|
1
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent
AJ, Wong P and Milat F: Secondary osteoporosis. Endocr Rev.
43:240–313. 2022. View Article : Google Scholar
|
|
2
|
Flores LE, Nelson S, Waltman N, Kupzyk K,
Lappe J, Mack L and Bilek LD: Examining effects of habitual
physical activity and body composition on bone structure in early
post-menopausal women: A pQCT analysis. Osteoporos Int. 33:425–433.
2022. View Article : Google Scholar
|
|
3
|
Compston J, Cooper A, Cooper C, Francis R,
Kanis JA, Marsh D, McCloskey EV, Reid DM, Selby P and Wilkins M;
National Osteoporosis Guideline Group (NOGG): Guidelines for the
diagnosis and management of osteoporosis in postmenopausal women
and men from the age of 50 years in the UK. Maturitas. 62:105–108.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mirza F and Canalis E: Management of
endocrine disease: Secondary osteoporosis: Pathophysiology and
management. Eur J Endocrinol. 173:R131–R151. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Liu GF, Wang ZQ, Liu L, Zhang BT, Miao YY
and Yu SN: A network meta-analysis on the short-term efficacy and
adverse events of different anti-osteoporosis drugs for the
treatment of postmenopausal osteoporosis. J Cell Biochem.
119:4469–4481. 2018. View Article : Google Scholar
|
|
6
|
Ying S, Sifan W, Yujiao W, Rongyi C,
Qingrong H, Lili M, Huiyong C and Lindi J: The roles of miRNA,
lncRNA and circRNA in the development of osteoporosis. Biol Res.
53:402020. View Article : Google Scholar
|
|
7
|
Feng K, Yu M, Lou X, Wang D, Wang L and
Ren W: Multi-omics analysis of bone marrow mesenchymal stem cell
differentiation differences in osteoporosis. Genomics.
115:1106682023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Gritsaenko T, Pierrefite-Carle V, Creff G,
Simoneau B, Hagège A, Farlay D, Pagnotta S, Orange F, Jaurand X,
Auwer CD, et al: Low doses of uranium and osteoclastic bone
resorption: Key reciprocal effects evidenced using new in vitro
biomimetic models of bone matrix. Arch Toxicol. 95:1023–1037. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chung HJ, Cho L, Shin JS, Lee J, Ha IH,
Park HJ and Lee SK: Effects of JSOG-6 on protection against bone
loss in ovariectomized mice through regulation of osteoblast
differentiation and osteoclast formation. BMC Complement Altern
Med. 14:1842014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Dey D, Jingar P, Agrawal S, Shrivastava V,
Bhattacharya A, Manhas J, Garg B, Ansari MT, Mridha AR, Sreenivas
V, et al: Symphytum officinale augments osteogenesis in human bone
marrow-derived mesenchymal stem cells in vitro as they
differentiate into osteoblasts. J Ethnopharmacol. 248:1123292020.
View Article : Google Scholar
|
|
11
|
Zhang L, Yuan Y, Wu W, Sun Z, Lei L, Fan
J, Gao B and Zou J: Medium-intensity treadmill exercise exerts
beneficial effects on bone modeling through bone marrow mesenchymal
stromal cells. Front Cell Dev Biol. 8:6006392020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zuo R, Liu M, Wang Y, Li J, Wang W, Wu J,
Sun C, Li B, Wang Z, Lan W, et al: BM-MSC-derived exosomes
alleviate radiation-induced bone loss by restoring the function of
recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell
Res Ther. 10:302019. View Article : Google Scholar
|
|
13
|
Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li
W, Zhao X and Liu K: Replicative senescence of human bone marrow
and umbilical cord derived mesenchymal stem cells and their
differentiation to adipocytes and osteoblasts. Mol Biol Rep.
38:5161–5168. 2011. View Article : Google Scholar
|
|
14
|
Chedraui P, Miguel GS, Vintimilla-Sigüenza
I, Villacreses D, Romero-Huete L, Domínguez A, Jaramillo W, Escobar
GS, Pérez-López FR, Genazzani AR, et al: The metabolic syndrome and
its components in postmenopausal women. Gynecol Endocrinol.
29:563–568. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hur HJ, Jeong YH, Lee SH and Sung MJ:
Quercitrin ameliorates hyperlipidemia and hepatic steatosis in
ovariectomized mice. Life (Basel). 10:2432020.PubMed/NCBI
|
|
16
|
Chen L, Liu Y, Tang Z, Shi X, Song Z, Cao
F, Wei P, Li M, Li X, Jiang D, et al: Improvements in estrogen
deficiency-induced hypercholesterolemia by Hypericum perforatum L.
extract are associated with gut microbiota and related metabolites
in ovariectomized (OVX) rats. Biomed Pharmacother. 135:1111312021.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Mutlu AS, Duffy J and Wang MC: Lipid
metabolism and lipid signals in aging and longevity. Dev Cell.
56:1394–1407. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Miró O, Casademont J, Casals E, Perea M,
Urbano-Márquez A, Rustin P and Cardellach F: Aging is associated
with increased lipid peroxidation in human hearts, but not with
mitochondrial respiratory chain enzyme defects. Cardiovasc Res.
47:624–631. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
van de Wiel A: Diabetes mellitus and
alcohol. Diabetes Metab Res Rev. 20:263–267. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Maggio CA and Pi-Sunyer FX: Obesity and
type 2 diabetes. Endocrinol Metab Clin North Am. 32:805–822. 2003.
View Article : Google Scholar
|
|
21
|
Comuzzie AG, Tejero ME, Funahashi T,
Martin LJ, Kissebah A, Takahashi M, Kihara S, Tanaka S, Rainwater
DL, Matsuzawa Y, et al: The genes influencing adiponectin levels
also influence risk factors for metabolic syndrome and type 2
diabetes. Hum Biol. 79:191–200. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Xu Z, Huo J, Ding X, Yang M, Li L, Dai J,
Hosoe K, Kubo H, Mori M, Higuchi K and Sawashita J: Coenzyme Q10
improves lipid metabolism and ameliorates obesity by regulating
CaMKII-Mediated PDE4 inhibition. Sci Rep. 7:82532017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Fassio A, Idolazzi L, Rossini M, Gatti D,
Adami G, Giollo A and Viapiana O: The obesity paradox and
osteoporosis. Eat Weight Disord. 23:293–302. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ali D, Tencerova M, Figeac F, Kassem M and
Jafari A: The pathophysiology of osteoporosis in obesity and type 2
diabetes in aging women and men: The mechanisms and roles of
increased bone marrow adiposity. Front Endocrinol (Lausanne).
13:9814872022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lopes KG, Rodrigues EL, da Silva Lopes MR,
do Nascimento VA, Pott A, Guimarães RCA, Pegolo GE and Freitas KC:
Adiposity metabolic consequences for adolescent bone health.
Nutrients. 14:32602022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Salzmann SN, Ortiz Miller C, Carrino JA,
Yang J, Shue J, Sama AA, Cammisa FP, Girardi FP and Hughes AP: BMI
and gender increase risk of sacral fractures after multilevel
instrumented spinal fusion compared with bone mineral density and
pelvic parameters. Spine J. 19:238–245. 2019. View Article : Google Scholar
|
|
27
|
Perna S, Gasparri C, Allehdan S, Riva A,
Petrangolini G, Ferraris C, Guido D, Alalwan TA and Rondanelli M:
Discovering the Physio-pathological mechanisms of interaction
between bone mineral density, muscle mass, and visceral adipose
tissue in female older adults through structural equation modeling.
J Clin Med. 12:22692023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Tao J, Zhang Y, Tan C and Tan W:
Associations between weight-adjusted waist index and fractures: A
population-based study. J Orthop Surg Res. 18:2902023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Piñar-Gutierrez A, García-Fontana C,
García-Fontana B and Muñoz-Torres M: Obesity and bone health: A
complex relationship. Int J Mol Sci. 23:83032022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Aaseth JO and Alexander J: Postoperative
osteoporosis in subjects with morbid obesity undergoing bariatric
surgery with gastric bypass or sleeve gastrectomy. Nutrients.
15:13022023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Albaik M, Khan JA, Sindi I, Akesson KE and
McGuigan FEA: Bone mass in Saudi women aged 20-40 years: The
association with obesity and vitamin D deficiency. Arch Osteoporos.
17:1232022. View Article : Google Scholar
|
|
32
|
Di Filippo L, De Lorenzo R, Giustina A,
Rovere-Querini P and Conte C: Vitamin d in osteosarcopenic obesity.
Nutrients. 14:18162022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bassatne A, Chakhtoura M, Saad R and
Fuleihan GE: Vitamin D supplementation in obesity and during weight
loss: A review of randomized controlled trials. Metabolism.
92:193–205. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bosetti M, Sabbatini M, Calarco A, Borrone
A, Peluso G and Cannas M: Effect of retinoic acid and vitamin D3 on
osteoblast differentiation and activity in aging. J Bone Miner
Metab. 34:65–78. 2016. View Article : Google Scholar
|
|
35
|
Wang C, Tian W, Hu SY, Di CX, He CY, Cao
QL, Hao RH, Dong SS, Liu CC, Rong Y, et al: Lineage-selective super
enhancers mediate core regulatory circuitry during adipogenic and
osteogenic differentiation of human mesenchymal stem cells. Cell
Death Dis. 13:8662022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hao RH, Guo Y, Wang C, Chen F, Di CX, Dong
SS, Cao QL, Guo J, Rong Y, Yao S, et al: Lineage-specific
rearrangement of chromatin loops and epigenomic features during
adipocytes and osteoblasts commitment. Cell Death Differ.
29:2503–2518. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang
B, Zhang D, Rao P and Xiao J: PPARγ and wnt signaling in adipogenic
and osteogenic differentiation of mesenchymal stem cells. Curr Stem
Cell Res Ther. 11:216–225. 2016. View Article : Google Scholar
|
|
38
|
Yao XT, Li PP, Liu J, Yang YY, Luo ZL,
Jiang HT, He WG, Luo HH, Deng YX and He BC: Wnt/β-Catenin promotes
the osteoblastic potential of BMP9 through Down-Regulating Cyp26b1
in mesenchymal stem cells. Tissue Eng Regen Med. 20:705–723. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhang Y, Zhao Y, Xie Z, Li M, Liu Y and Tu
X: Activating Wnt/β-Catenin signaling in osteocytes promotes
osteogenic differentiation of BMSCs through BMP-7. Int J Mol Sci.
23:160452022. View Article : Google Scholar
|
|
40
|
Vallée A and Lecarpentier Y: Crosstalk
between peroxisome Proliferator-Activated receptor gamma and the
canonical WNT/β-Catenin pathway in chronic inflammation and
oxidative stress during carcinogenesis. Front Immunol. 9:7452018.
View Article : Google Scholar
|
|
41
|
Kang P, Wu Z, Huang Y, Luo Z, Huo S and
Chen Q: Histone H3K9 demethylase JMJD2B/KDM4B promotes osteogenic
differentiation of bone marrow-derived mesenchymal stem cells by
regulating H3K9me2 on RUNX2. PeerJ. 10:e138622022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gómez R, Barter MJ, Alonso-Pérez A,
Skelton AJ, Proctor C, Herrero-Beaumont G and Young DA: DNA
methylation analysis identifies key transcription factors involved
in mesenchymal stem cell osteogenic differentiation. Biol Res.
56:92023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Takada I, Kouzmenko AP and Kato S: Wnt and
PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev
Rheumatol. 5:442–447. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Takada I, Suzawa M, Matsumoto K and Kato
S: Suppression of PPAR transactivation switches cell fate of bone
marrow stem cells from adipocytes into osteoblasts. Ann N Y Acad
Sci. 1116:182–195. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Barakat B and Almeida MEF: Biochemical and
immunological changes in obesity. Arch Biochem Biophys.
708:1089512021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ellulu MS, Khaza'ai H, Abed Y, Rahmat A,
Ismail P and Ranneh Y: Role of fish oil in human health and
possible mechanism to reduce the inflammation.
Inflammopharmacology. 23:79–89. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ajoolabady A, Lebeaupin C, Wu NN, Kaufman
RJ and Ren J: ER stress and inflammation crosstalk in obesity. Med
Res Rev. 43:5–30. 2023. View Article : Google Scholar
|
|
48
|
Sardi C, Martini E, Mello T, Camelliti S,
Sfondrini L, Marcucci F, Kallikourdis M, Sommariva M and Rumio C:
Effect of acetylsalicylic acid on inflamed adipose tissue. Insulin
resistance and hepatic steatosis in a mouse model of diet-induced
obesity. Life Sci. 264:1186182021. View Article : Google Scholar
|
|
49
|
Zhou X, Pak S, Li D, Dong L, Chen F, Hu X
and Ma L: Bamboo shoots modulate gut microbiota, eliminate obesity
in high-fat-diet-fed mice and improve lipid metabolism. Foods.
12:13802023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
He H, Zhang Y, Sun Y, Zhang Y, Xu J, Yang
Y and Chen J: Folic acid attenuates high-fat diet-induced
osteoporosis through the AMPK signaling pathway. Front Cell Dev
Biol. 9:7918802021. View Article : Google Scholar
|
|
51
|
Kang YS, Kim JC, Kim JS and Kim SH:
Effects of swimming exercise on serum irisin and bone FNDC5 in rat
models of High-Fat Diet-Induced osteoporosis. J Sports Sci Med.
18:596–603. 2019.PubMed/NCBI
|
|
52
|
Walsh MC, Kim GK, Maurizio PL, Molnar EE
and Choi Y: TRAF6 autoubiquitination-independent activation of the
NFkappaB and MAPK pathways in response to IL-1 and RANKL. PLoS One.
3:e40642008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu WJ, Xia CL, Ou SJ, Yang Y, Ma YF, Hou
YL, Yang QP, Zhang J, Li JW, Qi Y and Xu CP: Novel elongator
protein 2 inhibitors mitigating tumor necrosis Factor-α induced
osteogenic differentiation inhibition. Biomed Res Int.
2021:36645642021. View Article : Google Scholar
|
|
54
|
Yao Z, Getting SJ and Locke IC: Regulation
of TNF-induced osteoclast differentiation. Cells. 11:1322021.
View Article : Google Scholar
|
|
55
|
Zhang Y, Li Q, Rao E, Sun Y, Grossmann ME,
Morris RJ, Cleary MP and Li B: Epidermal Fatty Acid binding protein
promotes skin inflammation induced by high-fat diet. Immunity.
42:953–964. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gkouveris I, Soundia A, Gouveris P, Zouki
D, Hadaya D and Tetradis S: Macrophage involvement in
Medication-related osteonecrosis of the jaw (MRONJ): A
comprehensive, short review. Cancers (Basel). 14:3302022.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Russo R, Zito F and Lampiasi N: MiRNAs
expression profiling in Raw264.7 macrophages after Nfatc1-Knockdown
elucidates potential pathways involved in osteoclasts
differentiation. Biology (Basel). 10:10802021.PubMed/NCBI
|
|
58
|
Korkmaz HA and Özkan B: Impact of obesity
on bone metabolism in Children. J Pediatr Endocrinol Metab.
35:557–565. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Leanza G, Conte C, Cannata F, Isgrò C,
Piccoli A, Strollo R, Quattrocchi CC, Papalia R, Denaro V,
Maccarrone M, et al: Oxidative stress in postmenopausal women with
or without obesity. Cells. 12:11372023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gutiérrez-Solis AL, Garrido-Dzib AG,
Rochel-Pérez A, Magallón-Zertuche V, Chávez-Loría G, Medina-Vera I
and Avila-Nava A: Oxidative stress biomarkers in mexican subjects
with overweight and obesity: A systematic review. Metab Syndr Relat
Disord. 21:188–196. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cojocaru K, Cojocaru KA, Luchian I, Ursu
RG, Butnaru O and Foia L: Mitochondrial dysfunction, oxidative
stress, and therapeutic strategies in diabetes, obesity, and
cardiovascular disease. Antioxidants (Basel). 12:6582023.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jing J, Peng Y, Fan W, Han S, Peng Q, Xue
C, Qin X, Liu Y and Ding Z: Obesity-induced oxidative stress and
mitochondrial dysfunction negatively affect sperm quality. FEBS
Open Bio. 13:763–778. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Lubkowska A, Dudzińska W and Pluta W:
Antioxidant enzyme activity and serum HSP70 concentrations in
relation to insulin resistance and lipid profile in lean and
overweight young men. Antioxidants (Basel). 12:6552023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xia B, Zhu R, Zhang H, Chen B, Liu Y, Dai
X, Ye Z, Zhao D, Mo F, Gao S, et al: Lycopene improves bone quality
and regulates AGE/RAGE/NF-кB signaling pathway in high-fat
diet-induced obese mice. Oxid Med Cell Longev. 2022:36970672022.
View Article : Google Scholar
|
|
65
|
Wang YN, Jia TT, Feng Y, Liu SY, Zhang WJ,
Zhang DJ and Xu X: Hyperlipidemia impairs osseointegration via the
ROS/Wnt/β-Catenin pathway. J Dent Res. 100:658–665. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
You L, Sheng ZY, Tang CL, Chen L, Pan L
and Chen JY: High cholesterol diet increases osteoporosis risk via
inhibiting bone formation in rats. Acta Pharmacol Sin.
32:1498–1504. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Almeida M, Ambrogini E, Han L, Manolagas
SC and Jilka RL: Increased lipid oxidation causes oxidative stress,
increased peroxisome proliferator-activated receptor-gamma
expression, and diminished pro-osteogenic Wnt signaling in the
skeleton. J Biol Chem. 284:27438–27448. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ronis MJ, Mercer K and Chen JR: Effects of
nutrition and alcohol consumption on bone loss. Curr Osteoporos
Rep. 9:53–59. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xiao Y, Cui J, Li YX, Shi YH, Wang B, Le
GW and Wang ZP: Dyslipidemic high-fat diet affects adversely bone
metabolism in mice associated with impaired antioxidant capacity.
Nutrition. 27:214–220. 2011. View Article : Google Scholar
|
|
70
|
Li G, Park JN, Park HJ, Suh H and Choi HS:
High Cholesterol-Induced bone loss is attenuated by arctiin via an
action in osteoclasts. Nutrients. 14:44832022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kan B, Zhao Q, Wang L, Xue S, Cai H and
Yang S: Association between lipid biomarkers and osteoporosis: A
cross-sectional study. BMC Musculoskelet Disord. 22:7592021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lu CW, Wang CH, Hsu BG and Tsai JP: Serum
osteoprotegerin level is negatively associated with bone mineral
density in patients undergoing maintenance hemodialysis. Medicina
(Kaunas). 57:7622021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Martini C, Sosa FN, Malvicini R, Pacienza
N, Yannarelli G, Del C and Vila M: Alendronate inhibits
triglyceride accumulation and oxidative stress in adipocytes and
the inflammatory response of macrophages which are associated with
adipose tissue dysfunction. J Physiol Biochem. 77:601–611. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Mao H, Wang W, Shi L, Chen C, Han C, Zhao
J, Zhuo Q, Shen S, Li Y and Huo J: Metabolomics and physiological
analysis of the effect of calcium supplements on reducing bone loss
in ovariectomized rats by increasing estradiol levels. Nutr Metab
(Lond). 18:762021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sutjarit N, Thongon N, Weerachayaphorn J,
Piyachaturawat P, Suksamrarn A, Suksen K, Papachristou DJ and Blair
HC: Inhibition of adipogenic differentiation of human bone
Marrow-Derived mesenchymal stem cells by a phytoestrogen
diarylheptanoid from curcuma comosa. J Agric Food Chem.
68:9993–10002. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Huang H, Luo L and Liu Z, Li Y, Tong Z and
Liu Z: Role of TNF-α and FGF-2 in the fracture healing disorder of
type 2 diabetes model induced by high fat diet followed by
streptozotocin. Diabetes Metab Syndr Obes. 13:2279–2288. 2020.
View Article : Google Scholar :
|
|
77
|
Zhang T, Tian Y, Wang Q, Fu M, Xue C and
Wang J: Comparative study of DHA with different molecular forms for
ameliorating osteoporosis by promoting Chondrocyte-to-Osteoblast
transdifferentiation in the growth plate of ovariectomized mice. J
Agric Food Chem. 69:10562–10571. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Antonenko A, Leahy A, Babenko M and Lyons
D: Low dose hydrophilic statins are the preferred agents for
females at risk of osteoporosis. Bone Rep. 16:1011522022.
View Article : Google Scholar
|
|
79
|
Liu J, Deng X, Liang X and Li L: The
phytoestrogen glabrene prevents osteoporosis in ovariectomized rats
through upregulation of the canonical Wnt/β-catenin signaling
pathway. J Biochem Mol Toxicol. 35:e226532021. View Article : Google Scholar
|
|
80
|
Zhou Y, Deng T, Zhang H, Guan Q, Zhao H,
Yu C, Shao S, Zhao M and Xu J: Hypercholesterolaemia increases the
risk of high-turnover osteoporosis in men. Mol Med Rep.
19:4603–4612. 2019.PubMed/NCBI
|
|
81
|
Luegmayr E, Glantschnig H, Wesolowski GA,
Gentile MA, Fisher JE, Rodan GA and Reszka AA: Osteoclast
formation, survival and morphology are highly dependent on
exogenous cholesterol/lipoproteins. Cell Death Differ. 11(Suppl 1):
S108–S118. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Dumitru N, Carsote M, Cocolos A, Petrova
E, Olaru M, Dumitrache C and Ghemigian A: The link between bone
osteocalcin and energy metabolism in a group of postmenopausal
women. Curr Health Sci J. 45:47–51. 2019.PubMed/NCBI
|
|
83
|
Papachristou NI, Blair HC, Kypreos KE and
Papachristou DJ: High-density lipoprotein (HDL) metabolism and bone
mass. J Endocrinol. 233:R95–R107. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Tang Y, Wang S, Yi Q, Xia Y and Geng B:
High-density lipoprotein cholesterol is negatively correlated with
bone mineral density and has potential predictive value for bone
loss. Lipids Health Dis. 20:752021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Barsh GS and Schwartz MW: Genetic
approaches to studying energy balance: Perception and integration.
Nat Rev Genet. 3:589–600. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
86
|
Clevers H: Wnt/beta-catenin signaling in
development and disease. Cell. 127:469–480. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Dawodu D, Patecki M, Dumler I, Haller H
and Kiyan Y: oxLDL inhibits differentiation of mesenchymal stem
cells into osteoblasts via the CD36 mediated suppression of Wnt
signaling pathway. Mol Biol Rep. 46:3487–3496. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Okayasu M, Nakayachi M, Hayashida C, Ito
J, Kaneda T, Masuhara M, Suda N, Sato T and Hakeda Y: Low-density
lipoprotein receptor deficiency causes impaired osteoclastogenesis
and increased bone mass in mice because of defect in osteoclastic
cell-cell fusion. J Biol Chem. 287:19229–19241. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hada N, Okayasu M, Ito J, Nakayachi M,
Hayashida C, Kaneda T, Uchida N, Muramatsu T, Koike C, Masuhara M,
et al: Receptor activator of NF-κB ligand-dependent expression of
caveolin-1 in osteoclast precursors, and high dependency of
osteoclastogenesis on exogenous lipoprotein. Bone. 50:226–236.
2012. View Article : Google Scholar
|
|
90
|
Lee KG, Lee GB, Yang JS and Moon MH:
Perturbations of lipids and oxidized phospholipids in lipoproteins
of patients with postmenopausal osteoporosis evaluated by
asymmetrical flow field-flow fractionation and nanoflow
UHPLC-ESI-MS/MS. Antioxidants (Basel). 9:462020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Leitinger N: The role of phospholipid
oxidation products in inflammatory and autoimmune diseases:
Evidence from animal models and in humans. Subcell Biochem.
49:325–350. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Fallah A, Pierre R, Abed E and Moreau R:
Lysophosphatidylcholine-induced cytotoxicity in osteoblast-like
MG-63 cells: Involvement of transient receptor potential vanilloid
2 (TRPV2) channels. Mol Membr Biol. 30:315–326. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Huang MS, Morony S, Lu J, Zhang Z,
Bezouglaia O, Tseng W, Tetradis S, Demer LL and Tintut Y:
Atherogenic phospholipids attenuate osteogenic signaling by BMP-2
and parathyroid hormone in osteoblasts. J Biol Chem.
282:21237–21243. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang L, Chai Y, Li C, Liu H, Su W, Liu X,
Yu B, Lei W, Yu B, Crane JL, et al: Oxidized phospholipids are
ligands for LRP6. Bone Res. 6:222018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Graham LS, Parhami F, Tintut Y, Kitchen
CM, Demer LL and Effros RB: Oxidized lipids enhance RANKL
production by T lymphocytes: Implications for lipid-induced bone
loss. Clin Immunol. 133:265–275. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tseng W, Lu J, Bishop GA, Watson AD, Sage
AP, Demer L and Tintut Y: Regulation of interleukin-6 expression in
osteoblasts by oxidized phospholipids. J Lipid Res. 51:1010–1016.
2010. View Article : Google Scholar :
|
|
97
|
Palmieri M, Almeida M, Nookaew I,
Gomez-Acevedo H, Joseph TE, Que X, Tsimikas S, Sun X, Manolagas SC,
Witztum JL and Ambrogini E: Neutralization of oxidized
phospholipids attenuates age-associated bone loss in mice. Aging
Cell. 20:e134422021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Palmieri M, Kim HN, Gomez-Acevedo H, Que
X, Tsimikas S, Jilka RL, Manolagas SC, Witztum JL and Ambrogini E:
A neutralizing antibody targeting oxidized phospholipids promotes
bone anabolism in chow-fed young adult mice. J Bone Miner Res.
36:170–185. 2021. View Article : Google Scholar
|
|
99
|
Ambrogini E, Que X, Wang S, Yamaguchi F,
Weinstein RS, Tsimikas S, Manolagas SC, Witztum JL and Jilka RL:
Oxidation-specific epitopes restrain bone formation. Nat Commun.
9:21932018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Inagaki M: Structure and biological
activity of glycosphingolipids from starfish and feather stars.
Yakugaku Zasshi. 128:1187–1194. 2008.In Japanese. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liang B, Shen X, Lan C, Lin Y, Li C, Zhong
S and Yan S: Glycolipid toxicity induces osteogenic dysfunction via
the TLR4/S100B pathway. Int Immunopharmacol. 97:1077922021.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ran SY, Yu Q, Chen Y and Lin SQ:
Prevention of postmenopausal osteoporosis in Chinese women: A
5-year, double-blind, randomized, parallel placebo-controlled
study. Climacteric. 20:391–396. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yu WJ, Zhang Z, Fu WZ, He JW, Wang C and
Zhang ZL: Association between LGR4 polymorphisms and peak bone
mineral density and body composition. J Bone Miner Metab.
38:658–669. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Melgar-Rodríguez S, Cafferata EA, Díaz NI,
Peña MA, González-Osuna L, Rojas C, Sierra-Cristancho A, Cárdenas
AM, Díaz-Zúñiga J and Vernal R: Natural Killer T (NKT) cells and
periodontitis: Potential regulatory role of NKT10 cells. Mediators
Inflamm. 2021:55739372021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Naruo M, Negishi Y, Okuda T, Katsuyama M,
Okazaki K and Morita R: Alcohol consumption induces murine
osteoporosis by downregulation of natural killer T-like cell
activity. Immun Inflamm Dis. 9:1370–1382. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tilkeridis K, Kiziridis G, Ververidis A,
Papoutselis M, Kotsianidis I, Kitsikidou G, Tousiaki NE, Drosos G,
Kapetanou A, Rechova KV, et al: Immunoporosis: A new role for
invariant natural Killer T (NKT) cells through overexpression of
nuclear Factor-κB ligand (RANKL). Med Sci Monit. 25:2151–2158.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wen K, Tao L, Tao Z, Meng Y, Zhou S, Chen
J, Yang K, Da W and Zhu Y: Fecal and serum metabolomic signatures
and microbial community profiling of postmenopausal osteoporosis
mice model. Front Cell Infect Microbiol. 10:5353102020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhao YX, Song YW, Zhang L, Zheng FJ, Wang
XM, Zhuang XH, Wu F and Liu J: Association between bile acid
metabolism and bone mineral density in postmenopausal women.
Clinics (Sao Paulo). 75:e14862020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Ruiz-Gaspà S, Guañabens N, Jurado S,
Combalia A, Peris P, Monegal A and Parés A: Bilirubin and bile
acids in osteocytes and bone tissue. Potential role in the
cholestatic-induced osteoporosis. Liver Int. 40:2767–2775. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ahn TK, Kim KT, Joshi HP, Park KH, Kyung
JW, Choi UY, Sohn S, Sheen SH, Shin DE, Lee SH and Han IB:
Therapeutic potential of tauroursodeoxycholic acid for the
treatment of osteoporosis. Int J Mol Sci. 21:42742020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ruiz-Gaspà S, Dubreuil M, Guañabens N,
Combalia A, Peris P, Monegal A and Parés A: Ursodeoxycholic acid
decreases bilirubin-induced osteoblast apoptosis. Eur J Clin
Invest. 44:1206–1214. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Li Z, Huang J, Wang F, Li W, Wu X, Zhao C,
Zhao J, Wei H, Wu Z, Qian M, et al: Dual targeting of bile acid
Receptor-1 (TGR5) and Farnesoid X Receptor (FXR) prevents
estrogen-dependent bone loss in mice. J Bone Miner Res. 34:765–776.
2019. View Article : Google Scholar
|
|
113
|
Wang Q, Wang G, Wang B and Yang H:
Activation of TGR5 promotes osteoblastic cell differentiation and
mineralization. Biomed Pharmacother. 108:1797–1803. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ruiz-Gaspà S, Guañabens N, Jurado S,
Dubreuil M, Combalia A, Peris P, Monegal A and Parés A: Bile acids
and bilirubin effects on osteoblastic gene profile. Implications in
the pathogenesis of osteoporosis in liver diseases. Gene.
725:1441672020. View Article : Google Scholar
|
|
115
|
Ruiz-Gaspà S, Guañabens N, Enjuanes A,
Peris P, Martinez-Ferrer A, de Osaba MJ, Gonzalez B, Alvarez L,
Monegal A, Combalia A and Parés A: Lithocholic acid downregulates
vitamin D effects in human osteoblasts. Eur J Clin Invest.
40:25–34. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Medrano-David D, Lopera AM, Londoño ME and
Araque-Marín P: Formulation and characterization of a new
injectable bone substitute composed PVA/Borax/CaCO3 and
demineralized bone matrix. J Funct Biomater. 12:462021. View Article : Google Scholar
|
|
117
|
Deng D, Pan C, Wu Z, Sun Y, Liu C, Xiang
H, Yin P and Shang D: An integrated metabolomic study of
osteoporosis: Discovery and quantification of hyocholic acids as
candidate markers. Front Pharmacol. 12:7253412021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Naito C, Katsumi H, Yoneto K, Omura M,
Nishidono M, Kamei S, Mizoguchi A, Tamba A, Tanaka A, Morishita M
and Yamamoto A: Development of a phosphoric Acid-Mediated
hyaluronic acid gel sheet for efficient transdermal delivery of
alendronate for Anti-osteoporotic therapy. Pharmaceutics.
11:6422019. View Article : Google Scholar
|
|
119
|
Asefy Z, Tanomand A, Hoseinnejhad S,
Ceferov Z, Oshaghi EA and Rashidi M: Unsaturated fatty acids as a
co-therapeutic agents in cancer treatment. Mol Biol Rep.
48:2909–2916. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Xiao WJ, Ke YH, He JW, Zhang H, Yu JB, Hu
WW, Gu JM, Gao G, Yue H, Wang C, et al: Polymorphisms in the human
ALOX12 and ALOX15 genes are associated with peak bone mineral
density in Chinese nuclear families. Osteoporos Int. 23:1889–1897.
2012. View Article : Google Scholar
|
|
121
|
Wu Y, Zhang M, Chen X, Zhou Y and Chen Z:
Metabolomic analysis to elucidate the change of the n-3
polyunsaturated fatty acids in senescent osteoblasts. Biosci
Biotechnol Biochem. 85:611–620. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Saito A, Yoshimura K, Miyamoto Y, Kaneko
K, Chikazu D, Yamamoto M and Kamijo R: Enhanced and suppressed
mineralization by acetoacetate and β-hydroxybutyrate in osteoblast
cultures. Biochem Biophys Res Commun. 473:537–544. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Board M, Lopez C, van den Bos C, Callaghan
R, Clarke K and Carr C: Acetoacetate is a more efficient
energy-yielding substrate for human mesenchymal stem cells than
glucose and generates fewer reactive oxygen species. Int J Biochem
Cell Biol. 88:75–83. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Yi X, Liu J, Wu P, Gong Y, Xu X and Li W:
The key microRNA on lipid droplet formation during adipogenesis
from human mesenchymal stem cells. J Cell Physiol. 235:328–338.
2020. View Article : Google Scholar
|
|
125
|
Li L, Wang XQ, Liu XT, Guo R and Zhang RD:
Integrative analysis reveals key mRNAs and lncRNAs in monocytes of
osteoporotic patients. Math Biosci Eng. 16:5947–5971. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Reppe S, Refvem H, Gautvik VT, Olstad OK,
Høvring PI, Reinholt FP, Holden M, Frigessi A, Jemtland R and
Gautvik KM: Eight genes are highly associated with BMD variation in
postmenopausal Caucasian women. Bone. 46:604–612. 2010. View Article : Google Scholar
|
|
127
|
Kang YJ, Yoo JI and Baek KW: Differential
gene expression profile by RNA sequencing study of elderly
osteoporotic hip fracture patients with sarcopenia. J Orthop
Translat. 29:10–18. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhang X, Chen K, Chen X, Kourkoumelis N,
Li G, Wang B and Zhu C: Integrative analysis of genomics and
transcriptome data to identify regulation networks in female
osteoporosis. Front Genet. 11:6000972020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Shen LF, Chen YJ, Liu KM, Haddad ANS, Song
IW, Roan HY, Chen LY, Yen JJY, Chen YJ, Wu JY and Chen YT: Role of
S-Palmitoylation by ZDHHC13 in mitochondrial function and
metabolism in liver. Sci Rep. 7:21822017. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Andersson T, Söderström I, Simonyté K and
Olsson T: Estrogen reduces 11beta-hydroxysteroid dehydrogenase type
1 in liver and visceral, but not subcutaneous, adipose tissue in
rats. Obesity (Silver Spring). 18:470–475. 2010. View Article : Google Scholar
|
|
131
|
Yamatani H, Takahashi K, Yoshida T, Soga T
and Kurachi H: Differences in the fatty acid metabolism of visceral
adipose tissue in postmenopausal women. Menopause. 21:170–176.
2014. View Article : Google Scholar
|
|
132
|
Mahboobifard F, Pourgholami MH, Jorjani M,
Dargahi L, Amiri M, Sadeghi S and Tehrani FR: Estrogen as a key
regulator of energy homeostasis and metabolic health. Biomed
Pharmacother. 156:1138082022. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Yepuru M, Eswaraka J, Kearbey JD, Barrett
CM, Raghow S, Veverka KA, Miller DD, Dalton JT and Narayanan R:
Estrogen receptor-{beta}-selective ligands alleviate high-fat diet-
and ovariectomy-induced obesity in mice. J Biol Chem.
285:31292–31303. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Bjune JI, Strømland PP, Jersin R, Mellgren
G and Dankel SN: Metabolic and epigenetic regulation by estrogen in
adipocytes. Front Endocrinol (Lausanne). 13:8287802022. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Ko SH and Jung Y: Energy metabolism
changes and dysregulated lipid metabolism in postmenopausal women.
Nutrients. 13:45562021. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Ali D, Figeac F, Caci A, Ditzel N, Schmal
C, Kerckhofs G, Havelund J, Faergeman N, Rauch A, Tencerova M and
Kassem M: High-fat diet-induced obesity augments the deleterious
effects of estrogen deficiency on bone: Evidence from
ovariectomized mice. Aging Cell. 21:e137262022. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Liu HF, Meng DF, Yu P, De JC and Li HY:
Obesity and risk of fracture in postmenopausal women: A
meta-analysis of cohort studies. Ann Med. 55:22035152023.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Lee S, Kim JH, Jeon YK, Lee JS, Kim K,
Hwang SK, Kim JH, Goh TS and Kim YH: Effect of adipokine and
ghrelin levels on BMD and fracture risk: An updated systematic
review and meta-analysis. Front Endocrinol (Lausanne).
14:10440392023. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Sardar A, Gautam S, Sinha S, Rai D,
Tripathi AK, Dhaniya G, Mishra PR and Trivedi R: Nanoparticles of
naturally occurring PPAR-γ inhibitor betulinic acid ameliorates
bone marrow adiposity and pathological bone loss in ovariectomized
rats via Wnt/β-catenin pathway. Life Sci. 309:1210202022.
View Article : Google Scholar
|
|
140
|
López-Gómez JJ, Pérez-Castrillón JL,
García de Santos I, Pérez-Alonso M, Izaola-Jauregui O, Primo-Martín
D and De Luis-Román DA: Influence of obesity on bone turnover
markers and fracture risk in postmenopausal women. Nutrients.
14:16172022. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Zhuang J, Ning H, Wang M, Zhao W, Jing Y,
Liu X, Zu J, Kong P, Wang X, Sun C and Yan J: Downregulated fat
mass and obesity-associated protein inhibits bone resorption and
osteoclastogenesis by nuclear factor-kappa B inactivation. Cell
Signal. 87:1101372021. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Wawrzyniak N, Suliburska J, Kulczyński B,
Kołodziejski P, Kurzawa P and Gramza-Michałowska A:
Calcium-Enriched pumpkin affects serum leptin levels and fat
content in a rat model of postmenopausal osteoporosis. Nutrients.
13:23342021. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Fu Q, Zhang Z, Hu W and Yang Y: The
correlation of triglyceride/high-density lipoprotein cholesterol
ratio with muscle mass in type 2 diabetes patients. BMC Endocr
Disord. 23:932023. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Kalhan SC, Bugianesi E, McCullough AJ,
Hanson RW and Kelley DE: Estimates of hepatic glyceroneogenesis in
type 2 diabetes mellitus in humans. Metabolism. 57:305–312. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Niu YG and Evans RD: Myocardial metabolism
of triacylglycerol-rich lipoproteins in type 2 diabetes. J Physiol.
587:3301–3315. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Ishikawa M, Iwasaki Y, Yatoh S, Kato T,
Kumadaki S, Inoue N, Yamamoto T, Matsuzaka T, Nakagawa Y, Yahagi N,
et al: Cholesterol accumulation and diabetes in pancreatic
beta-cell-specific SREBP-2 transgenic mice: A new model for
lipotoxicity. J Lipid Res. 49:2524–2534. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Yang Q, Xu H, Zhang H, Li Y, Chen S, He D,
Yang G, Ban B, Zhang M and Liu F: Serum triglyceride glucose index
is a valuable predictor for visceral obesity in patients with type
2 diabetes: A cross-sectional study. Cardiovasc Diabetol.
22:982023. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Gavin KM, Sullivan TM, Maltzahn JK,
Jackman MR, Libby AE, MacLean PS, Kohrt WM, Majka SM and Klemm DJ:
Hematopoietic stem Cell-Derived adipocytes modulate adipose tissue
cellularity, leptin production and insulin responsiveness in female
mice. Front Endocrinol (Lausanne). 13:8448772022. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Chen Z, Zhao GH, Zhang YK, Shen GS, Xu YJ
and Xu NW: Research on the correlation of diabetes mellitus
complicated with osteoporosis with lipid metabolism, adipokines and
inflammatory factors and its regression analysis. Eur Rev Med
Pharmacol Sci. 21:3900–3905. 2017.PubMed/NCBI
|
|
150
|
Figeac F, Tencerova M, Ali D, Andersen TL,
Appadoo DRC, Kerckhofs G, Ditzel N, Kowal JM, Rauch A and Kassem M:
Impaired bone fracture healing in type 2 diabetes is caused by
defective functions of skeletal progenitor cells. Stem Cells.
40:149–164. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Jin C, Tan K, Yao Z, Lin BH, Zhang DP,
Chen WK, Mao SM, Zhang W, Chen L, Lin Z, et al: A novel
Anti-Osteoporosis mechanism of VK2: Interfering with ferroptosis
via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis. J Agric
Food Chem. 71:2745–2761. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Yang Y, Lin Y, Wang M, Yuan K, Wang Q, Mu
P, Du J, Yu Z, Yang S, Huang K, et al: Targeting ferroptosis
suppresses osteocyte glucolipotoxicity and alleviates diabetic
osteoporosis. Bone Res. 10:262022. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Kanda J, Furukawa M, Izumo N, Shimakura T,
Yamamoto N, Takahashi HE and Wakabayashi H: Effects of the
linagliptin, dipeptidyl peptidase-4 inhibitor, on bone fragility
induced by type 2 diabetes mellitus in obese mice. Drug Discov
Ther. 14:218–225. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Peyman H, Elizabeth E, Dominik O and
Robert B: Bone evaluation study-2: Update on the epidemiology of
osteoporosis in Germany. Arch Osteoporos. 19:262024. View Article : Google Scholar
|
|
155
|
Matsunaga T, Miyagi M, Nakazawa T, Murata
K, Kawakubo A, Fujimaki H, Koyama T, Kuroda A, Yokozeki Y, Mimura
Y, et al: Prevalence and characteristics of spinal sagittal
malalignment in patients with osteoporosis. J Clin Med.
10:28272021. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Louwers YV and Visser JA: Shared genetics
between age at menopause, early menopause, POI and other traits.
Front Genet. 12:6765462021. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Farooqui KJ, Mithal A, Kerwen AK and
Chandran M: Type 2 diabetes and bone fragility-An under-recognized
association. Diabetes Metab Syndr. 15:927–935. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Russell AL, Lefavor R, Durand N, Glover L
and Zubair AC: Modifiers of mesenchymal stem cell quantity and
quality. Transfusion. 58:1434–1440. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Giudici KV, de França NAG, Peters BSE,
Fisberg RM and Martini LA: Associations between markers of glucose
metabolism and bone measures among diabetic and non-diabetic
adults. J Diabetes Metab Disord. 20:1247–1255. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Aleidi SM, Al-Ansari MM, Alnehmi EA,
Malkawi AK, Alodaib A, Alshaker M, Benabdelkamel H and Abdel Rahman
AM: Lipidomics profiling of patients with low bone mineral density
(LBMD). Int J Mol Sci. 23:120172022. View Article : Google Scholar : PubMed/NCBI
|