilis P, Sagris M, Antonopoulos AS, Oikonomou E, Tsioufis C and Tousoulis D: Inflammatory mediators of platelet activation: Focus on atherosclerosis and COVID-19. Int J Mol Sci. 22:111702021. View Article : Google Scholar : PubMed/NCBI | |
Liu ZY, Sun MX, Hua MQ, Zhang HX, Mu GY, Zhou S, Wang Z, Xiang Q and Cui YM: New perspectives on the induction and acceleration of immune-associated thrombosis by PF4 and VWF. Front Immunol. 14:10986652023. View Article : Google Scholar : PubMed/NCBI | |
Yurtseven E, Ural D, Baysal K and Tokgözoğlu L: An update on the role of PCSK9 in atherosclerosis. J Atheroscler Thromb. 27:909–918. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ding Z, Liu S, Wang X, Theus S, Deng X, Fan Y, Zhou S and Mehta JL: PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc Res. 114:1145–1153. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ricci C, Ruscica M, Camera M, Rossetti L, Macchi C, Colciago A, Zanotti I, Lupo MG, Adorni MP, Cicero AFG, et al: PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 8:22672018. View Article : Google Scholar : PubMed/NCBI | |
Tang ZH, Peng J, Ren Z, Yang J, Li TT, Li TH, Wang Z, Wei DH, Liu LS, Zheng XL and Jiang ZS: New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis. 262:113–122. 2017. View Article : Google Scholar : PubMed/NCBI | |
Puteri MU, Azmi NU, Kato M and Saputri FC: PCSK9 promotes cardiovascular diseases: Recent evidence about its association with platelet Activation-Induced myocardial infarction. Life (Basel). 12:1902022.PubMed/NCBI | |
Vergallo R and Crea F: Atherosclerotic plaque healing. N Engl J Med. 383:846–857. 2020. View Article : Google Scholar : PubMed/NCBI | |
Laugsand LE, Åsvold BO, Vatten LJ, Janszky I, Platou CG, Michelsen AE, Damås JK, Aukrust P and Ueland T: Circulating PCSK9 and risk of myocardial infarction: The HUNT study in Norway. JACC Basic Transl Sci. 1:568–575. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kimball AS, Obi AT, Diaz JA and Henke PK: The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol. 7:2362016. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Wang Q, Wang J, Guo C, Kleiman K, Meng H, Knight JS and Eitzman DT: Proprotein convertase Subtilisin/Kexin type 9 (PCSK9) deficiency is protective against venous thrombosis in mice. Sci Rep. 7:143602017. View Article : Google Scholar : PubMed/NCBI | |
Heitzer T, Schlinzig T, Krohn K, Meinertz T and Münzel T: Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 104:2673–2678. 2001. View Article : Google Scholar : PubMed/NCBI | |
Massberg S, Brand K, Grüner S, Page S, Müller E, Müller I, Bergmeier W, Richter T, Lorenz M, Konrad I, et al: A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med. 196:887–896. 2002. View Article : Google Scholar : PubMed/NCBI | |
Di Minno A, Gentile M, Iannuzzo G, Calcaterra I, Tripaldella M, Porro B, Cavalca V, Di Taranto MD, Tremoli E, Fortunato G, et al: Endothelial function improvement in patients with familial hypercholesterolemia receiving PCSK-9 inhibitors on top of maximally tolerated lipid lowering therapy. Thromb Res. 194:229–236. 2020. View Article : Google Scholar : PubMed/NCBI | |
Metzner T, Leitner DR, Dimsity G, Gunzer F, Opriessnig P, Mellitzer K, Beck A, Sourij H, Stojakovic T, Deutschmann H, et al: Short-Term treatment with alirocumab, flow-dependent dilatation of the brachial artery and use of magnetic resonance diffusion tensor imaging to evaluate vascular structure: An exploratory pilot study. Biomedicines. 10:1522022. View Article : Google Scholar : PubMed/NCBI | |
Itzhaki Ben Zadok O, Mager A, Leshem-Lev D, Lev E, Kornowski R and Eisen A: The effect of proprotein convertase Subtilisin Kexin type 9 inhibitors on circulating endothelial progenitor cells in patients with cardiovascular disease. Cardiovasc Drugs Ther. 36:85–92. 2022. View Article : Google Scholar | |
Ding Z, Liu S, Wang X, Deng X, Fan Y, Sun C, Wang Y and Mehta JL: Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta. Antioxid Redox Signal. 22:760–771. 2015. View Article : Google Scholar : | |
Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL and Stone PH: Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J Am Coll Cardiol. 49:2379–2393. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huang HC, Hsu SJ, Chang CC, Chuang CL, Hou MC and Lee FY: Effects of PCSK-9 Inhibition by alirocumab treatments on biliary cirrhotic rats. Int J Mol Sci. 23:73782022. View Article : Google Scholar : PubMed/NCBI | |
Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS and Liu LS: PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 359:347–358. 2012. View Article : Google Scholar | |
Li J, Liang X, Wang Y, Xu Z and Li G: Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced En-Dothelial cell apoptosis. Mol Med Rep. 16:1817–1825. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Tang Z, Yan B, Yin H, Tai S, Peng J, Cui Y, Gui Y, Belke D, Zhou S and Zheng XL: PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) triggers vascular smooth muscle cell senescence and apoptosis: Implication of its direct role in degenerative vascular disease. Arterioscler Thromb Vasc Biol. 42:67–86. 2022. View Article : Google Scholar | |
O'Leary JG, Greenberg CS, Patton HM and Caldwell SH: AGA clinical practice update: Coagulation in cirrhosis. Gastroenterology. 157:34–43.e1. 2019. View Article : Google Scholar : PubMed/NCBI | |
Subhani M, Sheth A, Ahmed J, Wijayasiri P, Gardezi SA, Enki D, Morling JR, Aithal GP, Ryder SD and Aravinthan AD: Incidence and prevalence of venous thromboembolism in chronic liver disease: A Sys-Tematic review and meta-analysis. Thromb Res. 215:19–29. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pant A, Kopec AK and Luyendyk JP: Role of the blood coagulation cascade in hepatic fibrosis. Am J Physiol Gastrointest Liver Physiol. 315:G171–G176. 2018. View Article : Google Scholar : PubMed/NCBI | |
Roberts LN, Patel RK and Arya R: Haemostasis and thrombosis in liver disease. Br J Haematol. 148:507–521. 2010. View Article : Google Scholar | |
Northup PG, Garcia-Pagan JC, Garcia-Tsao G, Intagliata NM, Superina RA, Roberts LN, Lisman T and Valla DC: Vascular liver disorders, portal vein thrombosis, and procedural bleeding in patients with liver disease: 2020 practice guidance by the American association for the study of liver diseases. Hepatology. 73:366–413. 2021. View Article : Google Scholar | |
Leebeek FW and Rijken DC: The fibrinolytic status in liver diseases. Semin Thromb Hemost. 41:474–480. 2015. View Article : Google Scholar : PubMed/NCBI | |
Feder S, Wiest R, Weiss TS, Aslanidis C, Schacherer D, Krautbauer S, Liebisch G and Buechler C: Proprotein convertase Subtilisin/Kexin type 9 (PCSK9) levels are not associated with severity of liver disease and are inversely related to cholesterol in a cohort of thirty eight patients with liver cirrhosis. Lipids Health Dis. 20:62021. View Article : Google Scholar : PubMed/NCBI | |
Grewal T and Buechler C: Emerging insights on the diverse roles of proprotein convertase Subtilisin/Kexin type 9 (PCSK9) in chronic liver diseases: Cholesterol metabolism and beyond. Int J Mol Sci. 23:10702022. View Article : Google Scholar : PubMed/NCBI | |
Schlegel V, Treuner-Kaueroff T, Seehofer D, Berg T, Becker S, Ceglarek U, Thiery J and Kaiser T: Low PCSK9 levels are correlated with mortality in patients with end-stage liver disease. PLoS One. 12:e01815402017. View Article : Google Scholar : PubMed/NCBI | |
Demers A, Samami S, Lauzier B, Des Rosiers C, Ngo Sock ET, Ong H and Mayer G: PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and tri-glyceride metabolism in adipocytes and in mouse liver. Arterioscler Thromb Vasc Biol. 35:2517–2525. 2015. View Article : Google Scholar : PubMed/NCBI | |
Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A and Seidah NG: Proprotein convertase Subtilisin/Kexin type 9 (PCSK9) can mediate degradation of the low-density lipoprotein receptor-related protein 1 (LRP-1). PLoS One. 8:e641452013. View Article : Google Scholar | |
Zhang C, Shi X, Su Z, Hu C, Mu X, Pan J, Li M, Teng F, Ling T, Zhao T, et al: CD36 deficiency ameliorates drug-induced acute liver injury in mice. Mol Med. 27:572021. View Article : Google Scholar : PubMed/NCBI | |
Rada P, González-Rodríguez Á, García-Monzón C and Valverde ÁM: Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 11:8022020. View Article : Google Scholar : PubMed/NCBI | |
Kheirkhah A, Lamina C, Kollerits B, Schachtl-Riess JF, Schultheiss UT, Forer L, Sekula P, Kotsis F, Eckardt KU and Kronenberg F; GCKD Investigators: PCSK9 and cardiovascular disease in individuals with moderately decreased kidney function. Clin J Am Soc Nephrol. 17:809–818. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pavlakou P, Liberopoulos E, Dounousi E and Elisaf M: PCSK9 in chronic kidney disease. Int Urol Nephrol. 49:1015–1024. 2017. View Article : Google Scholar : PubMed/NCBI | |
Elewa U, Fernández-Fernández B, Mahillo-Fernández I, Martin-Cleary C, Sanz AB, Sanchez-Niño MD and Ortiz A: PCSK9 in diabetic kidney disease. Eur J Clin Invest. 46:779–786. 2016. View Article : Google Scholar : PubMed/NCBI | |
Artunc F: Kidney-derived PCSK9-a new driver of hyperlipidemia in nephrotic syndrome? Kidney Int. 98:1393–1395. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lutz J, Menke J, Sollinger D, Schinzel H and Thürmel K: Haemostasis in chronic kidney disease. Nephrol Dial Transplant. 29:29–40. 2014. View Article : Google Scholar | |
Lupo MG, Bressan A, Donato M, Canzano P, Camera M, Poggio P, Greco MF, Garofalo M, De Martin S, Panighel G, et al: PCSK9 promotes arterial medial calcification. Atherosclerosis. 346:86–97. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Zou B, Hou Y, Yan W, Chen T and Qu S: Extracellular vesicles in vascular calcification. Clin Chim Acta. 499:118–122. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jinnouchi H, Sato Y, Sakamoto A, Cornelissen A, Mori M, Kawakami R, Gadhoke NV, Kolodgie FD, Virmani R and Finn AV: Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Atherosclerosis. 306:85–95. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahamad S, Mathew S, Khan WA and Mohanan K: Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov Today. 27:1332–1349. 2022. View Article : Google Scholar : PubMed/NCBI | |
de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, Magge SN, Marx N, McGuire DK, Orchard TJ, et al: Type 1 diabetes mellitus and cardiovascular disease: A scientific statement from the American Heart Association and American Diabetes Association. Circulation. 130:1110–1130. 2014. View Article : Google Scholar : PubMed/NCBI | |
Feingold KR: Dyslipidemia in diabetes. 2020 Aug 10. Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Hershman JM, Hofland J, Kalra S, et al: Endotext (Internet) South Dartmouth (MA): MDText.com, Inc.; 2000 | |
Morel O, Jesel L, Abbas M and Morel N: Prothrombotic changes in diabetes mellitus. Semin Thromb Hemost. 39:477–488. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al: 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: Executive summary: A report of the American college of Cardiology/American heart association task force on clinical practice guidelines. Circulation. 140:e563–e595. 2019.PubMed/NCBI | |
Kaur R, Kaur M and Singh J: Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc Diabetol. 17:1212018. View Article : Google Scholar : PubMed/NCBI | |
Dregan A, Charlton J, Chowienczyk P and Gulliford MC: Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: A population-based cohort study. Circulation. 130:837–844. 2014. View Article : Google Scholar : PubMed/NCBI | |
Josefs T, Barrett TJ, Brown EJ, Quezada A, Wu X, Voisin M, Amengual J and Fisher EA: Neutrophil extracellular traps promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice. JCI Insight. 5:e1347962020. View Article : Google Scholar : PubMed/NCBI | |
Bryk-Wiązania AH and Undas A: Hypofibrinolysis in type 2 diabetes and its clinical implications: From mechanisms to pharmacological modulation. Cardiovasc Diabetol. 20:1912021. View Article : Google Scholar | |
Wu Y, Shi J, Su Q, Yang Z and Qin L: Correlation between circulating PCSK9 levels and gestational diabetes mellitus in a Chinese population. Front Endocrinol (Lausanne). 13:8267572022. View Article : Google Scholar : PubMed/NCBI | |
Saitoski K, Ryaboshapkina M, Hamza GM, Jarnuczak AF, Berthault C, Carlotti F, Armanet M, Sengupta K, Underwood CR, Andersson S, et al: Proprotein convertase PCSK9 affects expression of key surface proteins in human pancreatic beta cells via intracellular and extracellular regulatory circuits. J Biol Chem. 298:1020962022. View Article : Google Scholar : PubMed/NCBI | |
Da Dalt L, Ruscica M, Bonacina F, Balzarotti G, Dhyani A, Di Cairano E, Baragetti A, Arnaboldi L, De Metrio S, Pellegatta F, et al: PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: The role of the low-density lipoprotein receptor. Eur Heart J. 40:357–368. 2019. View Article : Google Scholar | |
Tchéoubi SER, Akpovi CD, Coppée F, Declèves AE, Laurent S, Agbangla C and Burtea C: Molecular and cellular biology of PCSK9: Impact on glucose homeostasis. J Drug Target. 30:948–960. 2022. View Article : Google Scholar : PubMed/NCBI | |
Goldman A, Raschi E, Cukierman-Yaffe T, Dankner R, Shouval R, Shechter M, Ben-Zvi I, Gerstein HC and Maor E: Hyperglycaemic disorders associated with PCSK9 inhibitors: A real-world, pharmacovigilance study. Eur J Prev Cardiol. 29:1334–1342. 2022. View Article : Google Scholar | |
Marouf BH, Iqbal Z, Mohamad JB, Bashir B, Schofield J, Syed A, Kilpatrick ES, Stefanutti C and Soran H: Efficacy and Safety of PCSK9 monoclonal antibodies in patients with diabetes. Clin Ther. 44:331–348. 2022. View Article : Google Scholar : PubMed/NCBI | |
Furuhashi M, Sakuma I, Morimoto T, Higashiura Y, Sakai A, Matsumoto M, Sakuma M, Shimabukuro M, Nomiyama T, Arasaki O, et al: Differential effects of DPP-4 inhibitors, anagliptin and sitagliptin, on PCSK9 levels in patients with type 2 diabetes mellitus who are receiving statin therapy. J Atheroscler Thromb. 29:24–37. 2022. View Article : Google Scholar : | |
Khorana AA, Francis CW, Culakova E, Kuderer NM and Lyman GH: Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 5:632–634. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim AS, Khorana AA and McCrae KR: Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res. 225:33–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wolach O and Martinod K: Casting a NET on cancer: The multiple roles for neutrophil extracellular traps in cancer. Curr Opin Hematol. 29:53–62. 2022. View Article : Google Scholar | |
Leal AC, Mizurini DM, Gomes T, Rochael NC, Saraiva EM, Dias MS, Werneck CC, Sielski MS, Vicente CP and Monteiro RQ: Tumor-derived exosomes induce the formation of neutrophil extracellular traps: Implications for the establishment of cancer-associated thrombosis. Sci Reps. 7:64382017. View Article : Google Scholar | |
Li JC, Zou XM, Yang SF, Jin JQ, Zhu L, Li CJ, Yang H, Zhang AG, Zhao TQ and Chen CY: Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer. World J Gastroenterol. 28:3132–3149. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fernandes CJ, Morinaga LTK, Alves JL Jr, Castro MA, Calderaro D, Jardim CVP and Souza R: Cancer-associated thrombosis: The when, how and why. Eur Respir Rev. 28:1801192019. View Article : Google Scholar : PubMed/NCBI | |
Taxbro K, Hammarskjöld F, Thelin B, Lewin F, Hagman H, Hanberger H and Berg S: Clinical impact of peripherally inserted central catheters vs implanted port catheters in patients with cancer: An open-label, randomised, two-centre trial. Br J Anaesth. 122:734–741. 2019. View Article : Google Scholar : PubMed/NCBI | |
Falanga A, Russo L, Milesi V and Vignoli A: Mechanisms and risk factors of thrombosis in cancer. Crit Rev Oncol Hematol. 118:79–83. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cai YJ, Li PH, Wang XA, Xu YM, Yang S, Tang YN, Zhu Z, Yang XY, He JY, Luo H, et al: Epinephelus coioides PCSK9 affect the infection of SGIV by regulating the innate immune response. Fish Shellfish Immunol. 126:113–121. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pirro M, Bianconi V, Francisci D, Schiaroli E, Bagaglia F, Sahebkar A and Baldelli F: Hepatitis C virus and proprotein convertase Subtilisin/Kexin type 9: A detrimental interaction to increase viral infectivity and disrupt lipid metabolism. J Cell Mol Med. 21:3150–3161. 2017. View Article : Google Scholar : PubMed/NCBI | |
Paciullo F, Fallarino F, Bianconi V, Mannarino MR, Sahebkar A and Pirro M: PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. J Cell Physiol. 232:2330–2338. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Wu W, Sun S, Zhang Y and Chen Z: PCSK9: A potential therapeutic target for sepsis. J Immunol Res. 2020:26876922020. View Article : Google Scholar : PubMed/NCBI | |
Barale C, Melchionda E, Morotti A and Russo I: PCSK9 biology and its role in atherothrombosis. Int J Mol Sci. 22:58802021. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Chen Z, Zhang X, Yu J, Xu H, Cui J, Li Y, Niu Y, Zhou C, Xia J and Wu J: Targeting PCSK9 ameliorates graft vascular disease in mice by inhibiting NLRP3 inflam-masome activation in vascular smooth muscle cells. Front Immunol. 13:8947892022. View Article : Google Scholar | |
Sammour Y, Dezorzi C, Austin BA, Borkon AM, Everley MP, Fendler TJ, Khumri TM, Lawhorn SL, Nassif ME, Vodnala D, et al: PCSK9 inhibitors in heart transplant patients: Safety, efficacy, and angiographic correlates. J Card Fail. 27:812–815. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jennings DL, Sultan L, Mingov J, Choe J, Latif F, Restaino S, Clerkin K, Habal MV, Colombo PC, Yuzefpulskaya M, et al: PCSK9 inhibitors safely and effectively lower LDL after heart transplantation: A systematic review and meta-analysis. Heart Fail Rev. 28:149–156. 2023. View Article : Google Scholar | |
Ortona S, Barisione C, Ferrari PF, Palombo D and Pratesi G: PCSK9 and other metabolic targets to counteract ischemia/reperfusion injury in acute myocardial infarction and visceral vascular surgery. J Clin Med. 11:36382022. View Article : Google Scholar : PubMed/NCBI | |
Huang G, Lu X, Zhou H, Li R, Huang Q, Xiong X, Luo Z and Li W: PCSK9 inhibition protects against myocardial ischemia-reperfusion injury via suppressing autophagy. Microvasc Res. 142:1043712022. View Article : Google Scholar : PubMed/NCBI |