Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2024 Volume 54 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 54 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Public neoantigens in breast cancer immunotherapy (Review)

  • Authors:
    • Natthaporn Sueangoen
    • Peti Thuwajit
    • Pa-Thai Yenchitsomanus
    • Chanitra Thuwajit
  • View Affiliations / Copyright

    Affiliations: Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
    Copyright: © Sueangoen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 65
    |
    Published online on: June 17, 2024
       https://doi.org/10.3892/ijmm.2024.5388
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Among women globally, breast cancer is the most prevalent cancer and the leading cause of cancer‑related death. Interestingly, though genetic mutations contribute to the disease, <15% of women diagnosed with breast cancer have a family history of the disease, suggesting a prevalence of sporadic genetic mutations in breast cancer development. In the rapidly rising field of cancer genomics, neoantigen‑based immunotherapy has come to the fore. The investigation of novel proteins arising from unique somatic mutations or neoantigens have opened a new pathway for both individualized and public cancer treatments. Because they are shared among individuals with similar genetic changes, public neoantigens provide an opportunity for ‘off‑the‑shelf’ anticancer therapies, potentially extending the benefits to a wider patient group. The present review aimed to highlight the role of shared or public neoantigens as therapeutic targets for patients with breast cancer, emphasizing common hotspot mutations of certain genes identified in breast cancer. The clinical utilization of public neoantigen‑based therapies for breast cancer treatment were also discussed.
View Figures

Figure 1

Figure 2

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, et al: Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 11:5678–5685. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Bhargava R, Beriwal S, Dabbs DJ, Ozbek U, Soran A, Johnson RR, Brufsky AM, Lembersky BC and Ahrendt GM: Immunohistochemical surrogate markers of breast cancer molecular classes predicts response to neoadjuvant chemotherapy: A single institutional experience with 359 cases. Cancer. 116:1431–1439. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB, Martin S, Wedge DC, et al: Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 534:47–54. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Pon JR and Marra MA: Driver and passenger mutations in cancer. Annu Rev Pathol. 10:25–50. 2015. View Article : Google Scholar

7 

Chen T, Wang Z, Zhou W, Chong Z, Meric-Bernstam F, Mills GB and Chen K: Hotspot mutations delineating diverse mutational signatures and biological utilities across cancer types. BMC Genomics. 17(Suppl 2): S3942016. View Article : Google Scholar

8 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Li CI, Uribe DJ and Daling JR: Clinical characteristics of different histologic types of breast cancer. Br J Cancer. 93:1046–1052. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Caswell-Jin JL, Lorenz C and Curtis C: Molecular heterogeneity and evolution in breast cancer. Annu Rev Cancer Biol. 5:79–94. 2021. View Article : Google Scholar

11 

Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, Rees M, Ramaswamy A, Muenst S, Soysal SD, et al: A single-cell atlas of the tumor and immune ecosystem of human breast cancer. Cell. 177:1330–1345.e18. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Tsang JYS and Tse GM: Molecular classification of breast cancer. Adv Anat Pathol. 27:27–35. 2020. View Article : Google Scholar

13 

Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thürlimann B and Senn HJ; Panel members: Strategies for subtypes-dealing with the diversity of breast cancer: Highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 22:1736–1747. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Li J, Chen Z, Su K and Zeng J: Clinicopathological classification and traditional prognostic indicators of breast cancer. Int J Clin Exp Pathol. 8:8500–8505. 2015.PubMed/NCBI

15 

Prat A, Cheang MCU, Martín M, Parker JS, Carrasco E, Caballero R, Tyldesley S, Gelmon K, Bernard PS, Nielsen TO and Perou CM: Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol. 31:203–209. 2013. View Article : Google Scholar

16 

Maisonneuve P, Disalvatore D, Rotmensz N, Curigliano G, Colleoni M, Dellapasqua S, Pruneri G, Mastropasqua MG, Luini A, Bassi F, et al: Proposed new clinicopathological surrogate definitions of luminal A and luminal B (HER2-negative) intrinsic breast cancer subtypes. Breast Cancer Res. 16:R652014. View Article : Google Scholar : PubMed/NCBI

17 

Tang P and Tse GM: Immunohistochemical surrogates for molecular classification of breast carcinoma: A 2015 update. Arch Pathol Lab Med. 140:806–814. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Dawood S, Broglio K, Buzdar AU, Hortobagyi GN and Giordano SH: Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: An institutional-based review. J Clin Oncol. 28:92–98. 2010. View Article : Google Scholar :

19 

Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR, et al: Basal-like and triple-negative breast cancers: A critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol. 24:157–167. 2011. View Article : Google Scholar

20 

Prat A, Pineda E, Adamo B, Galván P, Fernández A, Gaba L, Díez M, Viladot M, Arance A and Muñoz M: Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 24(Suppl 2): S26–S35. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Gradishar WJ, Moran MS, Abraham J, Aft R, Agnese D, Allison KH, Anderson B, Burstein HJ, Chew H, Dang C, et al: Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 20:691–722. 2022. View Article : Google Scholar : PubMed/NCBI

22 

EORTC Breast Cancer Cooperative Group; EORTC Radiotherapy Group; Bijker N, Meijnen P, Peterse JL, Bogaerts J, Van Hoorebeeck I, Julien JP, Gennaro M, Rouanet P, et al: Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: Ten-year results of European organisation for research and treatment of cancer randomized phase III trial 10853-A study by the EORTC breast cancer cooperative group and EORTC radiotherapy group. J Clin Oncol. 24:3381–3387. 2006. View Article : Google Scholar : PubMed/NCBI

23 

McCormick B, Winter K, Hudis C, Kuerer HM, Rakovitch E, Smith BL, Sneige N, Moughan J, Shah A, Germain I, et al: RTOG 9804: A prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. J Clin Oncol. 33:709–715. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Holmberg L, Garmo H, Granstrand B, Ringberg A, Arnesson LG, Sandelin K, Karlsson P, Anderson H and Emdin S: Absolute risk reductions for local recurrence after postoperative radiotherapy after sector resection for ductal carcinoma in situ of the breast. J Clin Oncol. 26:1247–1252. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Bhushan A, Gonsalves A and Menon JU: Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics. 13:7232021. View Article : Google Scholar : PubMed/NCBI

26 

Cuzick J, Sestak I, Bonanni B, Costantino JP, Cummings S, DeCensi A, Dowsett M, Forbes JF, Ford L, LaCroix AZ, et al: Selective oestrogen receptor modulators in prevention of breast cancer: An updated meta-analysis of individual participant data. Lancet. 381:1827–1834. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Rodon J, Braña I, Siu LL, De Jonge MJ, Homji N, Mills D, Di Tomaso E, Sarr C, Trandafir L, Massacesi C, et al: Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. Invest New Drugs. 32:670–681. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Krop IE, Mayer IA, Ganju V, Dickler M, Johnston S, Morales S, Yardley DA, Melichar B, Forero-Torres A, Lee SC, et al: Pictilisib for oestrogen receptor-positive, aromatase inhibitor-resistant, advanced or metastatic breast cancer (FERGI): A randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 17:811–821. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Schneble E, Jinga DC and Peoples G: Breast cancer immunotherapy. Maedica (Bucur). 10:185–191. 2015.PubMed/NCBI

30 

Kang C and Syed YY: Atezolizumab (in combination with nab-paclitaxel): A review in advanced triple-negative breast cancer. Drugs. 80:601–607. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, et al: Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol. 28:1099–1105. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Hu ZI, Ho AY and McArthur HL: Combined radiation therapy and immune checkpoint blockade therapy for breast cancer. Int J Radiat Oncol Biol Phys. 99:153–164. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P and Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 12:337–365. 1994. View Article : Google Scholar : PubMed/NCBI

34 

Butterfield LH: Cancer vaccines. BMJ. 350:h9882015. View Article : Google Scholar : PubMed/NCBI

35 

Perica K, Varela JC, Oelke M and Schneck J: Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J. 6:e00042015. View Article : Google Scholar : PubMed/NCBI

36 

Ilyas S and Yang JC: Landscape of tumor antigens in T cell immunotherapy. J Immunol. 195:5117–5122. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Srinivasan R and Wolchok JD: Tumor antigens for cancer immunotherapy: Therapeutic potential of xenogeneic DNA vaccines. J Transl Med. 2:122004. View Article : Google Scholar : PubMed/NCBI

38 

Benvenuto M, Focaccetti C, Izzi V, Masuelli L, Modesti A and Bei R: Tumor antigens heterogeneity and immune response-targeting neoantigens in breast cancer. Semin Cancer Biol. 72:65–75. 2021. View Article : Google Scholar

39 

Alatrash G, Crain AK and Molldrem JJ: Chapter 7-tumor-associated antigens. Immune Biology of Allogeneic Hematopoietic Stem Cell Transplantation. Socié G, Zeiser R and Blazar BR: 2nd edition. Academic Press; pp. 107–125. 2019, View Article : Google Scholar

40 

Tawara I, Kageyama S, Miyahara Y, Fujiwara H, Nishida T, Akatsuka Y, Ikeda H, Tanimoto K, Terakura S, Murata M, et al: Safety and persistence of WT1-specific T-cell receptor gene-transduced lymphocytes in patients with AML and MDS. Blood. 130:1985–1994. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Baxevanis CN, Gritzapis AD, Tsitsilonis OE, Katsoulas HL and Papamichail M: HER-2/neu-derived peptide epitopes are also recognized by cytotoxic CD3(+)CD56(+) (natural killer T) lymphocytes. Int J Cancer. 98:864–872. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Zhenjiang L, Rao M, Luo X, Sandberg E, Bartek J Jr, Schoutrop E, von Landenberg A, Meng Q, Valentini D, Poiret T, et al: Mesothelin-specific immune responses predict survival of patients with brain metastasis. EBioMedicine. 23:20–24. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Liénard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottini JC and Romero P: High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med. 190:705–716. 1999. View Article : Google Scholar : PubMed/NCBI

44 

Lesterhuis WJ, De Vries IJ, Schreibelt G, Schuurhuis DH, Aarntzen EH, De Boer A, Scharenborg NM, Van De Rakt M, Hesselink EJ, Figdor CG, et al: Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res. 30:5091–5097. 2010.PubMed/NCBI

45 

Parvanova I, Rettig L, Knuth A and Pascolo S: The form of NY-ESO-1 antigen has an impact on the clinical efficacy of anti-tumor vaccination. Vaccine. 29:3832–3836. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Mohsenzadegan M, Razmi M, Vafaei S, Abolhasani M, Madjd Z, Saeednejad Zanjani L and Sharifi L: Co-expression of cancer-testis antigens of MAGE-A6 and MAGE-A11 is associated with tumor aggressiveness in patients with bladder cancer. Sci Rep. 12:5992022. View Article : Google Scholar : PubMed/NCBI

47 

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH and Roberts SA, et al: Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 499:214–218. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Makkouk A and Weiner GJ: Cancer immunotherapy and breaking immune tolerance: New approaches to an old challenge. Cancer Res. 75:5–10. 2015. View Article : Google Scholar

49 

Wang Y, Buck A, Piel B, Zerefa L, Murugan N, Coherd CD, Miklosi AG, Johal H, Bastos RN, Huang K, et al: Affinity fine-tuning anti-CAIX CAR-T cells mitigate on-target off-tumor side effects. Mol Cancer. 23:562024. View Article : Google Scholar : PubMed/NCBI

50 

Sanderson K, Scotland R, Lee P, Liu D, Groshen S, Snively J, Sian S, Nichol G, Davis T, Keler T, et al: Autoimmunity in a phase I trial of a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma peptides and montanide ISA 51 for patients with resected stages III and IV melanoma. J Clin Oncol. 23:741–750. 2005. View Article : Google Scholar

51 

Wölfel T, Hauer M, Schneider J, Serrano M, Wölfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Büschenfelde KH and Beach D: A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science. 269:1281–1284. 1995. View Article : Google Scholar : PubMed/NCBI

52 

Plummer M, de Martel C, Vignat J, Ferlay J, Bray F and Franceschi S: Global burden of cancers attributable to infections in 2012: A synthetic analysis. Lancet Glob Health. 4:e609–e616. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Trimble CL, Morrow MP, Kraynyak KA, Shen X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, et al: Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet. 386:2078–2088. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Castle JC, Uduman M, Pabla S, Stein RB and Buell JS: mutation-derived neoantigens for cancer immunotherapy. Front Immunol. 10:18562019. View Article : Google Scholar : PubMed/NCBI

55 

Capietto AH, Hoshyar R and Delamarre L: Sources of cancer neoantigens beyond single-nucleotide variants. Int J Mol Sci. 23:101312022. View Article : Google Scholar : PubMed/NCBI

56 

Roudko V, Bozkus CC, Orfanelli T, McClain CB, Carr C, O'Donnell T, Chakraborty L, Samstein R, Huang KL, Blank SV, et al: Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors. Cell. 183:1634–1649.e17. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, Makarov V, Hoen D, Dalin MG, Wexler L, et al: Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 25:767–775. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Colditz GA, Kaphingst KA, Hankinson SE and Rosner B: Family history and risk of breast cancer: Nurses' health study. Breast Cancer Res Treat. 133:1097–1104. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Couch FJ, Nathanson KL and Offit K: Two decades after BRCA: Setting paradigms in personalized cancer care and prevention. Science. 343:1466–1470. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Narod SA and Foulkes WD: BRCA1 and BRCA2: 1994 And beyond. Nat Rev Cancer. 4:665–676. 2004. View Article : Google Scholar : PubMed/NCBI

61 

Roy R, Chun J and Powell SN: BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat Rev Cancer. 12:68–78. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Russo A, Calò V, Agnese V, Bruno L, Corsale S, Augello C, Gargano G, Barbera F, Cascio S, Intrivici C, et al: BRCA1 genetic testing in 106 breast and ovarian cancer families from Southern Italy (Sicily): A mutation analyses. Breast Cancer Res Treat. 105:267–276. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Armstrong N, Ryder S, Forbes C, Ross J and Quek RG: A systematic review of the international prevalence of BRCA mutation in breast cancer. Clin Epidemiol. 11:543–561. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Metcalfe KA, Lubinski J, Gronwald J, Huzarski T, McCuaig J, Lynch HT, Karlan B, Foulkes WD, Singer CF, Neuhausen SL, et al: The risk of breast cancer in BRCA1 and BRCA2 mutation carriers without a first-degree relative with breast cancer. Clin Genet. 93:1063–1068. 2018. View Article : Google Scholar

65 

Liu P, Cheng H, Roberts TM and Zhao JJ: Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Sun K, Luo J, Guo J, Yao X, Jing X and Guo F: The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage. 28:400–409. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Fillbrunn M, Signorovitch J, André F, Wang I, Lorenzo I, Ridolfi A, Park J, Dua A and Rugo HS: PIK3CA mutation status, progression and survival in advanced HR + /HER2-breast cancer: A meta-analysis of published clinical trials. BMC Cancer. 22:10022022. View Article : Google Scholar

68 

Tonnessen-Murray CA, Lozano G and Jackson JG: The regulation of cellular functions by the p53 protein: Cellular senescence. Cold Spring Harb Perspect Med. 7:a0261122017. View Article : Google Scholar

69 

Hamroun D, Kato S, Ishioka C, Claustres M, Béroud C and Soussi T: The UMD TP53 database and website: Update and revisions. Hum Mutat. 27:14–20. 2006. View Article : Google Scholar

70 

Ungerleider NA, Rao SG, Shahbandi A, Yee D, Niu T, Frey WD and Jackson JG: Breast cancer survival predicted by TP53 mutation status differs markedly depending on treatment. Breast Cancer Res. 20:1152018. View Article : Google Scholar : PubMed/NCBI

71 

Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R and Ishioka C: Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA. 100:8424–8429. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Soussi T and Béroud C: Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer. 1:233–240. 2001. View Article : Google Scholar

73 

Parker MG, Arbuckle N, Dauvois S, Danielian P and White R: Structure and function of the estrogen receptor. Ann N Y Acad Sci. 684:119–126. 1993. View Article : Google Scholar : PubMed/NCBI

74 

Pejerrey SM, Dustin D, Kim JA, Gu G, Rechoum Y and Fuqua SAW: The impact of ESR1 mutations on the treatment of metastatic breast cancer. Horm Cancer. 9:215–228. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Jeselsohn R, Buchwalter G, De Angelis C, Brown M and Schiff R: ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nat Rev Clin Oncol. 12:573–583. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Lei JT, Shao J, Zhang J, Iglesia M, Chan DW, Cao J, Anurag M, Singh P, He X, Kosaka Y, et al: Functional annotation of ESR1 gene fusions in estrogen receptor-positive breast cancer. Cell Rep. 24:1434–1444.e7. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Siddika T, Balasuriya N, Frederick MI, Rozik P, Heinemann IU and O'Donoghue P: Delivery of active AKT1 to human cells. Cells. 11:38342022. View Article : Google Scholar : PubMed/NCBI

78 

George B, Gui B, Raguraman R, Paul AM, Nakshatri H, Pillai MR and Kumar R: AKT1 transcriptomic landscape in breast cancer cells. Cells. 11:22902022. View Article : Google Scholar : PubMed/NCBI

79 

Keniry M and Parsons R: The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene. 27:5477–5485. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Chen J, Sun J, Wang Q, Du Y, Cheng J, Yi J, Xie B, Jin S, Chen G, Wang L, et al: Systemic deficiency of PTEN accelerates breast cancer growth and metastasis. Front Oncol. 12:8254842022. View Article : Google Scholar : PubMed/NCBI

81 

Sy SMH, Huen MSY, Zhu Y and Chen J: PALB2 regulates recombinational repair through chromatin association and oligomerization. J Biol Chem. 284:18302–18310. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkäs K, Roberts J, Lee A, Subramanian D, De Leeneer K, Fostira F, et al: Breast-cancer risk in families with mutations in PALB2. N Engl J Med. 371:497–506. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Gao LB, Pan XM, Sun H, Wang X, Rao L, Li LJ, Liang WB, Lv ML, Yang WZ and Zhang L: The association between ATM D1853N polymorphism and breast cancer susceptibility: A meta-analysis. J Exp Clin Cancer Res. 29:1172010. View Article : Google Scholar : PubMed/NCBI

84 

Apostolou P and Papasotiriou I: Current perspectives on CHEK2 mutations in breast cancer. Breast Cancer (Dove Med Press). 9:331–335. 2017.PubMed/NCBI

85 

Stewart GS, Wang B, Bignell CR, Taylor AMR and Elledge SJ: MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 421:961–966. 2003. View Article : Google Scholar : PubMed/NCBI

86 

Patel AN, Goyal S, Wu H, Schiff D, Moran MS and Haffty BG: Mediator of DNA damage checkpoint protein 1 (MDC1) expression as a prognostic marker for nodal recurrence in early-stage breast cancer patients treated with breast-conserving surgery and radiation therapy. Breast Cancer Res Treat. 126:601–607. 2011. View Article : Google Scholar

87 

Liu C, Chang H, Li XH, Qi YF, Wang JO, Zhang Y and Yang XH: Network meta-analysis on the effects of DNA damage response-related gene mutations on overall survival of breast cancer based on TCGA database. J Cell Biochem. 118:4728–4734. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Wang YA, Jian JW, Hung CF, Peng HP, Yang CF, Cheng HS and Yang AS: Germline breast cancer susceptibility gene mutations and breast cancer outcomes. BMC Cancer. 18:3152018. View Article : Google Scholar : PubMed/NCBI

89 

Breast Cancer Association Consortium; Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, Wahlström C, Pooley KA, Parsons MT, Fortuno C, et al: Breast cancer risk genes-association analysis in more than 113,000 women. N Engl J Med. 384:428–439. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Børresen-Dale AL, et al: Signatures of mutational processes in human cancer. Nature. 500:415–421. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Ke L, Li S and Cui H: The prognostic role of tumor mutation burden on survival of breast cancer: A systematic review and meta-analysis. BMC Cancer. 22:11852022. View Article : Google Scholar : PubMed/NCBI

93 

Narang P, Chen M, Sharma AA, Anderson KS and Wilson MA: The neoepitope landscape of breast cancer: Implications for immunotherapy. BMC Cancer. 19:2002019. View Article : Google Scholar : PubMed/NCBI

94 

Stratton MR, Campbell PJ and Futreal PA: The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Zhang G, Wang Y, Chen B, Guo L, Cao L, Ren C, Wen L, Li K, Jia M, Li C, et al: Characterization of frequently mutated cancer genes in Chinese breast tumors: A comparison of Chinese and TCGA cohorts. Ann Transl Med. 7:1792019. View Article : Google Scholar : PubMed/NCBI

96 

Zhou S, Liu S, Zhao L and Sun HX: A comprehensive survey of genomic mutations in breast cancer reveals recurrent neoantigens as potential therapeutic targets. Front Oncol. 12:7864382022. View Article : Google Scholar : PubMed/NCBI

97 

Carraro DM, Koike Folgueira MAA, Garcia Lisboa BC, Ribeiro Olivieri EH, Vitorino Krepischi AC, de Carvalho AF, de Carvalho Mota LD, Puga RD, do Socorro Maciel M, Michelli RA, et al: Comprehensive analysis of BRCA1, BRCA2 and TP53 germline mutation and tumor characterization: A portrait of early-onset breast cancer in Brazil. PLoS One. 8:e575812013. View Article : Google Scholar : PubMed/NCBI

98 

Kurian AW: BRCA1 and BRCA2 mutations across race and ethnicity: Distribution and clinical implications. Curr Opin Obstet Gynecol. 22:72–78. 2010. View Article : Google Scholar

99 

Winter C, Nilsson MP, Olsson E, George AM, Chen Y, Kvist A, Törngren T, Vallon-Christersson J, Hegardt C, Häkkinen J, et al: Targeted sequencing of BRCA1 and BRCA2 across a large unselected breast cancer cohort suggests that one-third of mutations are somatic. Ann Oncol. 27:1532–1538. 2016. View Article : Google Scholar : PubMed/NCBI

100 

Staaf J, Glodzik D, Bosch A, Vallon-Christersson J, Reuterswärd C, Häkkinen J, Degasperi A, Amarante TD, Saal LH, Hegardt C, et al: Whole-genome sequencing of triple-negative breast cancers in a population-based clinical study. Nat Med. 25:1526–1533. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Larsen MJ, Kruse TA, Tan Q, Lænkholm AV, Bak M, Lykkesfeldt AE, Sørensen KP, Hansen TV, Ejlertsen B, Gerdes AM and Thomassen M: Classifications within molecular subtypes enables identification of BRCA1/BRCA2 mutation carriers by RNA tumor profiling. PLoS One. 8:e642682013. View Article : Google Scholar : PubMed/NCBI

102 

De Talhouet S, Peron J, Vuilleumier A, Friedlaender A, Viassolo V, Ayme A, Bodmer A, Treilleux I, Lang N, Tille JC, et al: Clinical outcome of breast cancer in carriers of BRCA1 and BRCA2 mutations according to molecular subtypes. Sci Rep. 10:70732020. View Article : Google Scholar : PubMed/NCBI

103 

Linger RJ and Kruk PA: BRCA1 16 years later: risk-associated BRCA1 mutations and their functional implications. FEBS J. 277:3086–3096. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Lavoro A, Scalisi A, Candido S, Zanghì GN, Rizzo R, Gattuso G, Caruso G, Libra M and Falzone L: Identification of the most common BRCA alterations through analysis of germline mutation databases: Is droplet digital PCR an additional strategy for the assessment of such alterations in breast and ovarian cancer families. Int J Oncol. 60:582022. View Article : Google Scholar

105 

Sabine VS, Crozier C, Brookes CL, Drake C, Piper T, van de Velde CJ, Hasenburg A, Kieback DG, Markopoulos C, Dirix L, et al: Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study. J Clin Oncol. 32:2951–2958. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Meyer DS, Brinkhaus H, Müller U, Müller M and Cardiff RD; mBentires-Alj M: Luminal expression of PIK3CA mutant H1047R in the mammary gland induces heterogeneous tumors. Cancer Res. 71:4344–4351. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al: COSMIC: Mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 39(Database Issue): D945–D950. 2011. View Article : Google Scholar :

108 

Mangone FR, Bobrovnitchaia IG, Salaorni S, Manuli E and Nagai MA: PIK3CA exon 20 mutations are associated with poor prognosis in breast cancer patients. Clinics (Sao Paulo). 67:1285–1290. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Arsenic R, Treue D, Lehmann A, Hummel M, Dietel M, Denkert C and Budczies J: Comparison of targeted next-generation sequencing and sanger sequencing for the detection of PIK3CA mutations in breast cancer. BMC Clin Pathol. 15:202015. View Article : Google Scholar : PubMed/NCBI

110 

Martínez-Sáez O, Chic N, Pascual T, Adamo B, Vidal M, González-Farré B, Sanfeliu E, Schettini F, Conte B, Brasó-Maristany F, et al: Frequency and spectrum of PIK3CA somatic mutations in breast cancer. Breast Cancer Res. 22:452020. View Article : Google Scholar : PubMed/NCBI

111 

Li X, Chen X, Wen L, Wang Y, Chen B, Xue Y, Guo L and Liao N: Impact of TP53 mutations in breast cancer: Clinicopathological features and prognosisImpact of TP53 mutations in breast CA. Thorac Cancer. 11:1861–1868. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Behring M, Vazquez AI, Cui X, Irvin MR, Ojesina AI, Agarwal S, Manne U and Shrestha S: Gain of function in somatic TP53 mutations is associated with immune-rich breast tumors and changes in tumor-associated macrophages. Mol Genet Genomic Med. 7:e10012019. View Article : Google Scholar : PubMed/NCBI

113 

Perumal D, Imai N, Laganà A, Finnigan J, Melnekoff D, Leshchenko VV, Solovyov A, Madduri D, Chari A, Cho HJ, et al: Mutation-derived neoantigen-specific T-cell responses in multiple myeloma. Clin Cancer Res. 26:450–464. 2020. View Article : Google Scholar

114 

Walerych D, Napoli M, Collavin L and Del Sal G: The rebel angel: Mutant p53 as the driving oncogene in breast cancer. Carcinogenesis. 33:2007–2017. 2012. View Article : Google Scholar : PubMed/NCBI

115 

Boyle DP, McArt DG, Irwin G, Wilhelm-Benartzi CS, Lioe TF, Sebastian E, McQuaid S, Hamilton PW, James JA, Mullan PB, et al: The prognostic significance of the aberrant extremes of p53 immunophenotypes in breast cancer. Histopathology. 65:340–352. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Weis KE, Ekena K, Thomas JA, Lazennec G and Katzenellenbogen BS: Constitutively active human estrogen receptors containing amino acid substitutions for tyrosine 537 in the receptor protein. Mol Endocrinol. 10:1388–1398. 1996.PubMed/NCBI

117 

Zhang QX, Borg A, Wolf DM, Oesterreich S and Fuqua SA: An estrogen receptor mutant with strong hormone-independent activity from a metastatic breast cancer. Cancer Res. 57:1244–1249. 1997.PubMed/NCBI

118 

De Mattos-Arruda L, Weigelt B, Cortes J, Won HH, Ng CKY, Nuciforo P, Bidard FC, Aura C, Saura C, Peg V, et al: Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: A proof-of-principle. Ann Oncol. 25:1729–1735. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S, King TA, et al: ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet. 45:1439–1445. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S, et al: A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 448:439–444. 2007. View Article : Google Scholar : PubMed/NCBI

121 

Rudolph M, Anzeneder T, Schulz A, Beckmann G, Byrne AT, Jeffers M, Pena C, Politz O, Köchert K, Vonk R and Reischl J: AKT1 (E17K) mutation profiling in breast cancer: Prevalence, concurrent oncogenic alterations, and blood-based detection. BMC Cancer. 16:6222016. View Article : Google Scholar : PubMed/NCBI

122 

Wu W, Chen Y, Huang L, Li W, Tao C and Shen H: Effects of AKT1 E17K mutation hotspots on the biological behavior of breast cancer cells. Int J Clin Exp Pathol. 13:332–346. 2020.PubMed/NCBI

123 

Xie R, Yan Z, Jing J, Wang Y, Zhang J, Li Y, Liu X, Yu X and Wu C: Functional defects of cancer-associated MDC1 mutations in DNA damage repair. DNA Repair (Amst). 114:1033302022. View Article : Google Scholar : PubMed/NCBI

124 

Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 547:217–221. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, et al: T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med. 375:2255–2262. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Barroso-Sousa R, Jain E, Cohen O, Kim D, Buendia-Buendia J, Winer E, Lin N, Tolaney SM and Wagle N: Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol. 31:387–394. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Zhu Y, Meng X, Ruan X, Lu X, Yan F and Wang F: Characterization of neoantigen load subgroups in gynecologic and breast cancers. Front Bioeng Biotechnol. 8:7022020. View Article : Google Scholar : PubMed/NCBI

128 

Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL and Griffith M: Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 11:562019. View Article : Google Scholar : PubMed/NCBI

129 

Ren Y, Cherukuri Y, Wickland DP, Sarangi V, Tian S, Carter JM, Mansfield AS, Block MS, Sherman ME, Knutson KL, et al: HLA class-I and class-II restricted neoantigen loads predict overall survival in breast cancer. Oncoimmunology. 9:17449472020. View Article : Google Scholar : PubMed/NCBI

130 

Sahin U and Türeci Ö: Personalized vaccines for cancer immunotherapy. Science. 359:1355–1360. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Parkhurst MR, Robbins PF, Tran E, Prickett TD, Gartner JJ, Jia L, Ivey G, Li YF, El-Gamil M, Lalani A, et al: Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancers. Cancer Discov. 9:1022–1035. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Sueangoen N, Grove H, Chuangchot N, Prasopsiri J, Rungrotmongkol T, Sanachai K, Darai N, Thongchot S, Suriyaphol P, Sa-Nguanraksa D, et al: Stimulating T cell responses against patient-derived breast cancer cells with neoantigen peptide-loaded peripheral blood mononuclear cells. Cancer Immunol Immunother. 73:432024. View Article : Google Scholar : PubMed/NCBI

133 

Jain KK: Personalized immuno-oncology. Med Princ Pract. 30:1–16. 2021. View Article : Google Scholar :

134 

Zhang X, Kim S, Hundal J, Herndon JM, Li S, Petti AA, Soysal SD, Li L, McLellan MD, Hoog J, et al: Breast cancer neoantigens can induce CD8+ T-cell responses and antitumor immunity. Cancer Immunol Res. 5:516–523. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Xiuli Z, Goedegebuure SP, Myers NB, Vickery T, McLellan MD, Gao F, Sturmoski MA, Chen MY, Kim SW, Chen I, et al: Neoantigen DNA vaccines are safe, feasible, and capable of inducing neoantigen-specific immune responses in patients with triple negative breast cancer. medRxiv: 2021.2011.2019.21266466. 2021.

136 

Disis MLN, Guthrie KA, Liu Y, Coveler AL, Higgins DM, Childs JS, Dang Y and Salazar LG: Safety and outcomes of a plasmid DNA vaccine encoding the ERBB2 intracellular domain in patients with advanced-stage ERBB2-positive breast cancer: A phase 1 nonrandomized clinical trial. JAMA Oncol. 9:71–78. 2023. View Article : Google Scholar

137 

Morisaki T, Kubo M, Umebayashi M, Yew PY, Yoshimura S, Park JH, Kiyotani K, Kai M, Yamada M, Oda Y, et al: Neoantigens elicit T cell responses in breast cancer. Sci Rep. 11:135902021. View Article : Google Scholar : PubMed/NCBI

138 

Chang MT, Asthana S, Gao SP, Lee BH, Chapman JS, Kandoth C, Gao J, Socci ND, Solit DB, Olshen AB, et al: Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat Biotechnol. 34:155–163. 2016. View Article : Google Scholar :

139 

Neefjes J, Jongsma ML, Paul P and Bakke O: Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 11:823–836. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Klebanoff CA and Wolchok JD: Shared cancer neoantigens: Making private matters public. J Exp Med. 215:5–7. 2018. View Article : Google Scholar :

141 

Malekzadeh P, Pasetto A, Robbins PF, Parkhurst MR, Paria BC, Jia L, Gartner JJ, Hill V, Yu Z, Restifo NP, et al: Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J Clin Invest. 129:1109–1114. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Pecher G, Häring A, Kaiser L and Thiel E: Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial. Cancer Immunol Immunother. 51:669–673. 2002. View Article : Google Scholar : PubMed/NCBI

143 

Sharma A, Koldovsky U, Xu S, Mick R, Roses R, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, et al: HER-2 pulsed dendritic cell vaccine can eliminate HER-2 expression and impact ductal carcinoma in situ. Cancer. 118:4354–4362. 2012. View Article : Google Scholar : PubMed/NCBI

144 

Pettitt SJ, Frankum JR, Punta M, Lise S, Alexander J, Chen Y, Yap TA, Haider S, Tutt ANJ and Lord CJ: Clinical BRCA1/2 reversion analysis identifies hotspot mutations and predicted neoantigens associated with therapy resistance. Cancer Discov. 10:1475–1488. 2020. View Article : Google Scholar : PubMed/NCBI

145 

Ruangapirom L, Sutivijit N, Teerapakpinyo C, Mutirangura A and Doungkamchan C: Identification of shared neoantigens in BRCA1-related breast cancer. Vaccines (Basel). 10:15972022. View Article : Google Scholar : PubMed/NCBI

146 

Iiizumi S, Ohtake J, Murakami N, Kouro T, Kawahara M, Isoda F, Hamana H, Kishi H, Nakamura N and Sasada T: Identification of novel HLA class II-restricted neoantigens derived from driver mutations. Cancers (Basel). 11:2662019. View Article : Google Scholar : PubMed/NCBI

147 

Chandran SS, Ma J, Klatt MG, Dündar F, Bandlamudi C, Razavi P, Wen HY, Weigelt B, Zumbo P, Fu SN, et al: Immunogenicity and therapeutic targeting of a public neoantigen derived from mutated PIK3CA. Nat Med. 28:946–957. 2022. View Article : Google Scholar : PubMed/NCBI

148 

Lo W, Parkhurst M, Robbins PF, Tran E, Lu YC, Jia L, Gartner JJ, Pasetto A, Deniger D, Malekzadeh P, et al: Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer. Cancer Immunol Res. 7:534–543. 2019. View Article : Google Scholar : PubMed/NCBI

149 

Kim SP, Vale NR, Zacharakis N, Krishna S, Yu Z, Gasmi B, Gartner JJ, Sindiri S, Malekzadeh P, Deniger DC, et al: Adoptive cellular therapy with autologous tumor-infiltrating lymphocytes and T-cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors. Cancer Immunol Res. 10:932–946. 2022. View Article : Google Scholar : PubMed/NCBI

150 

Zacharakis N, Huq LM, Seitter SJ, Kim SP, Gartner JJ, Sindiri S, Hill VK, Li YF, Paria BC, Ray S, et al: Breast cancers are immunogenic: Immunologic analyses and a phase II pilot clinical trial using mutation-reactive autologous lymphocytes. J Clin Oncol. 40:1741–1754. 2022. View Article : Google Scholar : PubMed/NCBI

151 

O'Connell MJ: Selection and the cell cycle: Positive Darwinian selection in a well-known DNA damage response pathway. J Mol Evol. 71:444–457. 2010. View Article : Google Scholar : PubMed/NCBI

152 

Su YC, Lee WC, Wang CC, Yeh SA, Chen WH and Chen PJ: Targeting PI3K/AKT/mTOR signaling pathway as a radiosensitization in head and neck squamous cell carcinomas. Int J Mol Sci. 23:157492022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sueangoen N, Thuwajit P, Yenchitsomanus P and Thuwajit C: Public neoantigens in breast cancer immunotherapy (Review). Int J Mol Med 54: 65, 2024.
APA
Sueangoen, N., Thuwajit, P., Yenchitsomanus, P., & Thuwajit, C. (2024). Public neoantigens in breast cancer immunotherapy (Review). International Journal of Molecular Medicine, 54, 65. https://doi.org/10.3892/ijmm.2024.5388
MLA
Sueangoen, N., Thuwajit, P., Yenchitsomanus, P., Thuwajit, C."Public neoantigens in breast cancer immunotherapy (Review)". International Journal of Molecular Medicine 54.1 (2024): 65.
Chicago
Sueangoen, N., Thuwajit, P., Yenchitsomanus, P., Thuwajit, C."Public neoantigens in breast cancer immunotherapy (Review)". International Journal of Molecular Medicine 54, no. 1 (2024): 65. https://doi.org/10.3892/ijmm.2024.5388
Copy and paste a formatted citation
x
Spandidos Publications style
Sueangoen N, Thuwajit P, Yenchitsomanus P and Thuwajit C: Public neoantigens in breast cancer immunotherapy (Review). Int J Mol Med 54: 65, 2024.
APA
Sueangoen, N., Thuwajit, P., Yenchitsomanus, P., & Thuwajit, C. (2024). Public neoantigens in breast cancer immunotherapy (Review). International Journal of Molecular Medicine, 54, 65. https://doi.org/10.3892/ijmm.2024.5388
MLA
Sueangoen, N., Thuwajit, P., Yenchitsomanus, P., Thuwajit, C."Public neoantigens in breast cancer immunotherapy (Review)". International Journal of Molecular Medicine 54.1 (2024): 65.
Chicago
Sueangoen, N., Thuwajit, P., Yenchitsomanus, P., Thuwajit, C."Public neoantigens in breast cancer immunotherapy (Review)". International Journal of Molecular Medicine 54, no. 1 (2024): 65. https://doi.org/10.3892/ijmm.2024.5388
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team