Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2024 Volume 54 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 54 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Obesity and lipid metabolism in the development of osteoporosis (Review)

  • Authors:
    • Xiaochuan Wang
    • Chi Zhang
    • Guang Zhao
    • Keda Yang
    • Lin Tao
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China, Department of Orthopedics, Fourth Hospital of China Medical University, Shenyang, Liaoning 110165, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 61
    |
    Published online on: May 27, 2024
       https://doi.org/10.3892/ijmm.2024.5385
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteoporosis is a common bone metabolic disease that causes a heavy social burden and seriously threatens life. Improving osteogenic capacity is necessary to correct bone mass loss in the treatment of osteoporosis. Osteoblasts are derived from the differentiation of bone marrow mesenchymal stem cells, a process that opposes adipogenic differentiation. The peroxisome proliferator‑activated receptor γ and Wnt/β‑catenin signaling pathways mediate the mutual regulation of osteogenesis and adipogenesis. Lipid substances play an important role in the occurrence and development of osteoporosis. The content and proportion of lipids modulate the activity of immunocytes, mainly macrophages, and the secretion of inflammatory factors, such as IL‑1, IL‑6 and TNF‑α. These inflammatory effectors increase the activity and promote the differentiation of osteoclasts, which leads to bone imbalance and stronger bone resorption. Obesity also decreases the activity of antioxidases and leads to oxidative stress, thereby inhibiting osteogenesis. The present review starts by examining the bidirectional differentiation of BM‑MSCs, describes in detail the mechanism by which lipids affect bone metabolism, and discusses the regulatory role of inflammation and oxidative stress in this process. The review concludes that a reasonable adjustment of the content and proportion of lipids, and the alleviation of inflammatory storms and oxidative damage induced by lipid imbalances, will improve bone mass and treat osteoporosis.
View Figures

Figure 1

Figure 2

View References

1 

Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P and Milat F: Secondary osteoporosis. Endocr Rev. 43:240–313. 2022. View Article : Google Scholar

2 

Flores LE, Nelson S, Waltman N, Kupzyk K, Lappe J, Mack L and Bilek LD: Examining effects of habitual physical activity and body composition on bone structure in early post-menopausal women: A pQCT analysis. Osteoporos Int. 33:425–433. 2022. View Article : Google Scholar

3 

Compston J, Cooper A, Cooper C, Francis R, Kanis JA, Marsh D, McCloskey EV, Reid DM, Selby P and Wilkins M; National Osteoporosis Guideline Group (NOGG): Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas. 62:105–108. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Mirza F and Canalis E: Management of endocrine disease: Secondary osteoporosis: Pathophysiology and management. Eur J Endocrinol. 173:R131–R151. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Liu GF, Wang ZQ, Liu L, Zhang BT, Miao YY and Yu SN: A network meta-analysis on the short-term efficacy and adverse events of different anti-osteoporosis drugs for the treatment of postmenopausal osteoporosis. J Cell Biochem. 119:4469–4481. 2018. View Article : Google Scholar

6 

Ying S, Sifan W, Yujiao W, Rongyi C, Qingrong H, Lili M, Huiyong C and Lindi J: The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 53:402020. View Article : Google Scholar

7 

Feng K, Yu M, Lou X, Wang D, Wang L and Ren W: Multi-omics analysis of bone marrow mesenchymal stem cell differentiation differences in osteoporosis. Genomics. 115:1106682023. View Article : Google Scholar : PubMed/NCBI

8 

Gritsaenko T, Pierrefite-Carle V, Creff G, Simoneau B, Hagège A, Farlay D, Pagnotta S, Orange F, Jaurand X, Auwer CD, et al: Low doses of uranium and osteoclastic bone resorption: Key reciprocal effects evidenced using new in vitro biomimetic models of bone matrix. Arch Toxicol. 95:1023–1037. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Chung HJ, Cho L, Shin JS, Lee J, Ha IH, Park HJ and Lee SK: Effects of JSOG-6 on protection against bone loss in ovariectomized mice through regulation of osteoblast differentiation and osteoclast formation. BMC Complement Altern Med. 14:1842014. View Article : Google Scholar : PubMed/NCBI

10 

Dey D, Jingar P, Agrawal S, Shrivastava V, Bhattacharya A, Manhas J, Garg B, Ansari MT, Mridha AR, Sreenivas V, et al: Symphytum officinale augments osteogenesis in human bone marrow-derived mesenchymal stem cells in vitro as they differentiate into osteoblasts. J Ethnopharmacol. 248:1123292020. View Article : Google Scholar

11 

Zhang L, Yuan Y, Wu W, Sun Z, Lei L, Fan J, Gao B and Zou J: Medium-intensity treadmill exercise exerts beneficial effects on bone modeling through bone marrow mesenchymal stromal cells. Front Cell Dev Biol. 8:6006392020. View Article : Google Scholar : PubMed/NCBI

12 

Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J, Sun C, Li B, Wang Z, Lan W, et al: BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res Ther. 10:302019. View Article : Google Scholar

13 

Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, Zhao X and Liu K: Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep. 38:5161–5168. 2011. View Article : Google Scholar

14 

Chedraui P, Miguel GS, Vintimilla-Sigüenza I, Villacreses D, Romero-Huete L, Domínguez A, Jaramillo W, Escobar GS, Pérez-López FR, Genazzani AR, et al: The metabolic syndrome and its components in postmenopausal women. Gynecol Endocrinol. 29:563–568. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Hur HJ, Jeong YH, Lee SH and Sung MJ: Quercitrin ameliorates hyperlipidemia and hepatic steatosis in ovariectomized mice. Life (Basel). 10:2432020.PubMed/NCBI

16 

Chen L, Liu Y, Tang Z, Shi X, Song Z, Cao F, Wei P, Li M, Li X, Jiang D, et al: Improvements in estrogen deficiency-induced hypercholesterolemia by Hypericum perforatum L. extract are associated with gut microbiota and related metabolites in ovariectomized (OVX) rats. Biomed Pharmacother. 135:1111312021. View Article : Google Scholar : PubMed/NCBI

17 

Mutlu AS, Duffy J and Wang MC: Lipid metabolism and lipid signals in aging and longevity. Dev Cell. 56:1394–1407. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Miró O, Casademont J, Casals E, Perea M, Urbano-Márquez A, Rustin P and Cardellach F: Aging is associated with increased lipid peroxidation in human hearts, but not with mitochondrial respiratory chain enzyme defects. Cardiovasc Res. 47:624–631. 2000. View Article : Google Scholar : PubMed/NCBI

19 

van de Wiel A: Diabetes mellitus and alcohol. Diabetes Metab Res Rev. 20:263–267. 2004. View Article : Google Scholar : PubMed/NCBI

20 

Maggio CA and Pi-Sunyer FX: Obesity and type 2 diabetes. Endocrinol Metab Clin North Am. 32:805–822. 2003. View Article : Google Scholar

21 

Comuzzie AG, Tejero ME, Funahashi T, Martin LJ, Kissebah A, Takahashi M, Kihara S, Tanaka S, Rainwater DL, Matsuzawa Y, et al: The genes influencing adiponectin levels also influence risk factors for metabolic syndrome and type 2 diabetes. Hum Biol. 79:191–200. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Xu Z, Huo J, Ding X, Yang M, Li L, Dai J, Hosoe K, Kubo H, Mori M, Higuchi K and Sawashita J: Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-Mediated PDE4 inhibition. Sci Rep. 7:82532017. View Article : Google Scholar : PubMed/NCBI

23 

Fassio A, Idolazzi L, Rossini M, Gatti D, Adami G, Giollo A and Viapiana O: The obesity paradox and osteoporosis. Eat Weight Disord. 23:293–302. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Ali D, Tencerova M, Figeac F, Kassem M and Jafari A: The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity. Front Endocrinol (Lausanne). 13:9814872022. View Article : Google Scholar : PubMed/NCBI

25 

Lopes KG, Rodrigues EL, da Silva Lopes MR, do Nascimento VA, Pott A, Guimarães RCA, Pegolo GE and Freitas KC: Adiposity metabolic consequences for adolescent bone health. Nutrients. 14:32602022. View Article : Google Scholar : PubMed/NCBI

26 

Salzmann SN, Ortiz Miller C, Carrino JA, Yang J, Shue J, Sama AA, Cammisa FP, Girardi FP and Hughes AP: BMI and gender increase risk of sacral fractures after multilevel instrumented spinal fusion compared with bone mineral density and pelvic parameters. Spine J. 19:238–245. 2019. View Article : Google Scholar

27 

Perna S, Gasparri C, Allehdan S, Riva A, Petrangolini G, Ferraris C, Guido D, Alalwan TA and Rondanelli M: Discovering the Physio-pathological mechanisms of interaction between bone mineral density, muscle mass, and visceral adipose tissue in female older adults through structural equation modeling. J Clin Med. 12:22692023. View Article : Google Scholar : PubMed/NCBI

28 

Tao J, Zhang Y, Tan C and Tan W: Associations between weight-adjusted waist index and fractures: A population-based study. J Orthop Surg Res. 18:2902023. View Article : Google Scholar : PubMed/NCBI

29 

Piñar-Gutierrez A, García-Fontana C, García-Fontana B and Muñoz-Torres M: Obesity and bone health: A complex relationship. Int J Mol Sci. 23:83032022. View Article : Google Scholar : PubMed/NCBI

30 

Aaseth JO and Alexander J: Postoperative osteoporosis in subjects with morbid obesity undergoing bariatric surgery with gastric bypass or sleeve gastrectomy. Nutrients. 15:13022023. View Article : Google Scholar : PubMed/NCBI

31 

Albaik M, Khan JA, Sindi I, Akesson KE and McGuigan FEA: Bone mass in Saudi women aged 20-40 years: The association with obesity and vitamin D deficiency. Arch Osteoporos. 17:1232022. View Article : Google Scholar

32 

Di Filippo L, De Lorenzo R, Giustina A, Rovere-Querini P and Conte C: Vitamin d in osteosarcopenic obesity. Nutrients. 14:18162022. View Article : Google Scholar : PubMed/NCBI

33 

Bassatne A, Chakhtoura M, Saad R and Fuleihan GE: Vitamin D supplementation in obesity and during weight loss: A review of randomized controlled trials. Metabolism. 92:193–205. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Bosetti M, Sabbatini M, Calarco A, Borrone A, Peluso G and Cannas M: Effect of retinoic acid and vitamin D3 on osteoblast differentiation and activity in aging. J Bone Miner Metab. 34:65–78. 2016. View Article : Google Scholar

35 

Wang C, Tian W, Hu SY, Di CX, He CY, Cao QL, Hao RH, Dong SS, Liu CC, Rong Y, et al: Lineage-selective super enhancers mediate core regulatory circuitry during adipogenic and osteogenic differentiation of human mesenchymal stem cells. Cell Death Dis. 13:8662022. View Article : Google Scholar : PubMed/NCBI

36 

Hao RH, Guo Y, Wang C, Chen F, Di CX, Dong SS, Cao QL, Guo J, Rong Y, Yao S, et al: Lineage-specific rearrangement of chromatin loops and epigenomic features during adipocytes and osteoblasts commitment. Cell Death Differ. 29:2503–2518. 2022. View Article : Google Scholar : PubMed/NCBI

37 

Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, Zhang D, Rao P and Xiao J: PPARγ and wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 11:216–225. 2016. View Article : Google Scholar

38 

Yao XT, Li PP, Liu J, Yang YY, Luo ZL, Jiang HT, He WG, Luo HH, Deng YX and He BC: Wnt/β-Catenin promotes the osteoblastic potential of BMP9 through Down-Regulating Cyp26b1 in mesenchymal stem cells. Tissue Eng Regen Med. 20:705–723. 2023. View Article : Google Scholar : PubMed/NCBI

39 

Zhang Y, Zhao Y, Xie Z, Li M, Liu Y and Tu X: Activating Wnt/β-Catenin signaling in osteocytes promotes osteogenic differentiation of BMSCs through BMP-7. Int J Mol Sci. 23:160452022. View Article : Google Scholar

40 

Vallée A and Lecarpentier Y: Crosstalk between peroxisome Proliferator-Activated receptor gamma and the canonical WNT/β-Catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Front Immunol. 9:7452018. View Article : Google Scholar

41 

Kang P, Wu Z, Huang Y, Luo Z, Huo S and Chen Q: Histone H3K9 demethylase JMJD2B/KDM4B promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells by regulating H3K9me2 on RUNX2. PeerJ. 10:e138622022. View Article : Google Scholar : PubMed/NCBI

42 

Gómez R, Barter MJ, Alonso-Pérez A, Skelton AJ, Proctor C, Herrero-Beaumont G and Young DA: DNA methylation analysis identifies key transcription factors involved in mesenchymal stem cell osteogenic differentiation. Biol Res. 56:92023. View Article : Google Scholar : PubMed/NCBI

43 

Takada I, Kouzmenko AP and Kato S: Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 5:442–447. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Takada I, Suzawa M, Matsumoto K and Kato S: Suppression of PPAR transactivation switches cell fate of bone marrow stem cells from adipocytes into osteoblasts. Ann N Y Acad Sci. 1116:182–195. 2007. View Article : Google Scholar : PubMed/NCBI

45 

Barakat B and Almeida MEF: Biochemical and immunological changes in obesity. Arch Biochem Biophys. 708:1089512021. View Article : Google Scholar : PubMed/NCBI

46 

Ellulu MS, Khaza'ai H, Abed Y, Rahmat A, Ismail P and Ranneh Y: Role of fish oil in human health and possible mechanism to reduce the inflammation. Inflammopharmacology. 23:79–89. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ and Ren J: ER stress and inflammation crosstalk in obesity. Med Res Rev. 43:5–30. 2023. View Article : Google Scholar

48 

Sardi C, Martini E, Mello T, Camelliti S, Sfondrini L, Marcucci F, Kallikourdis M, Sommariva M and Rumio C: Effect of acetylsalicylic acid on inflamed adipose tissue. Insulin resistance and hepatic steatosis in a mouse model of diet-induced obesity. Life Sci. 264:1186182021. View Article : Google Scholar

49 

Zhou X, Pak S, Li D, Dong L, Chen F, Hu X and Ma L: Bamboo shoots modulate gut microbiota, eliminate obesity in high-fat-diet-fed mice and improve lipid metabolism. Foods. 12:13802023. View Article : Google Scholar : PubMed/NCBI

50 

He H, Zhang Y, Sun Y, Zhang Y, Xu J, Yang Y and Chen J: Folic acid attenuates high-fat diet-induced osteoporosis through the AMPK signaling pathway. Front Cell Dev Biol. 9:7918802021. View Article : Google Scholar

51 

Kang YS, Kim JC, Kim JS and Kim SH: Effects of swimming exercise on serum irisin and bone FNDC5 in rat models of High-Fat Diet-Induced osteoporosis. J Sports Sci Med. 18:596–603. 2019.PubMed/NCBI

52 

Walsh MC, Kim GK, Maurizio PL, Molnar EE and Choi Y: TRAF6 autoubiquitination-independent activation of the NFkappaB and MAPK pathways in response to IL-1 and RANKL. PLoS One. 3:e40642008. View Article : Google Scholar : PubMed/NCBI

53 

Wu WJ, Xia CL, Ou SJ, Yang Y, Ma YF, Hou YL, Yang QP, Zhang J, Li JW, Qi Y and Xu CP: Novel elongator protein 2 inhibitors mitigating tumor necrosis Factor-α induced osteogenic differentiation inhibition. Biomed Res Int. 2021:36645642021. View Article : Google Scholar

54 

Yao Z, Getting SJ and Locke IC: Regulation of TNF-induced osteoclast differentiation. Cells. 11:1322021. View Article : Google Scholar

55 

Zhang Y, Li Q, Rao E, Sun Y, Grossmann ME, Morris RJ, Cleary MP and Li B: Epidermal Fatty Acid binding protein promotes skin inflammation induced by high-fat diet. Immunity. 42:953–964. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Gkouveris I, Soundia A, Gouveris P, Zouki D, Hadaya D and Tetradis S: Macrophage involvement in Medication-related osteonecrosis of the jaw (MRONJ): A comprehensive, short review. Cancers (Basel). 14:3302022. View Article : Google Scholar : PubMed/NCBI

57 

Russo R, Zito F and Lampiasi N: MiRNAs expression profiling in Raw264.7 macrophages after Nfatc1-Knockdown elucidates potential pathways involved in osteoclasts differentiation. Biology (Basel). 10:10802021.PubMed/NCBI

58 

Korkmaz HA and Özkan B: Impact of obesity on bone metabolism in Children. J Pediatr Endocrinol Metab. 35:557–565. 2022. View Article : Google Scholar : PubMed/NCBI

59 

Leanza G, Conte C, Cannata F, Isgrò C, Piccoli A, Strollo R, Quattrocchi CC, Papalia R, Denaro V, Maccarrone M, et al: Oxidative stress in postmenopausal women with or without obesity. Cells. 12:11372023. View Article : Google Scholar : PubMed/NCBI

60 

Gutiérrez-Solis AL, Garrido-Dzib AG, Rochel-Pérez A, Magallón-Zertuche V, Chávez-Loría G, Medina-Vera I and Avila-Nava A: Oxidative stress biomarkers in mexican subjects with overweight and obesity: A systematic review. Metab Syndr Relat Disord. 21:188–196. 2023. View Article : Google Scholar : PubMed/NCBI

61 

Cojocaru K, Cojocaru KA, Luchian I, Ursu RG, Butnaru O and Foia L: Mitochondrial dysfunction, oxidative stress, and therapeutic strategies in diabetes, obesity, and cardiovascular disease. Antioxidants (Basel). 12:6582023. View Article : Google Scholar : PubMed/NCBI

62 

Jing J, Peng Y, Fan W, Han S, Peng Q, Xue C, Qin X, Liu Y and Ding Z: Obesity-induced oxidative stress and mitochondrial dysfunction negatively affect sperm quality. FEBS Open Bio. 13:763–778. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Lubkowska A, Dudzińska W and Pluta W: Antioxidant enzyme activity and serum HSP70 concentrations in relation to insulin resistance and lipid profile in lean and overweight young men. Antioxidants (Basel). 12:6552023. View Article : Google Scholar : PubMed/NCBI

64 

Xia B, Zhu R, Zhang H, Chen B, Liu Y, Dai X, Ye Z, Zhao D, Mo F, Gao S, et al: Lycopene improves bone quality and regulates AGE/RAGE/NF-кB signaling pathway in high-fat diet-induced obese mice. Oxid Med Cell Longev. 2022:36970672022. View Article : Google Scholar

65 

Wang YN, Jia TT, Feng Y, Liu SY, Zhang WJ, Zhang DJ and Xu X: Hyperlipidemia impairs osseointegration via the ROS/Wnt/β-Catenin pathway. J Dent Res. 100:658–665. 2021. View Article : Google Scholar : PubMed/NCBI

66 

You L, Sheng ZY, Tang CL, Chen L, Pan L and Chen JY: High cholesterol diet increases osteoporosis risk via inhibiting bone formation in rats. Acta Pharmacol Sin. 32:1498–1504. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Almeida M, Ambrogini E, Han L, Manolagas SC and Jilka RL: Increased lipid oxidation causes oxidative stress, increased peroxisome proliferator-activated receptor-gamma expression, and diminished pro-osteogenic Wnt signaling in the skeleton. J Biol Chem. 284:27438–27448. 2009. View Article : Google Scholar : PubMed/NCBI

68 

Ronis MJ, Mercer K and Chen JR: Effects of nutrition and alcohol consumption on bone loss. Curr Osteoporos Rep. 9:53–59. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Xiao Y, Cui J, Li YX, Shi YH, Wang B, Le GW and Wang ZP: Dyslipidemic high-fat diet affects adversely bone metabolism in mice associated with impaired antioxidant capacity. Nutrition. 27:214–220. 2011. View Article : Google Scholar

70 

Li G, Park JN, Park HJ, Suh H and Choi HS: High Cholesterol-Induced bone loss is attenuated by arctiin via an action in osteoclasts. Nutrients. 14:44832022. View Article : Google Scholar : PubMed/NCBI

71 

Kan B, Zhao Q, Wang L, Xue S, Cai H and Yang S: Association between lipid biomarkers and osteoporosis: A cross-sectional study. BMC Musculoskelet Disord. 22:7592021. View Article : Google Scholar : PubMed/NCBI

72 

Lu CW, Wang CH, Hsu BG and Tsai JP: Serum osteoprotegerin level is negatively associated with bone mineral density in patients undergoing maintenance hemodialysis. Medicina (Kaunas). 57:7622021. View Article : Google Scholar : PubMed/NCBI

73 

Martini C, Sosa FN, Malvicini R, Pacienza N, Yannarelli G, Del C and Vila M: Alendronate inhibits triglyceride accumulation and oxidative stress in adipocytes and the inflammatory response of macrophages which are associated with adipose tissue dysfunction. J Physiol Biochem. 77:601–611. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Mao H, Wang W, Shi L, Chen C, Han C, Zhao J, Zhuo Q, Shen S, Li Y and Huo J: Metabolomics and physiological analysis of the effect of calcium supplements on reducing bone loss in ovariectomized rats by increasing estradiol levels. Nutr Metab (Lond). 18:762021. View Article : Google Scholar : PubMed/NCBI

75 

Sutjarit N, Thongon N, Weerachayaphorn J, Piyachaturawat P, Suksamrarn A, Suksen K, Papachristou DJ and Blair HC: Inhibition of adipogenic differentiation of human bone Marrow-Derived mesenchymal stem cells by a phytoestrogen diarylheptanoid from curcuma comosa. J Agric Food Chem. 68:9993–10002. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Huang H, Luo L and Liu Z, Li Y, Tong Z and Liu Z: Role of TNF-α and FGF-2 in the fracture healing disorder of type 2 diabetes model induced by high fat diet followed by streptozotocin. Diabetes Metab Syndr Obes. 13:2279–2288. 2020. View Article : Google Scholar :

77 

Zhang T, Tian Y, Wang Q, Fu M, Xue C and Wang J: Comparative study of DHA with different molecular forms for ameliorating osteoporosis by promoting Chondrocyte-to-Osteoblast transdifferentiation in the growth plate of ovariectomized mice. J Agric Food Chem. 69:10562–10571. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Antonenko A, Leahy A, Babenko M and Lyons D: Low dose hydrophilic statins are the preferred agents for females at risk of osteoporosis. Bone Rep. 16:1011522022. View Article : Google Scholar

79 

Liu J, Deng X, Liang X and Li L: The phytoestrogen glabrene prevents osteoporosis in ovariectomized rats through upregulation of the canonical Wnt/β-catenin signaling pathway. J Biochem Mol Toxicol. 35:e226532021. View Article : Google Scholar

80 

Zhou Y, Deng T, Zhang H, Guan Q, Zhao H, Yu C, Shao S, Zhao M and Xu J: Hypercholesterolaemia increases the risk of high-turnover osteoporosis in men. Mol Med Rep. 19:4603–4612. 2019.PubMed/NCBI

81 

Luegmayr E, Glantschnig H, Wesolowski GA, Gentile MA, Fisher JE, Rodan GA and Reszka AA: Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ. 11(Suppl 1): S108–S118. 2004. View Article : Google Scholar : PubMed/NCBI

82 

Dumitru N, Carsote M, Cocolos A, Petrova E, Olaru M, Dumitrache C and Ghemigian A: The link between bone osteocalcin and energy metabolism in a group of postmenopausal women. Curr Health Sci J. 45:47–51. 2019.PubMed/NCBI

83 

Papachristou NI, Blair HC, Kypreos KE and Papachristou DJ: High-density lipoprotein (HDL) metabolism and bone mass. J Endocrinol. 233:R95–R107. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Tang Y, Wang S, Yi Q, Xia Y and Geng B: High-density lipoprotein cholesterol is negatively correlated with bone mineral density and has potential predictive value for bone loss. Lipids Health Dis. 20:752021. View Article : Google Scholar : PubMed/NCBI

85 

Barsh GS and Schwartz MW: Genetic approaches to studying energy balance: Perception and integration. Nat Rev Genet. 3:589–600. 2002. View Article : Google Scholar : PubMed/NCBI

86 

Clevers H: Wnt/beta-catenin signaling in development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Dawodu D, Patecki M, Dumler I, Haller H and Kiyan Y: oxLDL inhibits differentiation of mesenchymal stem cells into osteoblasts via the CD36 mediated suppression of Wnt signaling pathway. Mol Biol Rep. 46:3487–3496. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Okayasu M, Nakayachi M, Hayashida C, Ito J, Kaneda T, Masuhara M, Suda N, Sato T and Hakeda Y: Low-density lipoprotein receptor deficiency causes impaired osteoclastogenesis and increased bone mass in mice because of defect in osteoclastic cell-cell fusion. J Biol Chem. 287:19229–19241. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Hada N, Okayasu M, Ito J, Nakayachi M, Hayashida C, Kaneda T, Uchida N, Muramatsu T, Koike C, Masuhara M, et al: Receptor activator of NF-κB ligand-dependent expression of caveolin-1 in osteoclast precursors, and high dependency of osteoclastogenesis on exogenous lipoprotein. Bone. 50:226–236. 2012. View Article : Google Scholar

90 

Lee KG, Lee GB, Yang JS and Moon MH: Perturbations of lipids and oxidized phospholipids in lipoproteins of patients with postmenopausal osteoporosis evaluated by asymmetrical flow field-flow fractionation and nanoflow UHPLC-ESI-MS/MS. Antioxidants (Basel). 9:462020. View Article : Google Scholar : PubMed/NCBI

91 

Leitinger N: The role of phospholipid oxidation products in inflammatory and autoimmune diseases: Evidence from animal models and in humans. Subcell Biochem. 49:325–350. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Fallah A, Pierre R, Abed E and Moreau R: Lysophosphatidylcholine-induced cytotoxicity in osteoblast-like MG-63 cells: Involvement of transient receptor potential vanilloid 2 (TRPV2) channels. Mol Membr Biol. 30:315–326. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Huang MS, Morony S, Lu J, Zhang Z, Bezouglaia O, Tseng W, Tetradis S, Demer LL and Tintut Y: Atherogenic phospholipids attenuate osteogenic signaling by BMP-2 and parathyroid hormone in osteoblasts. J Biol Chem. 282:21237–21243. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Wang L, Chai Y, Li C, Liu H, Su W, Liu X, Yu B, Lei W, Yu B, Crane JL, et al: Oxidized phospholipids are ligands for LRP6. Bone Res. 6:222018. View Article : Google Scholar : PubMed/NCBI

95 

Graham LS, Parhami F, Tintut Y, Kitchen CM, Demer LL and Effros RB: Oxidized lipids enhance RANKL production by T lymphocytes: Implications for lipid-induced bone loss. Clin Immunol. 133:265–275. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Tseng W, Lu J, Bishop GA, Watson AD, Sage AP, Demer L and Tintut Y: Regulation of interleukin-6 expression in osteoblasts by oxidized phospholipids. J Lipid Res. 51:1010–1016. 2010. View Article : Google Scholar :

97 

Palmieri M, Almeida M, Nookaew I, Gomez-Acevedo H, Joseph TE, Que X, Tsimikas S, Sun X, Manolagas SC, Witztum JL and Ambrogini E: Neutralization of oxidized phospholipids attenuates age-associated bone loss in mice. Aging Cell. 20:e134422021. View Article : Google Scholar : PubMed/NCBI

98 

Palmieri M, Kim HN, Gomez-Acevedo H, Que X, Tsimikas S, Jilka RL, Manolagas SC, Witztum JL and Ambrogini E: A neutralizing antibody targeting oxidized phospholipids promotes bone anabolism in chow-fed young adult mice. J Bone Miner Res. 36:170–185. 2021. View Article : Google Scholar

99 

Ambrogini E, Que X, Wang S, Yamaguchi F, Weinstein RS, Tsimikas S, Manolagas SC, Witztum JL and Jilka RL: Oxidation-specific epitopes restrain bone formation. Nat Commun. 9:21932018. View Article : Google Scholar : PubMed/NCBI

100 

Inagaki M: Structure and biological activity of glycosphingolipids from starfish and feather stars. Yakugaku Zasshi. 128:1187–1194. 2008.In Japanese. View Article : Google Scholar : PubMed/NCBI

101 

Liang B, Shen X, Lan C, Lin Y, Li C, Zhong S and Yan S: Glycolipid toxicity induces osteogenic dysfunction via the TLR4/S100B pathway. Int Immunopharmacol. 97:1077922021. View Article : Google Scholar : PubMed/NCBI

102 

Ran SY, Yu Q, Chen Y and Lin SQ: Prevention of postmenopausal osteoporosis in Chinese women: A 5-year, double-blind, randomized, parallel placebo-controlled study. Climacteric. 20:391–396. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Yu WJ, Zhang Z, Fu WZ, He JW, Wang C and Zhang ZL: Association between LGR4 polymorphisms and peak bone mineral density and body composition. J Bone Miner Metab. 38:658–669. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Melgar-Rodríguez S, Cafferata EA, Díaz NI, Peña MA, González-Osuna L, Rojas C, Sierra-Cristancho A, Cárdenas AM, Díaz-Zúñiga J and Vernal R: Natural Killer T (NKT) cells and periodontitis: Potential regulatory role of NKT10 cells. Mediators Inflamm. 2021:55739372021. View Article : Google Scholar : PubMed/NCBI

105 

Naruo M, Negishi Y, Okuda T, Katsuyama M, Okazaki K and Morita R: Alcohol consumption induces murine osteoporosis by downregulation of natural killer T-like cell activity. Immun Inflamm Dis. 9:1370–1382. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Tilkeridis K, Kiziridis G, Ververidis A, Papoutselis M, Kotsianidis I, Kitsikidou G, Tousiaki NE, Drosos G, Kapetanou A, Rechova KV, et al: Immunoporosis: A new role for invariant natural Killer T (NKT) cells through overexpression of nuclear Factor-κB ligand (RANKL). Med Sci Monit. 25:2151–2158. 2019. View Article : Google Scholar : PubMed/NCBI

107 

Wen K, Tao L, Tao Z, Meng Y, Zhou S, Chen J, Yang K, Da W and Zhu Y: Fecal and serum metabolomic signatures and microbial community profiling of postmenopausal osteoporosis mice model. Front Cell Infect Microbiol. 10:5353102020. View Article : Google Scholar : PubMed/NCBI

108 

Zhao YX, Song YW, Zhang L, Zheng FJ, Wang XM, Zhuang XH, Wu F and Liu J: Association between bile acid metabolism and bone mineral density in postmenopausal women. Clinics (Sao Paulo). 75:e14862020. View Article : Google Scholar : PubMed/NCBI

109 

Ruiz-Gaspà S, Guañabens N, Jurado S, Combalia A, Peris P, Monegal A and Parés A: Bilirubin and bile acids in osteocytes and bone tissue. Potential role in the cholestatic-induced osteoporosis. Liver Int. 40:2767–2775. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Ahn TK, Kim KT, Joshi HP, Park KH, Kyung JW, Choi UY, Sohn S, Sheen SH, Shin DE, Lee SH and Han IB: Therapeutic potential of tauroursodeoxycholic acid for the treatment of osteoporosis. Int J Mol Sci. 21:42742020. View Article : Google Scholar : PubMed/NCBI

111 

Ruiz-Gaspà S, Dubreuil M, Guañabens N, Combalia A, Peris P, Monegal A and Parés A: Ursodeoxycholic acid decreases bilirubin-induced osteoblast apoptosis. Eur J Clin Invest. 44:1206–1214. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Li Z, Huang J, Wang F, Li W, Wu X, Zhao C, Zhao J, Wei H, Wu Z, Qian M, et al: Dual targeting of bile acid Receptor-1 (TGR5) and Farnesoid X Receptor (FXR) prevents estrogen-dependent bone loss in mice. J Bone Miner Res. 34:765–776. 2019. View Article : Google Scholar

113 

Wang Q, Wang G, Wang B and Yang H: Activation of TGR5 promotes osteoblastic cell differentiation and mineralization. Biomed Pharmacother. 108:1797–1803. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Ruiz-Gaspà S, Guañabens N, Jurado S, Dubreuil M, Combalia A, Peris P, Monegal A and Parés A: Bile acids and bilirubin effects on osteoblastic gene profile. Implications in the pathogenesis of osteoporosis in liver diseases. Gene. 725:1441672020. View Article : Google Scholar

115 

Ruiz-Gaspà S, Guañabens N, Enjuanes A, Peris P, Martinez-Ferrer A, de Osaba MJ, Gonzalez B, Alvarez L, Monegal A, Combalia A and Parés A: Lithocholic acid downregulates vitamin D effects in human osteoblasts. Eur J Clin Invest. 40:25–34. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Medrano-David D, Lopera AM, Londoño ME and Araque-Marín P: Formulation and characterization of a new injectable bone substitute composed PVA/Borax/CaCO3 and demineralized bone matrix. J Funct Biomater. 12:462021. View Article : Google Scholar

117 

Deng D, Pan C, Wu Z, Sun Y, Liu C, Xiang H, Yin P and Shang D: An integrated metabolomic study of osteoporosis: Discovery and quantification of hyocholic acids as candidate markers. Front Pharmacol. 12:7253412021. View Article : Google Scholar : PubMed/NCBI

118 

Naito C, Katsumi H, Yoneto K, Omura M, Nishidono M, Kamei S, Mizoguchi A, Tamba A, Tanaka A, Morishita M and Yamamoto A: Development of a phosphoric Acid-Mediated hyaluronic acid gel sheet for efficient transdermal delivery of alendronate for Anti-osteoporotic therapy. Pharmaceutics. 11:6422019. View Article : Google Scholar

119 

Asefy Z, Tanomand A, Hoseinnejhad S, Ceferov Z, Oshaghi EA and Rashidi M: Unsaturated fatty acids as a co-therapeutic agents in cancer treatment. Mol Biol Rep. 48:2909–2916. 2021. View Article : Google Scholar : PubMed/NCBI

120 

Xiao WJ, Ke YH, He JW, Zhang H, Yu JB, Hu WW, Gu JM, Gao G, Yue H, Wang C, et al: Polymorphisms in the human ALOX12 and ALOX15 genes are associated with peak bone mineral density in Chinese nuclear families. Osteoporos Int. 23:1889–1897. 2012. View Article : Google Scholar

121 

Wu Y, Zhang M, Chen X, Zhou Y and Chen Z: Metabolomic analysis to elucidate the change of the n-3 polyunsaturated fatty acids in senescent osteoblasts. Biosci Biotechnol Biochem. 85:611–620. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Saito A, Yoshimura K, Miyamoto Y, Kaneko K, Chikazu D, Yamamoto M and Kamijo R: Enhanced and suppressed mineralization by acetoacetate and β-hydroxybutyrate in osteoblast cultures. Biochem Biophys Res Commun. 473:537–544. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Board M, Lopez C, van den Bos C, Callaghan R, Clarke K and Carr C: Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species. Int J Biochem Cell Biol. 88:75–83. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Yi X, Liu J, Wu P, Gong Y, Xu X and Li W: The key microRNA on lipid droplet formation during adipogenesis from human mesenchymal stem cells. J Cell Physiol. 235:328–338. 2020. View Article : Google Scholar

125 

Li L, Wang XQ, Liu XT, Guo R and Zhang RD: Integrative analysis reveals key mRNAs and lncRNAs in monocytes of osteoporotic patients. Math Biosci Eng. 16:5947–5971. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Reppe S, Refvem H, Gautvik VT, Olstad OK, Høvring PI, Reinholt FP, Holden M, Frigessi A, Jemtland R and Gautvik KM: Eight genes are highly associated with BMD variation in postmenopausal Caucasian women. Bone. 46:604–612. 2010. View Article : Google Scholar

127 

Kang YJ, Yoo JI and Baek KW: Differential gene expression profile by RNA sequencing study of elderly osteoporotic hip fracture patients with sarcopenia. J Orthop Translat. 29:10–18. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Zhang X, Chen K, Chen X, Kourkoumelis N, Li G, Wang B and Zhu C: Integrative analysis of genomics and transcriptome data to identify regulation networks in female osteoporosis. Front Genet. 11:6000972020. View Article : Google Scholar : PubMed/NCBI

129 

Shen LF, Chen YJ, Liu KM, Haddad ANS, Song IW, Roan HY, Chen LY, Yen JJY, Chen YJ, Wu JY and Chen YT: Role of S-Palmitoylation by ZDHHC13 in mitochondrial function and metabolism in liver. Sci Rep. 7:21822017. View Article : Google Scholar : PubMed/NCBI

130 

Andersson T, Söderström I, Simonyté K and Olsson T: Estrogen reduces 11beta-hydroxysteroid dehydrogenase type 1 in liver and visceral, but not subcutaneous, adipose tissue in rats. Obesity (Silver Spring). 18:470–475. 2010. View Article : Google Scholar

131 

Yamatani H, Takahashi K, Yoshida T, Soga T and Kurachi H: Differences in the fatty acid metabolism of visceral adipose tissue in postmenopausal women. Menopause. 21:170–176. 2014. View Article : Google Scholar

132 

Mahboobifard F, Pourgholami MH, Jorjani M, Dargahi L, Amiri M, Sadeghi S and Tehrani FR: Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother. 156:1138082022. View Article : Google Scholar : PubMed/NCBI

133 

Yepuru M, Eswaraka J, Kearbey JD, Barrett CM, Raghow S, Veverka KA, Miller DD, Dalton JT and Narayanan R: Estrogen receptor-{beta}-selective ligands alleviate high-fat diet- and ovariectomy-induced obesity in mice. J Biol Chem. 285:31292–31303. 2010. View Article : Google Scholar : PubMed/NCBI

134 

Bjune JI, Strømland PP, Jersin R, Mellgren G and Dankel SN: Metabolic and epigenetic regulation by estrogen in adipocytes. Front Endocrinol (Lausanne). 13:8287802022. View Article : Google Scholar : PubMed/NCBI

135 

Ko SH and Jung Y: Energy metabolism changes and dysregulated lipid metabolism in postmenopausal women. Nutrients. 13:45562021. View Article : Google Scholar : PubMed/NCBI

136 

Ali D, Figeac F, Caci A, Ditzel N, Schmal C, Kerckhofs G, Havelund J, Faergeman N, Rauch A, Tencerova M and Kassem M: High-fat diet-induced obesity augments the deleterious effects of estrogen deficiency on bone: Evidence from ovariectomized mice. Aging Cell. 21:e137262022. View Article : Google Scholar : PubMed/NCBI

137 

Liu HF, Meng DF, Yu P, De JC and Li HY: Obesity and risk of fracture in postmenopausal women: A meta-analysis of cohort studies. Ann Med. 55:22035152023. View Article : Google Scholar : PubMed/NCBI

138 

Lee S, Kim JH, Jeon YK, Lee JS, Kim K, Hwang SK, Kim JH, Goh TS and Kim YH: Effect of adipokine and ghrelin levels on BMD and fracture risk: An updated systematic review and meta-analysis. Front Endocrinol (Lausanne). 14:10440392023. View Article : Google Scholar : PubMed/NCBI

139 

Sardar A, Gautam S, Sinha S, Rai D, Tripathi AK, Dhaniya G, Mishra PR and Trivedi R: Nanoparticles of naturally occurring PPAR-γ inhibitor betulinic acid ameliorates bone marrow adiposity and pathological bone loss in ovariectomized rats via Wnt/β-catenin pathway. Life Sci. 309:1210202022. View Article : Google Scholar

140 

López-Gómez JJ, Pérez-Castrillón JL, García de Santos I, Pérez-Alonso M, Izaola-Jauregui O, Primo-Martín D and De Luis-Román DA: Influence of obesity on bone turnover markers and fracture risk in postmenopausal women. Nutrients. 14:16172022. View Article : Google Scholar : PubMed/NCBI

141 

Zhuang J, Ning H, Wang M, Zhao W, Jing Y, Liu X, Zu J, Kong P, Wang X, Sun C and Yan J: Downregulated fat mass and obesity-associated protein inhibits bone resorption and osteoclastogenesis by nuclear factor-kappa B inactivation. Cell Signal. 87:1101372021. View Article : Google Scholar : PubMed/NCBI

142 

Wawrzyniak N, Suliburska J, Kulczyński B, Kołodziejski P, Kurzawa P and Gramza-Michałowska A: Calcium-Enriched pumpkin affects serum leptin levels and fat content in a rat model of postmenopausal osteoporosis. Nutrients. 13:23342021. View Article : Google Scholar : PubMed/NCBI

143 

Fu Q, Zhang Z, Hu W and Yang Y: The correlation of triglyceride/high-density lipoprotein cholesterol ratio with muscle mass in type 2 diabetes patients. BMC Endocr Disord. 23:932023. View Article : Google Scholar : PubMed/NCBI

144 

Kalhan SC, Bugianesi E, McCullough AJ, Hanson RW and Kelley DE: Estimates of hepatic glyceroneogenesis in type 2 diabetes mellitus in humans. Metabolism. 57:305–312. 2008. View Article : Google Scholar : PubMed/NCBI

145 

Niu YG and Evans RD: Myocardial metabolism of triacylglycerol-rich lipoproteins in type 2 diabetes. J Physiol. 587:3301–3315. 2009. View Article : Google Scholar : PubMed/NCBI

146 

Ishikawa M, Iwasaki Y, Yatoh S, Kato T, Kumadaki S, Inoue N, Yamamoto T, Matsuzaka T, Nakagawa Y, Yahagi N, et al: Cholesterol accumulation and diabetes in pancreatic beta-cell-specific SREBP-2 transgenic mice: A new model for lipotoxicity. J Lipid Res. 49:2524–2534. 2008. View Article : Google Scholar : PubMed/NCBI

147 

Yang Q, Xu H, Zhang H, Li Y, Chen S, He D, Yang G, Ban B, Zhang M and Liu F: Serum triglyceride glucose index is a valuable predictor for visceral obesity in patients with type 2 diabetes: A cross-sectional study. Cardiovasc Diabetol. 22:982023. View Article : Google Scholar : PubMed/NCBI

148 

Gavin KM, Sullivan TM, Maltzahn JK, Jackman MR, Libby AE, MacLean PS, Kohrt WM, Majka SM and Klemm DJ: Hematopoietic stem Cell-Derived adipocytes modulate adipose tissue cellularity, leptin production and insulin responsiveness in female mice. Front Endocrinol (Lausanne). 13:8448772022. View Article : Google Scholar : PubMed/NCBI

149 

Chen Z, Zhao GH, Zhang YK, Shen GS, Xu YJ and Xu NW: Research on the correlation of diabetes mellitus complicated with osteoporosis with lipid metabolism, adipokines and inflammatory factors and its regression analysis. Eur Rev Med Pharmacol Sci. 21:3900–3905. 2017.PubMed/NCBI

150 

Figeac F, Tencerova M, Ali D, Andersen TL, Appadoo DRC, Kerckhofs G, Ditzel N, Kowal JM, Rauch A and Kassem M: Impaired bone fracture healing in type 2 diabetes is caused by defective functions of skeletal progenitor cells. Stem Cells. 40:149–164. 2022. View Article : Google Scholar : PubMed/NCBI

151 

Jin C, Tan K, Yao Z, Lin BH, Zhang DP, Chen WK, Mao SM, Zhang W, Chen L, Lin Z, et al: A novel Anti-Osteoporosis mechanism of VK2: Interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis. J Agric Food Chem. 71:2745–2761. 2023. View Article : Google Scholar : PubMed/NCBI

152 

Yang Y, Lin Y, Wang M, Yuan K, Wang Q, Mu P, Du J, Yu Z, Yang S, Huang K, et al: Targeting ferroptosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis. Bone Res. 10:262022. View Article : Google Scholar : PubMed/NCBI

153 

Kanda J, Furukawa M, Izumo N, Shimakura T, Yamamoto N, Takahashi HE and Wakabayashi H: Effects of the linagliptin, dipeptidyl peptidase-4 inhibitor, on bone fragility induced by type 2 diabetes mellitus in obese mice. Drug Discov Ther. 14:218–225. 2020. View Article : Google Scholar : PubMed/NCBI

154 

Peyman H, Elizabeth E, Dominik O and Robert B: Bone evaluation study-2: Update on the epidemiology of osteoporosis in Germany. Arch Osteoporos. 19:262024. View Article : Google Scholar

155 

Matsunaga T, Miyagi M, Nakazawa T, Murata K, Kawakubo A, Fujimaki H, Koyama T, Kuroda A, Yokozeki Y, Mimura Y, et al: Prevalence and characteristics of spinal sagittal malalignment in patients with osteoporosis. J Clin Med. 10:28272021. View Article : Google Scholar : PubMed/NCBI

156 

Louwers YV and Visser JA: Shared genetics between age at menopause, early menopause, POI and other traits. Front Genet. 12:6765462021. View Article : Google Scholar : PubMed/NCBI

157 

Farooqui KJ, Mithal A, Kerwen AK and Chandran M: Type 2 diabetes and bone fragility-An under-recognized association. Diabetes Metab Syndr. 15:927–935. 2021. View Article : Google Scholar : PubMed/NCBI

158 

Russell AL, Lefavor R, Durand N, Glover L and Zubair AC: Modifiers of mesenchymal stem cell quantity and quality. Transfusion. 58:1434–1440. 2018. View Article : Google Scholar : PubMed/NCBI

159 

Giudici KV, de França NAG, Peters BSE, Fisberg RM and Martini LA: Associations between markers of glucose metabolism and bone measures among diabetic and non-diabetic adults. J Diabetes Metab Disord. 20:1247–1255. 2021. View Article : Google Scholar : PubMed/NCBI

160 

Aleidi SM, Al-Ansari MM, Alnehmi EA, Malkawi AK, Alodaib A, Alshaker M, Benabdelkamel H and Abdel Rahman AM: Lipidomics profiling of patients with low bone mineral density (LBMD). Int J Mol Sci. 23:120172022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Zhang C, Zhao G, Yang K and Tao L: Obesity and lipid metabolism in the development of osteoporosis (Review). Int J Mol Med 54: 61, 2024.
APA
Wang, X., Zhang, C., Zhao, G., Yang, K., & Tao, L. (2024). Obesity and lipid metabolism in the development of osteoporosis (Review). International Journal of Molecular Medicine, 54, 61. https://doi.org/10.3892/ijmm.2024.5385
MLA
Wang, X., Zhang, C., Zhao, G., Yang, K., Tao, L."Obesity and lipid metabolism in the development of osteoporosis (Review)". International Journal of Molecular Medicine 54.1 (2024): 61.
Chicago
Wang, X., Zhang, C., Zhao, G., Yang, K., Tao, L."Obesity and lipid metabolism in the development of osteoporosis (Review)". International Journal of Molecular Medicine 54, no. 1 (2024): 61. https://doi.org/10.3892/ijmm.2024.5385
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Zhang C, Zhao G, Yang K and Tao L: Obesity and lipid metabolism in the development of osteoporosis (Review). Int J Mol Med 54: 61, 2024.
APA
Wang, X., Zhang, C., Zhao, G., Yang, K., & Tao, L. (2024). Obesity and lipid metabolism in the development of osteoporosis (Review). International Journal of Molecular Medicine, 54, 61. https://doi.org/10.3892/ijmm.2024.5385
MLA
Wang, X., Zhang, C., Zhao, G., Yang, K., Tao, L."Obesity and lipid metabolism in the development of osteoporosis (Review)". International Journal of Molecular Medicine 54.1 (2024): 61.
Chicago
Wang, X., Zhang, C., Zhao, G., Yang, K., Tao, L."Obesity and lipid metabolism in the development of osteoporosis (Review)". International Journal of Molecular Medicine 54, no. 1 (2024): 61. https://doi.org/10.3892/ijmm.2024.5385
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team