Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2024 Volume 53 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 53 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review)

  • Authors:
    • Shan Chong
    • Guangyan Mu
    • Xinan Cen
    • Qian Xiang
    • Yimin Cui
  • View Affiliations / Copyright

    Affiliations: Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China, Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
    Copyright: © Chong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 57
    |
    Published online on: May 10, 2024
       https://doi.org/10.3892/ijmm.2024.5381
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Mu G, Xiang Q, Zhou S, Liu Z, Qi L, Jiang J, Gong Y, Xie Q, Wang Z, Zhang H, et al: Efficacy and safety of PCSK9 monoclonal antibodies in patients at high cardiovascular risk: An updated systematic review and meta-analysis of 32 randomized controlled trial. Adv Ther. 37:1496–1521. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Zhang DW, Garuti R, Tang WJ, Cohen JC and Hobbs HH: Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc Natl Acad Sci USA. 105:13045–13050. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Paciullo F, Momi S and Gresele P: PCSK9 in haemostasis and thrombosis: Possible pleiotropic effects of PCSK9 inhibitors in cardiovascular prevention. Thromb Haemost. 119:359–367. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, et al: 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: Executive summary: A report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 73:3168–3209. 2019. View Article : Google Scholar

5 

Henein MY, Vancheri S, Longo G and Vancheri F: The role of inflammation in cardiovascular disease. Int J Mol Sci. 23:129062022. View Article : Google Scholar : PubMed/NCBI

6 

Hunt SC, Hopkins PN, Bulka K, McDermott MT, Thorne TL, Wardell BB, Bowen BR, Ballinger DG, Skolnick MH, Samuels ME, et al: Genetic localization to chromosome 1p32 of the third locus for familial hypercholesterolemia in a Utah kindred. Arterioscler Thromb Vasc Biol. 20:1089–1093. 2000. View Article : Google Scholar : PubMed/NCBI

7 

Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, et al: Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 34:154–156. 2003. View Article : Google Scholar : PubMed/NCBI

8 

Hummelgaard S, Vilstrup JP, Gustafsen C, Glerup S and Weyer K: Targeting PCSK9 to tackle cardiovascular disease. Pharmacol Ther. 249:1084802023. View Article : Google Scholar : PubMed/NCBI

9 

Barale C, Bonomo K, Frascaroli C, Morotti A, Guerrasio A, Cavalot F and Russo I: Platelet function and activation markers in primary hypercholesterolemia treated with anti-PCSK9 monoclonal antibody: A 12-month follow-up. Nutr Metab Cardiovasc Dis. 30:282–291. 2020. View Article : Google Scholar

10 

Andreadou I, Schulz R, Badimon L, Adameová A, Kleinbongard P, Lecour S, Nikolaou PE, Falcão-Pires I, Vilahur G, Woudberg N, et al: Hyperlipidaemia and cardioprotection: Animal models for translational studies. Br J Pharmacol. 177:5287–5311. 2020. View Article : Google Scholar :

11 

Guo Y, Yan B, Tai S, Zhou S and Zheng XL: CSK9: Associated with cardiac diseases and their risk factors? Arch Biochem Biophys. 704:1087172021. View Article : Google Scholar

12 

Song L, Zhao X, Chen R, Li J, Zhou J, Liu C, Zhou P, Wang Y, Chen Y, Zhao H and Yan H: Association of PCSK9 with inflammation and platelet activation markers and recurrent car-diovascular risks in STEMI patients undergoing primary PCI with or without diabetes. Cardiovasc Diabetol. 21:802022. View Article : Google Scholar

13 

INC., F.M.I: PCSK9 inhibitor market outlook from 2024 to 2034. 2023, (cited 2023 March 31st); Available from: https://www.futuremarketinsights.com/reports/pcsk9-inhibitors-market.

14 

Seidah NG, Awan Z, Chrétien M and Mbikay M: PCSK9: A key modulator of cardiovascular health. Circ Res. 114:1022–1036. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Garvie CW, Fraley CV, Elowe NH, Culyba EK, Lemke CT, Hubbard BK, Kaushik VK and Daniels DS: Point mutations at the catalytic site of PCSK9 inhibit folding, autoprocessing, and interaction with the LDL receptor. Protein Sci. 25:2018–2027. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, Varghese AH, Ammirati MJ, Culp JS, Hoth LR, et al: Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 14:413–419. 2007. View Article : Google Scholar : PubMed/NCBI

17 

Wiciński M, Żak J, Malinowski B, Popek G and Grześk G: PCSK9 signaling pathways and their potential importance in clinical practice. EPMA J. 8:391–402. 2017. View Article : Google Scholar

18 

Yang L, Pu T, Zhang Y, Yan H, Yu H and Gao W: The R93C variant of PCSK9 reduces the risk of premature mi in a Chinese Han population. Front Genet. 13:8752692022. View Article : Google Scholar : PubMed/NCBI

19 

Kwon HJ, Lagace TA, McNutt MC, Horton JD and Deisenhofer J: Molecular basis for LDL receptor recognition by PCSK9. Proc Natl Acad Sci USA. 105:1820–1825. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Lo Surdo P, Bottomley MJ, Calzetta A, Settembre EC, Cirillo A, Pandit S, Ni YG, Hubbard B, Sitlani A and Carfí A: Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 12:1300–1305. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Cameron J, Holla OL, Laerdahl JK, Kulseth MA, Ranheim T, Rognes T, Berge KE and Leren TP: Characterization of novel mutations in the catalytic domain of the PCSK9 gene. J Intern Med. 263:420–431. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Timms KM, Wagner S, Samuels ME, Forbey K, Goldfine H, Jammulapati S, Skolnick MH, Hopkins PN, Hunt SC and Shattuck DM: A mutation in PCSK9 causing autosomaldominant hypercholesterolemia in a Utah pedigree. Hum Genet. 114:349–353. 2004. View Article : Google Scholar : PubMed/NCBI

23 

Yamamoto T, Lu C and Ryan R: A Two-step binding model of PCSK9 interaction with the low density lipoprotein receptor. J Biol Chem. 286:5464–5470. 2011. View Article : Google Scholar :

24 

Hampton EN, Knuth MW, Li J, Harris JL, Lesley SA and Spraggon G: The self-inhibited structure of full-length PCSK9 at 1.9 A reveals structural homology with resistin within the C-terminal domain. Proc Natl Acad Sci USA. 104:14604–14609. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Fang WQ, Zhang Q, Peng YB, Chen M, Lin XP, Wu JH, Cai CH, Mei YF and Jin H: Resistin level is positively correlated with thrombotic complications in Southern Chinese metabolic syndrome patients. J Endocrinol Invest. 34:e36–e42. 2011. View Article : Google Scholar

26 

Jamaluddin MS, Weakley SM, Yao Q and Chen C: Resistin: Functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 165:622–632. 2012. View Article : Google Scholar :

27 

Jeong HJ, Lee HS, Kim KS, Kim YK, Yoon D and Park SW: Sterol-dependent regulation of proprotein Convertase Subtilisin/Kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 49:399–409. 2008. View Article : Google Scholar

28 

Costet P, Cariou B, Lambert G, Lalanne F, Lardeux B, Jarnoux AL, Grefhorst A, Staels B and Krempf M: Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem. 281:6211–6218. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Li H, Dong B, Park SW, Lee HS, Chen W and Liu J: Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J Biol Chem. 284:28885–28895. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Raal F, Panz V, Immelman A and Pilcher G: Elevated PCSK9 levels in untreated patients with heterozygous or homozygous familial hypercholesterolemia and the response to high-dose statin therapy. J Am Heart Assoc. 2:e0000282013. View Article : Google Scholar : PubMed/NCBI

31 

Zhang L, McCabe T, Condra JH, Ni YG, Peterson LB, Wang W, Strack AM, Wang F, Pandit S, Hammond H, et al: An anti-PCSK9 antibody reduces LDL-cholesterol on top of a statin and suppresses hepatocyte SREBP-regulated genes. Int J Biol Sci. 8:310–327. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Dong B, Singh AB, Shende VR and Liu J: Hepatic HNF1 transcription factors control the induction of PCSK9 mediated by rosuvastatin in normolipidemic hamsters. Int J Mol Med. 39:749–756. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, et al: Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 372:1489–1499. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, et al: Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 376:1713–1722. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, Bisch JA, Richardson T, Jaros M, Wijngaard PLJ, et al: Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 382:1507–1519. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Björkegren JLM and Lusis AJ: Atherosclerosis: Recent developments. Cell. 185:1630–1645. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Santos RD, Gidding SS, Hegele RA, Cuchel MA, Barter PJ, Watts GF, Baum SJ, Catapano AL, Chapman MJ, Defesche JC, et al: Defining severe familial hypercholesterolaemia and the implications for clinical management: A consensus statement from the international atherosclerosis society severe familial hypercholesterolemia panel. Lancet Diabetes Endocrinol. 4:850–861. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Raal F, Fourie N, Scott R, Blom D, De Vries Basson M, Kayikcioglu M, Caldwell K, Kallend D and Stein E; LIBerate-HeFH Investigators: Long-term efficacy and safety of lerodalcibep in heterozygous familial hypercholesterolaemia: The LIBerate-HeFH trial. Eur Heart J. 44:4272–4280. 2023. View Article : Google Scholar : PubMed/NCBI

39 

Agarwala A, Asim R and Ballantyne CM: Oral PCSK9 inhibitors. Curr Atheroscler Rep. Mar 27–2024. View Article : Google Scholar : Epub ahead of print. PubMed/NCBI

40 

Gallego-Colon E, Daum A and Yosefy C: Statins and PCSK9 inhibitors: A new lipid-lowering therapy. Eur J Pharmacol. 878:1731142020. View Article : Google Scholar : PubMed/NCBI

41 

Baumann S, Kettel L, Stach K, Özdemir GH, Renker M, Tesche C, Becher T, Hetjens S, Schoepf UJ, Akin I, et al: Serial changes in coronary plaque formation using CT angiography in patients undergoing PCSK9-Inhibitor therapy with 1-year Follow-up. J Thorac Imaging. 37:285–291. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Ota H, Omori H, Kawasaki M, Hirakawa A and Matsuo H: Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: A near-infrared spectroscopy study. Eur Heart J Cardiovasc Imaging. 23:217–228. 2022. View Article : Google Scholar

43 

Nishikido T: Clinical potential of inclisiran for patients with a high risk of atherosclerotic cardiovascular disease. Cardiovasc Diabetol. 22:202023. View Article : Google Scholar : PubMed/NCBI

44 

Cammisotto V, Baratta F, Simeone PG, Barale C, Lupia E, Galardo G, Santilli F, Russo I and Pignatelli P: Proprotein convertase subtilisin Kexin type 9 (PCSK9) beyond lipids: The role in oxidative stress and thrombosis. Antioxidants (Basel). 11:5692022. View Article : Google Scholar : PubMed/NCBI

45 

Momtazi-Borojeni AA, Sabouri-Rad S, Gotto AM, Pirro M, Banach M, Awan Z, Barreto GE and Sahebkar A: PCSK9 and inflammation: A review of experimental and clinical evidence. Eur Heart J Cardiovasc Pharmacother. 5:237–245. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Luquero A, Badimon L and Borrell-Pages M: PCSK9 functions in atherosclerosis are not limited to plasmatic LDL-Cholesterol regulation. Front Cardiovasc Med. 8:6397272021. View Article : Google Scholar : PubMed/NCBI

47 

Navarese EP, Kolodziejczak M, Winter MP, Alimohammadi A, Lang IM, Buffon A, Lip GY and Siller-Matula JM: Association of PCSK9 with platelet reactivity in patients with acute coronary syndrome treated with prasugrel or ticagrelor: The PCSK9-REACT study. Int J Cardiol. 227:644–649. 2017. View Article : Google Scholar

48 

Marston NA, Gurmu Y, Melloni GEM, Bonaca M, Gencer B, Sever PS, Pedersen TR, Keech AC, Roselli C, Lubitz SA, et al: The effect of PCSK9 (Proprotein Convertase Subtilisin/Kexin type 9) inhibition on the risk of venous thromboembolism. Circulation. 141:1600–1607. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Zaccardi F, Kunutsor SK, Seidu S, Davies MJ and Khunti K: Is the lower risk of venous thromboembolism with statins related to low-density-lipoprotein reduction? A network metaanalysis and meta-regression of randomised controlled trials. Atherosclerosis. 271:223–231. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Petersen-Uribe Á, Kremser M, Rohlfing AK, Castor T, Kolb K, Dicenta V, Emschermann F, Li B, Borst O, Rath D, et al: Platelet-derived PCSK9 is associated with LDL metabolism and modulates atherothrombotic mechanisms in coronary artery disease. Int J Mol Sci. 22:111792021. View Article : Google Scholar : PubMed/NCBI

51 

Konarzewski M, Szolkiewicz M, Sucajtys-Szulc E, Blaszak J, Lizakowski S, Swierczynski J and Rutkowski B: Elevated circulating PCSK-9 concentration in renal failure patients is corrected by renal replacement therapy. Am J Nephrol. 40:157–163. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Grimm J, Peschel G, Müller M, Schacherer D, Wiest R, Weigand K and Buechler C: Rapid decline of serum proprotein convertase Subtilisin/Kexin 9 (PCSK9) in Non-cirrhotic patients with chronic Hepatitis C infection receiving direct-acting antiviral therapy. J Clin Med. 10:16212021. View Article : Google Scholar : PubMed/NCBI

53 

Wong Chong E, Joncas FH, Seidah NG, Calon F, Diorio C and Gangloff A: Circulating levels of PCSK9, ANGPTL3 and Lp(a) in stage III breast cancers. BMC Cancer. 22:10492022. View Article : Google Scholar : PubMed/NCBI

54 

Stark K and Massberg S: Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Rev Cardiol. 18:666–682. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Camera M, Rossetti L, Barbieri SS, Zanotti I, Canciani B, Trabattoni D, Ruscica M, Tremoli E and Ferri N: PCSK9 as a positive modulator of platelet activation. J Am Coll Cardiol. 71:952–954. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Panes O, González C, Hidalgo P, Valderas JP, Acevedo M, Contreras S, Sánchez X, Pereira J, Rigotti A and Mezzano D: Platelet tissue factor activity and membrane cholesterol are increased in hypercholesterolemia and normalized by rosuvastatin, but not by atorvastatin. Atherosclerosis. 257:164–171. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Schwartz GG, Szarek M, Bittner VA, Diaz R, Goodman SG, Jukema JW, Landmesser U, López-Jaramillo P, Manvelian G, Pordy R, et al: Lipoprotein(a) and benefit of PCSK9 inhibition in patients with nominally controlled LDL cholesterol. J Am Coll Cardiol. 78:421–433. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Schwartz GG, Steg PG, Szarek M, Bittner VA, Diaz R, Goodman SG, Kim YU, Jukema JW, Pordy R, Roe MT, et al: Peripheral artery disease and venous thromboembolic events after acute coronary syndrome: Role of Lipoprotein(a) and modification by Alirocumab: Prespecified analysis of the ODYSSEY OUTCOMES randomized clinical trial. Circulation. 141:1608–1617. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Boffa MB: Beyond fibrinolysis: The confounding role of Lp(a) in thrombosis. Atherosclerosis. 349:72–81. 2022. View Article : Google Scholar : PubMed/NCBI

60 

Tsimikas S, Tsironis LD and Tselepis AD: New insights into the role of lipoprotein(a)-associated lipoprotein-associated phospholipase A2 in atherosclerosis and cardiovascular disease. Arterioscler Thromb Vasc Biol. 27:2094–2099. 2007. View Article : Google Scholar : PubMed/NCBI

61 

Assinger A, Wang Y, Butler LM, Hansson GK, Yan ZQ, Söderberg-Nauclér C and Ketelhuth DF: Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses. Thromb Haemost. 112:332–341. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Hagström E, Steg PG, Szarek M, Bhatt DL, Bittner VA, Danchin N, Diaz R, Goodman SG, Harrington RA, Jukema JW, et al: Apolipoprotein B, residual cardiovascular risk after acute coronary syndrome, and effects of alirocumab. Circulation. 146:657–672. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, Braunwald E and Sabatine MS: Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: A systematic review and Meta-analysis. JAMA. 316:1289–1297. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M, Poliakov E, Sun M, Finton PJ, Curtis BR, et al: Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med. 13:1086–1095. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Magwenzi S, Woodward C, Wraith KS, Aburima A, Raslan Z, Jones H, McNeil C, Wheatcroft S, Yuldasheva N, Febbriao M, et al: Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood. 125:2693–2703. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Qi Z, Hu L, Zhang J, Yang W, Liu X, Jia D, Yao Z, Chang L, Pan G, Zhong H, et al: PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation. 143:45–61. 2021. View Article : Google Scholar

67 

Pignatelli P, Carnevale R, Di Santo S, Bartimoccia S, Sanguigni V, Lenti L, Finocchi A, Mendolicchio L, Soresina AR, Plebani A and Violi F: Inherited human gp91phox deficiency is associated with impaired isoprostane formation and platelet dysfunction. Arterioscler Thromb Vasc Biol. 31:423–434. 2011. View Article : Google Scholar

68 

Pastori D, Nocella C, Farcomeni A, Bartimoccia S, Santulli M, Vasaturo F, Carnevale R, Menichelli D, Violi F and Pignatelli P; ATHERO-AF Study Group: Relationship of PCSK9 and urinary thromboxane excretion to cardiovascular events in patients with atrial fibrillation. J Am Coll Cardiol. 70:1455–1462. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Schlüter KD, Wolf A, Weber M, Schreckenberg R and Schulz R: Oxidized low-density lipoprotein (oxLDL) affects load-free cell shortening of cardiomyocytes in a proprotein convertase Subtilisin/Kexin 9 (PCSK9)-dependent way. Basic Res Cardiol. 112:632017. View Article : Google Scholar : PubMed/NCBI

70 

Gurbel PA, Navarese EP and Tantry US: Exploration of PCSK9 as a cardiovascular risk factor: Is there a link to the platelet? J Am Coll Cardiol. 70:1463–1466. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Kong N, Xu Q, Cui W, Feng X and Gao H: PCSK9 inhibitor inclisiran for treating atherosclerosis via regulation of endothelial cell pyroptosis. Ann Transl Med. 10:12052022. View Article : Google Scholar : PubMed/NCBI

72 

Wang H and Bai X: Mechanisms of bone remodeling disorder in hemophilia. Semin Thromb Hemost. 47:43–52. 2021. View Article : Google Scholar

73 

Bovenschen N, Mertens K, Hu L, Havekes LM and van Vlijmen BJ: LDL receptor cooperates with LDL receptor-related protein in regulating plasma levels of coagulation factor VIII in vivo. Blood. 106:906–912. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Paciullo F, Petito E, Falcinelli E, Gresele P and Momi S: Pleiotropic effects of PCSK9-inhibition on hemostasis: Anti-PCSK9 reduce FVIII levels by enhancing LRP1 expression. Thromb Res. 213:170–172. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Strickland DK, Au DT, Cunfer P and Muratoglu SC: Low-density lipoprotein receptor-related protein-1: Role in the regulation of vascular integrity. Arterioscler Thromb Vasc Biol. 34:487–498. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Scalise V, Sanguinetti C, Neri T, Cianchetti S, Lai M, Carnicelli V, Celi A and Pedrinelli R: PCSK9 induces tissue factor expression by activation of TLR4/NFkB signaling. Int J Mol Sci. 22:126402021. View Article : Google Scholar : PubMed/NCBI

77 

Peng J, Liu MM, Liu HH, Guo YL, Wu NQ, Dong Q, Qian J, Dou KF, Zhu CG and Li JJ: Association of circulating proprotein convertase Subtilisin/Kexin type 9 concentration, pro-thrombin time and cardiovascular outcomes: A prospective cohort study. Thromb J. 19:902021. View Article : Google Scholar

78 

Levine JA, Oleaga C, Eren M, Amaral AP, Shang M, Lux E, Khan SS, Shah SJ, Omura Y, Pamir N, et al: Role of PAI-1 in hepatic steatosis and dyslipidemia. Sci Rep. 11:4302021. View Article : Google Scholar : PubMed/NCBI

79 

Cronjé HT, Nienaber-Rousseau C, Zandberg L, Chikowore T, de Lange Z, van Zyl T and Pieters M: Candidate gene analysis of the fibrinogen phenotype reveals the importance of polygenic co-regulation. Matrix Biol. 60-61:16–26. 2017. View Article : Google Scholar

80 

Zhang Y, Zhu CG, Xu RX, Li S, Guo YL, Sun J and Li JJ: Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J Clin Lipidol. 8:494–500. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Basiak M, Hachula M, Kosowski M and Okopien B: Effect of PCSK9 inhibitors on hemostasis in patients with isolated hypercholesterolemia. J Clin Med. 11:25422022. View Article : Google Scholar : PubMed/NCBI

82 

Schol-Gelok S, Galema-Boers JAMH, van Gelder T, Kruip MJHA, Roeters van Lennep JE and Versmissen J: No effect of PCSK9 inhibitors on D-dimer and fibrinogen levels in patients with familial hypercholesterolemia. Biomed Pharmacother. 108:1412–1414. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Ahn JH, Tantry US, Kang MG, Park HW, Koh JS, Bae JS, Cho SY, Kim KH, Jang JY, Park JR, et al: Residual inflammatory risk and its association with events in east asian patients after coronary intervention. JACC Asia. 2:323–337. 2022. View Article : Google Scholar : PubMed/NCBI

84 

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, et al: Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 377:1119–1131. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Leung AKK, Xue YC, de Guzman A, Grzelkovski G, Kong HJ, Genga KR, Russell JA, Boyd JH, Francis GA and Walley KR: Modulation of vascular endothelial inflammatory response by proprotein convertase Subtilisin-Kexin type 9. Atherosclerosis. 362:29–37. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Raheem Lateef Al-Awsi G, Hadi Lafta M, Hashim Kzar H, Samieva G, Alsaikhan F, Ahmad I, Mahmood Saleh M, Alamin Altoum A, Aravindhan S, Fakri Mustafa Y, et al: PCSK9 pathway-noncoding RNAs crosstalk: Emerging opportunities for novel therapeutic approaches in inflammatory atherosclerosis. Int Immunopharmacol. 113:1093182022. View Article : Google Scholar : PubMed/NCBI

87 

Kattoor AJ, Goel A and Mehta JL: LOX-1: Regulation, signaling and its role in atherosclerosis. Antioxidants (Basel). 8:2182019. View Article : Google Scholar : PubMed/NCBI

88 

Theofilis P, Sagris M, Antonopoulos AS, Oikonomou E, Tsioufis C and Tousoulis D: Inflammatory mediators of platelet activation: Focus on atherosclerosis and COVID-19. Int J Mol Sci. 22:111702021. View Article : Google Scholar : PubMed/NCBI

89 

Liu ZY, Sun MX, Hua MQ, Zhang HX, Mu GY, Zhou S, Wang Z, Xiang Q and Cui YM: New perspectives on the induction and acceleration of immune-associated thrombosis by PF4 and VWF. Front Immunol. 14:10986652023. View Article : Google Scholar : PubMed/NCBI

90 

Yurtseven E, Ural D, Baysal K and Tokgözoğlu L: An update on the role of PCSK9 in atherosclerosis. J Atheroscler Thromb. 27:909–918. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Ding Z, Liu S, Wang X, Theus S, Deng X, Fan Y, Zhou S and Mehta JL: PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc Res. 114:1145–1153. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Ricci C, Ruscica M, Camera M, Rossetti L, Macchi C, Colciago A, Zanotti I, Lupo MG, Adorni MP, Cicero AFG, et al: PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 8:22672018. View Article : Google Scholar : PubMed/NCBI

93 

Tang ZH, Peng J, Ren Z, Yang J, Li TT, Li TH, Wang Z, Wei DH, Liu LS, Zheng XL and Jiang ZS: New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis. 262:113–122. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Puteri MU, Azmi NU, Kato M and Saputri FC: PCSK9 promotes cardiovascular diseases: Recent evidence about its association with platelet Activation-Induced myocardial infarction. Life (Basel). 12:1902022.PubMed/NCBI

95 

Vergallo R and Crea F: Atherosclerotic plaque healing. N Engl J Med. 383:846–857. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Laugsand LE, Åsvold BO, Vatten LJ, Janszky I, Platou CG, Michelsen AE, Damås JK, Aukrust P and Ueland T: Circulating PCSK9 and risk of myocardial infarction: The HUNT study in Norway. JACC Basic Transl Sci. 1:568–575. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Kimball AS, Obi AT, Diaz JA and Henke PK: The emerging role of NETs in venous thrombosis and immunothrombosis. Front Immunol. 7:2362016. View Article : Google Scholar : PubMed/NCBI

98 

Wang H, Wang Q, Wang J, Guo C, Kleiman K, Meng H, Knight JS and Eitzman DT: Proprotein convertase Subtilisin/Kexin type 9 (PCSK9) deficiency is protective against venous thrombosis in mice. Sci Rep. 7:143602017. View Article : Google Scholar : PubMed/NCBI

99 

Heitzer T, Schlinzig T, Krohn K, Meinertz T and Münzel T: Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 104:2673–2678. 2001. View Article : Google Scholar : PubMed/NCBI

100 

Massberg S, Brand K, Grüner S, Page S, Müller E, Müller I, Bergmeier W, Richter T, Lorenz M, Konrad I, et al: A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med. 196:887–896. 2002. View Article : Google Scholar : PubMed/NCBI

101 

Di Minno A, Gentile M, Iannuzzo G, Calcaterra I, Tripaldella M, Porro B, Cavalca V, Di Taranto MD, Tremoli E, Fortunato G, et al: Endothelial function improvement in patients with familial hypercholesterolemia receiving PCSK-9 inhibitors on top of maximally tolerated lipid lowering therapy. Thromb Res. 194:229–236. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Metzner T, Leitner DR, Dimsity G, Gunzer F, Opriessnig P, Mellitzer K, Beck A, Sourij H, Stojakovic T, Deutschmann H, et al: Short-Term treatment with alirocumab, flow-dependent dilatation of the brachial artery and use of magnetic resonance diffusion tensor imaging to evaluate vascular structure: An exploratory pilot study. Biomedicines. 10:1522022. View Article : Google Scholar : PubMed/NCBI

103 

Itzhaki Ben Zadok O, Mager A, Leshem-Lev D, Lev E, Kornowski R and Eisen A: The effect of proprotein convertase Subtilisin Kexin type 9 inhibitors on circulating endothelial progenitor cells in patients with cardiovascular disease. Cardiovasc Drugs Ther. 36:85–92. 2022. View Article : Google Scholar

104 

Ding Z, Liu S, Wang X, Deng X, Fan Y, Sun C, Wang Y and Mehta JL: Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta. Antioxid Redox Signal. 22:760–771. 2015. View Article : Google Scholar :

105 

Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL and Stone PH: Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J Am Coll Cardiol. 49:2379–2393. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Huang HC, Hsu SJ, Chang CC, Chuang CL, Hou MC and Lee FY: Effects of PCSK-9 Inhibition by alirocumab treatments on biliary cirrhotic rats. Int J Mol Sci. 23:73782022. View Article : Google Scholar : PubMed/NCBI

107 

Wu CY, Tang ZH, Jiang L, Li XF, Jiang ZS and Liu LS: PCSK9 siRNA inhibits HUVEC apoptosis induced by ox-LDL via Bcl/Bax-caspase9-caspase3 pathway. Mol Cell Biochem. 359:347–358. 2012. View Article : Google Scholar

108 

Li J, Liang X, Wang Y, Xu Z and Li G: Investigation of highly expressed PCSK9 in atherosclerotic plaques and ox-LDL-induced En-Dothelial cell apoptosis. Mol Med Rep. 16:1817–1825. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Guo Y, Tang Z, Yan B, Yin H, Tai S, Peng J, Cui Y, Gui Y, Belke D, Zhou S and Zheng XL: PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) triggers vascular smooth muscle cell senescence and apoptosis: Implication of its direct role in degenerative vascular disease. Arterioscler Thromb Vasc Biol. 42:67–86. 2022. View Article : Google Scholar

110 

O'Leary JG, Greenberg CS, Patton HM and Caldwell SH: AGA clinical practice update: Coagulation in cirrhosis. Gastroenterology. 157:34–43.e1. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Subhani M, Sheth A, Ahmed J, Wijayasiri P, Gardezi SA, Enki D, Morling JR, Aithal GP, Ryder SD and Aravinthan AD: Incidence and prevalence of venous thromboembolism in chronic liver disease: A Sys-Tematic review and meta-analysis. Thromb Res. 215:19–29. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Pant A, Kopec AK and Luyendyk JP: Role of the blood coagulation cascade in hepatic fibrosis. Am J Physiol Gastrointest Liver Physiol. 315:G171–G176. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Roberts LN, Patel RK and Arya R: Haemostasis and thrombosis in liver disease. Br J Haematol. 148:507–521. 2010. View Article : Google Scholar

114 

Northup PG, Garcia-Pagan JC, Garcia-Tsao G, Intagliata NM, Superina RA, Roberts LN, Lisman T and Valla DC: Vascular liver disorders, portal vein thrombosis, and procedural bleeding in patients with liver disease: 2020 practice guidance by the American association for the study of liver diseases. Hepatology. 73:366–413. 2021. View Article : Google Scholar

115 

Leebeek FW and Rijken DC: The fibrinolytic status in liver diseases. Semin Thromb Hemost. 41:474–480. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Feder S, Wiest R, Weiss TS, Aslanidis C, Schacherer D, Krautbauer S, Liebisch G and Buechler C: Proprotein convertase Subtilisin/Kexin type 9 (PCSK9) levels are not associated with severity of liver disease and are inversely related to cholesterol in a cohort of thirty eight patients with liver cirrhosis. Lipids Health Dis. 20:62021. View Article : Google Scholar : PubMed/NCBI

117 

Grewal T and Buechler C: Emerging insights on the diverse roles of proprotein convertase Subtilisin/Kexin type 9 (PCSK9) in chronic liver diseases: Cholesterol metabolism and beyond. Int J Mol Sci. 23:10702022. View Article : Google Scholar : PubMed/NCBI

118 

Schlegel V, Treuner-Kaueroff T, Seehofer D, Berg T, Becker S, Ceglarek U, Thiery J and Kaiser T: Low PCSK9 levels are correlated with mortality in patients with end-stage liver disease. PLoS One. 12:e01815402017. View Article : Google Scholar : PubMed/NCBI

119 

Demers A, Samami S, Lauzier B, Des Rosiers C, Ngo Sock ET, Ong H and Mayer G: PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and tri-glyceride metabolism in adipocytes and in mouse liver. Arterioscler Thromb Vasc Biol. 35:2517–2525. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A and Seidah NG: Proprotein convertase Subtilisin/Kexin type 9 (PCSK9) can mediate degradation of the low-density lipoprotein receptor-related protein 1 (LRP-1). PLoS One. 8:e641452013. View Article : Google Scholar

121 

Zhang C, Shi X, Su Z, Hu C, Mu X, Pan J, Li M, Teng F, Ling T, Zhao T, et al: CD36 deficiency ameliorates drug-induced acute liver injury in mice. Mol Med. 27:572021. View Article : Google Scholar : PubMed/NCBI

122 

Rada P, González-Rodríguez Á, García-Monzón C and Valverde ÁM: Understanding lipotoxicity in NAFLD pathogenesis: Is CD36 a key driver? Cell Death Dis. 11:8022020. View Article : Google Scholar : PubMed/NCBI

123 

Kheirkhah A, Lamina C, Kollerits B, Schachtl-Riess JF, Schultheiss UT, Forer L, Sekula P, Kotsis F, Eckardt KU and Kronenberg F; GCKD Investigators: PCSK9 and cardiovascular disease in individuals with moderately decreased kidney function. Clin J Am Soc Nephrol. 17:809–818. 2022. View Article : Google Scholar : PubMed/NCBI

124 

Pavlakou P, Liberopoulos E, Dounousi E and Elisaf M: PCSK9 in chronic kidney disease. Int Urol Nephrol. 49:1015–1024. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Elewa U, Fernández-Fernández B, Mahillo-Fernández I, Martin-Cleary C, Sanz AB, Sanchez-Niño MD and Ortiz A: PCSK9 in diabetic kidney disease. Eur J Clin Invest. 46:779–786. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Artunc F: Kidney-derived PCSK9-a new driver of hyperlipidemia in nephrotic syndrome? Kidney Int. 98:1393–1395. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Lutz J, Menke J, Sollinger D, Schinzel H and Thürmel K: Haemostasis in chronic kidney disease. Nephrol Dial Transplant. 29:29–40. 2014. View Article : Google Scholar

128 

Lupo MG, Bressan A, Donato M, Canzano P, Camera M, Poggio P, Greco MF, Garofalo M, De Martin S, Panighel G, et al: PCSK9 promotes arterial medial calcification. Atherosclerosis. 346:86–97. 2022. View Article : Google Scholar : PubMed/NCBI

129 

Yang W, Zou B, Hou Y, Yan W, Chen T and Qu S: Extracellular vesicles in vascular calcification. Clin Chim Acta. 499:118–122. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Jinnouchi H, Sato Y, Sakamoto A, Cornelissen A, Mori M, Kawakami R, Gadhoke NV, Kolodgie FD, Virmani R and Finn AV: Calcium deposition within coronary atherosclerotic lesion: Implications for plaque stability. Atherosclerosis. 306:85–95. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Ahamad S, Mathew S, Khan WA and Mohanan K: Development of small-molecule PCSK9 inhibitors for the treatment of hypercholesterolemia. Drug Discov Today. 27:1332–1349. 2022. View Article : Google Scholar : PubMed/NCBI

132 

de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, Magge SN, Marx N, McGuire DK, Orchard TJ, et al: Type 1 diabetes mellitus and cardiovascular disease: A scientific statement from the American Heart Association and American Diabetes Association. Circulation. 130:1110–1130. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Feingold KR: Dyslipidemia in diabetes. 2020 Aug 10. Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, Dungan K, Hershman JM, Hofland J, Kalra S, et al: Endotext (Internet) South Dartmouth (MA): MDText.com, Inc.; 2000

134 

Morel O, Jesel L, Abbas M and Morel N: Prothrombotic changes in diabetes mellitus. Semin Thromb Hemost. 39:477–488. 2013. View Article : Google Scholar : PubMed/NCBI

135 

Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al: 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: Executive summary: A report of the American college of Cardiology/American heart association task force on clinical practice guidelines. Circulation. 140:e563–e595. 2019.PubMed/NCBI

136 

Kaur R, Kaur M and Singh J: Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc Diabetol. 17:1212018. View Article : Google Scholar : PubMed/NCBI

137 

Dregan A, Charlton J, Chowienczyk P and Gulliford MC: Chronic inflammatory disorders and risk of type 2 diabetes mellitus, coronary heart disease, and stroke: A population-based cohort study. Circulation. 130:837–844. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Josefs T, Barrett TJ, Brown EJ, Quezada A, Wu X, Voisin M, Amengual J and Fisher EA: Neutrophil extracellular traps promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice. JCI Insight. 5:e1347962020. View Article : Google Scholar : PubMed/NCBI

139 

Bryk-Wiązania AH and Undas A: Hypofibrinolysis in type 2 diabetes and its clinical implications: From mechanisms to pharmacological modulation. Cardiovasc Diabetol. 20:1912021. View Article : Google Scholar

140 

Wu Y, Shi J, Su Q, Yang Z and Qin L: Correlation between circulating PCSK9 levels and gestational diabetes mellitus in a Chinese population. Front Endocrinol (Lausanne). 13:8267572022. View Article : Google Scholar : PubMed/NCBI

141 

Saitoski K, Ryaboshapkina M, Hamza GM, Jarnuczak AF, Berthault C, Carlotti F, Armanet M, Sengupta K, Underwood CR, Andersson S, et al: Proprotein convertase PCSK9 affects expression of key surface proteins in human pancreatic beta cells via intracellular and extracellular regulatory circuits. J Biol Chem. 298:1020962022. View Article : Google Scholar : PubMed/NCBI

142 

Da Dalt L, Ruscica M, Bonacina F, Balzarotti G, Dhyani A, Di Cairano E, Baragetti A, Arnaboldi L, De Metrio S, Pellegatta F, et al: PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: The role of the low-density lipoprotein receptor. Eur Heart J. 40:357–368. 2019. View Article : Google Scholar

143 

Tchéoubi SER, Akpovi CD, Coppée F, Declèves AE, Laurent S, Agbangla C and Burtea C: Molecular and cellular biology of PCSK9: Impact on glucose homeostasis. J Drug Target. 30:948–960. 2022. View Article : Google Scholar : PubMed/NCBI

144 

Goldman A, Raschi E, Cukierman-Yaffe T, Dankner R, Shouval R, Shechter M, Ben-Zvi I, Gerstein HC and Maor E: Hyperglycaemic disorders associated with PCSK9 inhibitors: A real-world, pharmacovigilance study. Eur J Prev Cardiol. 29:1334–1342. 2022. View Article : Google Scholar

145 

Marouf BH, Iqbal Z, Mohamad JB, Bashir B, Schofield J, Syed A, Kilpatrick ES, Stefanutti C and Soran H: Efficacy and Safety of PCSK9 monoclonal antibodies in patients with diabetes. Clin Ther. 44:331–348. 2022. View Article : Google Scholar : PubMed/NCBI

146 

Furuhashi M, Sakuma I, Morimoto T, Higashiura Y, Sakai A, Matsumoto M, Sakuma M, Shimabukuro M, Nomiyama T, Arasaki O, et al: Differential effects of DPP-4 inhibitors, anagliptin and sitagliptin, on PCSK9 levels in patients with type 2 diabetes mellitus who are receiving statin therapy. J Atheroscler Thromb. 29:24–37. 2022. View Article : Google Scholar :

147 

Khorana AA, Francis CW, Culakova E, Kuderer NM and Lyman GH: Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 5:632–634. 2007. View Article : Google Scholar : PubMed/NCBI

148 

Kim AS, Khorana AA and McCrae KR: Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res. 225:33–53. 2020. View Article : Google Scholar : PubMed/NCBI

149 

Wolach O and Martinod K: Casting a NET on cancer: The multiple roles for neutrophil extracellular traps in cancer. Curr Opin Hematol. 29:53–62. 2022. View Article : Google Scholar

150 

Leal AC, Mizurini DM, Gomes T, Rochael NC, Saraiva EM, Dias MS, Werneck CC, Sielski MS, Vicente CP and Monteiro RQ: Tumor-derived exosomes induce the formation of neutrophil extracellular traps: Implications for the establishment of cancer-associated thrombosis. Sci Reps. 7:64382017. View Article : Google Scholar

151 

Li JC, Zou XM, Yang SF, Jin JQ, Zhu L, Li CJ, Yang H, Zhang AG, Zhao TQ and Chen CY: Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer. World J Gastroenterol. 28:3132–3149. 2022. View Article : Google Scholar : PubMed/NCBI

152 

Fernandes CJ, Morinaga LTK, Alves JL Jr, Castro MA, Calderaro D, Jardim CVP and Souza R: Cancer-associated thrombosis: The when, how and why. Eur Respir Rev. 28:1801192019. View Article : Google Scholar : PubMed/NCBI

153 

Taxbro K, Hammarskjöld F, Thelin B, Lewin F, Hagman H, Hanberger H and Berg S: Clinical impact of peripherally inserted central catheters vs implanted port catheters in patients with cancer: An open-label, randomised, two-centre trial. Br J Anaesth. 122:734–741. 2019. View Article : Google Scholar : PubMed/NCBI

154 

Falanga A, Russo L, Milesi V and Vignoli A: Mechanisms and risk factors of thrombosis in cancer. Crit Rev Oncol Hematol. 118:79–83. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Cai YJ, Li PH, Wang XA, Xu YM, Yang S, Tang YN, Zhu Z, Yang XY, He JY, Luo H, et al: Epinephelus coioides PCSK9 affect the infection of SGIV by regulating the innate immune response. Fish Shellfish Immunol. 126:113–121. 2022. View Article : Google Scholar : PubMed/NCBI

156 

Pirro M, Bianconi V, Francisci D, Schiaroli E, Bagaglia F, Sahebkar A and Baldelli F: Hepatitis C virus and proprotein convertase Subtilisin/Kexin type 9: A detrimental interaction to increase viral infectivity and disrupt lipid metabolism. J Cell Mol Med. 21:3150–3161. 2017. View Article : Google Scholar : PubMed/NCBI

157 

Paciullo F, Fallarino F, Bianconi V, Mannarino MR, Sahebkar A and Pirro M: PCSK9 at the crossroad of cholesterol metabolism and immune function during infections. J Cell Physiol. 232:2330–2338. 2017. View Article : Google Scholar : PubMed/NCBI

158 

Yuan Y, Wu W, Sun S, Zhang Y and Chen Z: PCSK9: A potential therapeutic target for sepsis. J Immunol Res. 2020:26876922020. View Article : Google Scholar : PubMed/NCBI

159 

Barale C, Melchionda E, Morotti A and Russo I: PCSK9 biology and its role in atherothrombosis. Int J Mol Sci. 22:58802021. View Article : Google Scholar : PubMed/NCBI

160 

Zou Y, Chen Z, Zhang X, Yu J, Xu H, Cui J, Li Y, Niu Y, Zhou C, Xia J and Wu J: Targeting PCSK9 ameliorates graft vascular disease in mice by inhibiting NLRP3 inflam-masome activation in vascular smooth muscle cells. Front Immunol. 13:8947892022. View Article : Google Scholar

161 

Sammour Y, Dezorzi C, Austin BA, Borkon AM, Everley MP, Fendler TJ, Khumri TM, Lawhorn SL, Nassif ME, Vodnala D, et al: PCSK9 inhibitors in heart transplant patients: Safety, efficacy, and angiographic correlates. J Card Fail. 27:812–815. 2021. View Article : Google Scholar : PubMed/NCBI

162 

Jennings DL, Sultan L, Mingov J, Choe J, Latif F, Restaino S, Clerkin K, Habal MV, Colombo PC, Yuzefpulskaya M, et al: PCSK9 inhibitors safely and effectively lower LDL after heart transplantation: A systematic review and meta-analysis. Heart Fail Rev. 28:149–156. 2023. View Article : Google Scholar

163 

Ortona S, Barisione C, Ferrari PF, Palombo D and Pratesi G: PCSK9 and other metabolic targets to counteract ischemia/reperfusion injury in acute myocardial infarction and visceral vascular surgery. J Clin Med. 11:36382022. View Article : Google Scholar : PubMed/NCBI

164 

Huang G, Lu X, Zhou H, Li R, Huang Q, Xiong X, Luo Z and Li W: PCSK9 inhibition protects against myocardial ischemia-reperfusion injury via suppressing autophagy. Microvasc Res. 142:1043712022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chong S, Mu G, Cen X, Xiang Q and Cui Y: Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). Int J Mol Med 53: 57, 2024.
APA
Chong, S., Mu, G., Cen, X., Xiang, Q., & Cui, Y. (2024). Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). International Journal of Molecular Medicine, 53, 57. https://doi.org/10.3892/ijmm.2024.5381
MLA
Chong, S., Mu, G., Cen, X., Xiang, Q., Cui, Y."Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review)". International Journal of Molecular Medicine 53.6 (2024): 57.
Chicago
Chong, S., Mu, G., Cen, X., Xiang, Q., Cui, Y."Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review)". International Journal of Molecular Medicine 53, no. 6 (2024): 57. https://doi.org/10.3892/ijmm.2024.5381
Copy and paste a formatted citation
x
Spandidos Publications style
Chong S, Mu G, Cen X, Xiang Q and Cui Y: Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). Int J Mol Med 53: 57, 2024.
APA
Chong, S., Mu, G., Cen, X., Xiang, Q., & Cui, Y. (2024). Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). International Journal of Molecular Medicine, 53, 57. https://doi.org/10.3892/ijmm.2024.5381
MLA
Chong, S., Mu, G., Cen, X., Xiang, Q., Cui, Y."Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review)". International Journal of Molecular Medicine 53.6 (2024): 57.
Chicago
Chong, S., Mu, G., Cen, X., Xiang, Q., Cui, Y."Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review)". International Journal of Molecular Medicine 53, no. 6 (2024): 57. https://doi.org/10.3892/ijmm.2024.5381
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team