|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cancer Genome Atlas Network: Comprehensive
molecular portraits of human breast tumours. Nature. 490:61–70.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Rouzier R, Perou CM, Symmans WF, Ibrahim
N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P,
et al: Breast cancer molecular subtypes respond differently to
preoperative chemotherapy. Clin Cancer Res. 11:5678–5685. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bhargava R, Beriwal S, Dabbs DJ, Ozbek U,
Soran A, Johnson RR, Brufsky AM, Lembersky BC and Ahrendt GM:
Immunohistochemical surrogate markers of breast cancer molecular
classes predicts response to neoadjuvant chemotherapy: A single
institutional experience with 359 cases. Cancer. 116:1431–1439.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nik-Zainal S, Davies H, Staaf J,
Ramakrishna M, Glodzik D, Zou X, Martincorena I, Alexandrov LB,
Martin S, Wedge DC, et al: Landscape of somatic mutations in 560
breast cancer whole-genome sequences. Nature. 534:47–54. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pon JR and Marra MA: Driver and passenger
mutations in cancer. Annu Rev Pathol. 10:25–50. 2015. View Article : Google Scholar
|
|
7
|
Chen T, Wang Z, Zhou W, Chong Z,
Meric-Bernstam F, Mills GB and Chen K: Hotspot mutations
delineating diverse mutational signatures and biological utilities
across cancer types. BMC Genomics. 17(Suppl 2): S3942016.
View Article : Google Scholar
|
|
8
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Li CI, Uribe DJ and Daling JR: Clinical
characteristics of different histologic types of breast cancer. Br
J Cancer. 93:1046–1052. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Caswell-Jin JL, Lorenz C and Curtis C:
Molecular heterogeneity and evolution in breast cancer. Annu Rev
Cancer Biol. 5:79–94. 2021. View Article : Google Scholar
|
|
11
|
Wagner J, Rapsomaniki MA, Chevrier S,
Anzeneder T, Langwieder C, Dykgers A, Rees M, Ramaswamy A, Muenst
S, Soysal SD, et al: A single-cell atlas of the tumor and immune
ecosystem of human breast cancer. Cell. 177:1330–1345.e18. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tsang JYS and Tse GM: Molecular
classification of breast cancer. Adv Anat Pathol. 27:27–35. 2020.
View Article : Google Scholar
|
|
13
|
Goldhirsch A, Wood WC, Coates AS, Gelber
RD, Thürlimann B and Senn HJ; Panel members: Strategies for
subtypes-dealing with the diversity of breast cancer: Highlights of
the St. Gallen international expert consensus on the primary
therapy of early breast cancer 2011. Ann Oncol. 22:1736–1747. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li J, Chen Z, Su K and Zeng J:
Clinicopathological classification and traditional prognostic
indicators of breast cancer. Int J Clin Exp Pathol. 8:8500–8505.
2015.PubMed/NCBI
|
|
15
|
Prat A, Cheang MCU, Martín M, Parker JS,
Carrasco E, Caballero R, Tyldesley S, Gelmon K, Bernard PS, Nielsen
TO and Perou CM: Prognostic significance of progesterone
receptor-positive tumor cells within immunohistochemically defined
luminal A breast cancer. J Clin Oncol. 31:203–209. 2013. View Article : Google Scholar
|
|
16
|
Maisonneuve P, Disalvatore D, Rotmensz N,
Curigliano G, Colleoni M, Dellapasqua S, Pruneri G, Mastropasqua
MG, Luini A, Bassi F, et al: Proposed new clinicopathological
surrogate definitions of luminal A and luminal B (HER2-negative)
intrinsic breast cancer subtypes. Breast Cancer Res. 16:R652014.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tang P and Tse GM: Immunohistochemical
surrogates for molecular classification of breast carcinoma: A 2015
update. Arch Pathol Lab Med. 140:806–814. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Dawood S, Broglio K, Buzdar AU, Hortobagyi
GN and Giordano SH: Prognosis of women with metastatic breast
cancer by HER2 status and trastuzumab treatment: An
institutional-based review. J Clin Oncol. 28:92–98. 2010.
View Article : Google Scholar :
|
|
19
|
Badve S, Dabbs DJ, Schnitt SJ, Baehner FL,
Decker T, Eusebi V, Fox SB, Ichihara S, Jacquemier J, Lakhani SR,
et al: Basal-like and triple-negative breast cancers: A critical
review with an emphasis on the implications for pathologists and
oncologists. Mod Pathol. 24:157–167. 2011. View Article : Google Scholar
|
|
20
|
Prat A, Pineda E, Adamo B, Galván P,
Fernández A, Gaba L, Díez M, Viladot M, Arance A and Muñoz M:
Clinical implications of the intrinsic molecular subtypes of breast
cancer. Breast. 24(Suppl 2): S26–S35. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gradishar WJ, Moran MS, Abraham J, Aft R,
Agnese D, Allison KH, Anderson B, Burstein HJ, Chew H, Dang C, et
al: Breast cancer, version 3.2022, NCCN clinical practice
guidelines in oncology. J Natl Compr Canc Netw. 20:691–722. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
EORTC Breast Cancer Cooperative Group;
EORTC Radiotherapy Group; Bijker N, Meijnen P, Peterse JL, Bogaerts
J, Van Hoorebeeck I, Julien JP, Gennaro M, Rouanet P, et al:
Breast-conserving treatment with or without radiotherapy in ductal
carcinoma-in-situ: Ten-year results of European organisation for
research and treatment of cancer randomized phase III trial 10853-A
study by the EORTC breast cancer cooperative group and EORTC
radiotherapy group. J Clin Oncol. 24:3381–3387. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
McCormick B, Winter K, Hudis C, Kuerer HM,
Rakovitch E, Smith BL, Sneige N, Moughan J, Shah A, Germain I, et
al: RTOG 9804: A prospective randomized trial for good-risk ductal
carcinoma in situ comparing radiotherapy with observation. J Clin
Oncol. 33:709–715. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Holmberg L, Garmo H, Granstrand B,
Ringberg A, Arnesson LG, Sandelin K, Karlsson P, Anderson H and
Emdin S: Absolute risk reductions for local recurrence after
postoperative radiotherapy after sector resection for ductal
carcinoma in situ of the breast. J Clin Oncol. 26:1247–1252. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bhushan A, Gonsalves A and Menon JU:
Current state of breast cancer diagnosis, treatment, and
theranostics. Pharmaceutics. 13:7232021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cuzick J, Sestak I, Bonanni B, Costantino
JP, Cummings S, DeCensi A, Dowsett M, Forbes JF, Ford L, LaCroix
AZ, et al: Selective oestrogen receptor modulators in prevention of
breast cancer: An updated meta-analysis of individual participant
data. Lancet. 381:1827–1834. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rodon J, Braña I, Siu LL, De Jonge MJ,
Homji N, Mills D, Di Tomaso E, Sarr C, Trandafir L, Massacesi C, et
al: Phase I dose-escalation and -expansion study of buparlisib
(BKM120), an oral pan-class I PI3K inhibitor, in patients with
advanced solid tumors. Invest New Drugs. 32:670–681. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Krop IE, Mayer IA, Ganju V, Dickler M,
Johnston S, Morales S, Yardley DA, Melichar B, Forero-Torres A, Lee
SC, et al: Pictilisib for oestrogen receptor-positive, aromatase
inhibitor-resistant, advanced or metastatic breast cancer (FERGI):
A randomised, double-blind, placebo-controlled, phase 2 trial.
Lancet Oncol. 17:811–821. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Schneble E, Jinga DC and Peoples G: Breast
cancer immunotherapy. Maedica (Bucur). 10:185–191. 2015.PubMed/NCBI
|
|
30
|
Kang C and Syed YY: Atezolizumab (in
combination with nab-paclitaxel): A review in advanced
triple-negative breast cancer. Drugs. 80:601–607. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kantoff PW, Schuetz TJ, Blumenstein BA,
Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R,
Schlom J, et al: Overall survival analysis of a phase II randomized
controlled trial of a Poxviral-based PSA-targeted immunotherapy in
metastatic castration-resistant prostate cancer. J Clin Oncol.
28:1099–1105. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hu ZI, Ho AY and McArthur HL: Combined
radiation therapy and immune checkpoint blockade therapy for breast
cancer. Int J Radiat Oncol Biol Phys. 99:153–164. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Boon T, Cerottini JC, Van den Eynde B, van
der Bruggen P and Van Pel A: Tumor antigens recognized by T
lymphocytes. Annu Rev Immunol. 12:337–365. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Butterfield LH: Cancer vaccines. BMJ.
350:h9882015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Perica K, Varela JC, Oelke M and Schneck
J: Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med
J. 6:e00042015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ilyas S and Yang JC: Landscape of tumor
antigens in T cell immunotherapy. J Immunol. 195:5117–5122. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Srinivasan R and Wolchok JD: Tumor
antigens for cancer immunotherapy: Therapeutic potential of
xenogeneic DNA vaccines. J Transl Med. 2:122004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Benvenuto M, Focaccetti C, Izzi V,
Masuelli L, Modesti A and Bei R: Tumor antigens heterogeneity and
immune response-targeting neoantigens in breast cancer. Semin
Cancer Biol. 72:65–75. 2021. View Article : Google Scholar
|
|
39
|
Alatrash G, Crain AK and Molldrem JJ:
Chapter 7-tumor-associated antigens. Immune Biology of Allogeneic
Hematopoietic Stem Cell Transplantation. Socié G, Zeiser R and
Blazar BR: 2nd edition. Academic Press; pp. 107–125. 2019,
View Article : Google Scholar
|
|
40
|
Tawara I, Kageyama S, Miyahara Y, Fujiwara
H, Nishida T, Akatsuka Y, Ikeda H, Tanimoto K, Terakura S, Murata
M, et al: Safety and persistence of WT1-specific T-cell receptor
gene-transduced lymphocytes in patients with AML and MDS. Blood.
130:1985–1994. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Baxevanis CN, Gritzapis AD, Tsitsilonis
OE, Katsoulas HL and Papamichail M: HER-2/neu-derived peptide
epitopes are also recognized by cytotoxic CD3(+)CD56(+) (natural
killer T) lymphocytes. Int J Cancer. 98:864–872. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhenjiang L, Rao M, Luo X, Sandberg E,
Bartek J Jr, Schoutrop E, von Landenberg A, Meng Q, Valentini D,
Poiret T, et al: Mesothelin-specific immune responses predict
survival of patients with brain metastasis. EBioMedicine. 23:20–24.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pittet MJ, Valmori D, Dunbar PR, Speiser
DE, Liénard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottini JC
and Romero P: High frequencies of naive Melan-A/MART-1-specific
CD8(+) T cells in a large proportion of human histocompatibility
leukocyte antigen (HLA)-A2 individuals. J Exp Med. 190:705–716.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lesterhuis WJ, De Vries IJ, Schreibelt G,
Schuurhuis DH, Aarntzen EH, De Boer A, Scharenborg NM, Van De Rakt
M, Hesselink EJ, Figdor CG, et al: Immunogenicity of dendritic
cells pulsed with CEA peptide or transfected with CEA mRNA for
vaccination of colorectal cancer patients. Anticancer Res.
30:5091–5097. 2010.PubMed/NCBI
|
|
45
|
Parvanova I, Rettig L, Knuth A and Pascolo
S: The form of NY-ESO-1 antigen has an impact on the clinical
efficacy of anti-tumor vaccination. Vaccine. 29:3832–3836. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mohsenzadegan M, Razmi M, Vafaei S,
Abolhasani M, Madjd Z, Saeednejad Zanjani L and Sharifi L:
Co-expression of cancer-testis antigens of MAGE-A6 and MAGE-A11 is
associated with tumor aggressiveness in patients with bladder
cancer. Sci Rep. 12:5992022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lawrence MS, Stojanov P, Polak P, Kryukov
GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH and
Roberts SA, et al: Mutational heterogeneity in cancer and the
search for new cancer-associated genes. Nature. 499:214–218. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Makkouk A and Weiner GJ: Cancer
immunotherapy and breaking immune tolerance: New approaches to an
old challenge. Cancer Res. 75:5–10. 2015. View Article : Google Scholar
|
|
49
|
Wang Y, Buck A, Piel B, Zerefa L, Murugan
N, Coherd CD, Miklosi AG, Johal H, Bastos RN, Huang K, et al:
Affinity fine-tuning anti-CAIX CAR-T cells mitigate on-target
off-tumor side effects. Mol Cancer. 23:562024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Sanderson K, Scotland R, Lee P, Liu D,
Groshen S, Snively J, Sian S, Nichol G, Davis T, Keler T, et al:
Autoimmunity in a phase I trial of a fully human anti-cytotoxic
T-lymphocyte antigen-4 monoclonal antibody with multiple melanoma
peptides and montanide ISA 51 for patients with resected stages III
and IV melanoma. J Clin Oncol. 23:741–750. 2005. View Article : Google Scholar
|
|
51
|
Wölfel T, Hauer M, Schneider J, Serrano M,
Wölfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum
Büschenfelde KH and Beach D: A p16INK4a-insensitive CDK4 mutant
targeted by cytolytic T lymphocytes in a human melanoma. Science.
269:1281–1284. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Plummer M, de Martel C, Vignat J, Ferlay
J, Bray F and Franceschi S: Global burden of cancers attributable
to infections in 2012: A synthetic analysis. Lancet Glob Health.
4:e609–e616. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Trimble CL, Morrow MP, Kraynyak KA, Shen
X, Dallas M, Yan J, Edwards L, Parker RL, Denny L, Giffear M, et
al: Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic
synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6
and E7 proteins for cervical intraepithelial neoplasia 2/3: A
randomised, double-blind, placebo-controlled phase 2b trial.
Lancet. 386:2078–2088. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Castle JC, Uduman M, Pabla S, Stein RB and
Buell JS: mutation-derived neoantigens for cancer immunotherapy.
Front Immunol. 10:18562019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Capietto AH, Hoshyar R and Delamarre L:
Sources of cancer neoantigens beyond single-nucleotide variants.
Int J Mol Sci. 23:101312022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Roudko V, Bozkus CC, Orfanelli T, McClain
CB, Carr C, O'Donnell T, Chakraborty L, Samstein R, Huang KL, Blank
SV, et al: Shared immunogenic poly-epitope frameshift mutations in
microsatellite unstable tumors. Cell. 183:1634–1649.e17. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yang W, Lee KW, Srivastava RM, Kuo F,
Krishna C, Chowell D, Makarov V, Hoen D, Dalin MG, Wexler L, et al:
Immunogenic neoantigens derived from gene fusions stimulate T cell
responses. Nat Med. 25:767–775. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Colditz GA, Kaphingst KA, Hankinson SE and
Rosner B: Family history and risk of breast cancer: Nurses' health
study. Breast Cancer Res Treat. 133:1097–1104. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Couch FJ, Nathanson KL and Offit K: Two
decades after BRCA: Setting paradigms in personalized cancer care
and prevention. Science. 343:1466–1470. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Narod SA and Foulkes WD: BRCA1 and BRCA2:
1994 And beyond. Nat Rev Cancer. 4:665–676. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Roy R, Chun J and Powell SN: BRCA1 and
BRCA2: Different roles in a common pathway of genome protection.
Nat Rev Cancer. 12:68–78. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Russo A, Calò V, Agnese V, Bruno L,
Corsale S, Augello C, Gargano G, Barbera F, Cascio S, Intrivici C,
et al: BRCA1 genetic testing in 106 breast and ovarian cancer
families from Southern Italy (Sicily): A mutation analyses. Breast
Cancer Res Treat. 105:267–276. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Armstrong N, Ryder S, Forbes C, Ross J and
Quek RG: A systematic review of the international prevalence of
BRCA mutation in breast cancer. Clin Epidemiol. 11:543–561. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Metcalfe KA, Lubinski J, Gronwald J,
Huzarski T, McCuaig J, Lynch HT, Karlan B, Foulkes WD, Singer CF,
Neuhausen SL, et al: The risk of breast cancer in BRCA1 and BRCA2
mutation carriers without a first-degree relative with breast
cancer. Clin Genet. 93:1063–1068. 2018. View Article : Google Scholar
|
|
65
|
Liu P, Cheng H, Roberts TM and Zhao JJ:
Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev
Drug Discov. 8:627–644. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sun K, Luo J, Guo J, Yao X, Jing X and Guo
F: The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A
narrative review. Osteoarthritis Cartilage. 28:400–409. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fillbrunn M, Signorovitch J, André F, Wang
I, Lorenzo I, Ridolfi A, Park J, Dua A and Rugo HS: PIK3CA mutation
status, progression and survival in advanced HR + /HER2-breast
cancer: A meta-analysis of published clinical trials. BMC Cancer.
22:10022022. View Article : Google Scholar
|
|
68
|
Tonnessen-Murray CA, Lozano G and Jackson
JG: The regulation of cellular functions by the p53 protein:
Cellular senescence. Cold Spring Harb Perspect Med. 7:a0261122017.
View Article : Google Scholar
|
|
69
|
Hamroun D, Kato S, Ishioka C, Claustres M,
Béroud C and Soussi T: The UMD TP53 database and website: Update
and revisions. Hum Mutat. 27:14–20. 2006. View Article : Google Scholar
|
|
70
|
Ungerleider NA, Rao SG, Shahbandi A, Yee
D, Niu T, Frey WD and Jackson JG: Breast cancer survival predicted
by TP53 mutation status differs markedly depending on treatment.
Breast Cancer Res. 20:1152018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kato S, Han SY, Liu W, Otsuka K, Shibata
H, Kanamaru R and Ishioka C: Understanding the function-structure
and function-mutation relationships of p53 tumor suppressor protein
by high-resolution missense mutation analysis. Proc Natl Acad Sci
USA. 100:8424–8429. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Soussi T and Béroud C: Assessing TP53
status in human tumours to evaluate clinical outcome. Nat Rev
Cancer. 1:233–240. 2001. View Article : Google Scholar
|
|
73
|
Parker MG, Arbuckle N, Dauvois S,
Danielian P and White R: Structure and function of the estrogen
receptor. Ann N Y Acad Sci. 684:119–126. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pejerrey SM, Dustin D, Kim JA, Gu G,
Rechoum Y and Fuqua SAW: The impact of ESR1 mutations on the
treatment of metastatic breast cancer. Horm Cancer. 9:215–228.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jeselsohn R, Buchwalter G, De Angelis C,
Brown M and Schiff R: ESR1 mutations-a mechanism for acquired
endocrine resistance in breast cancer. Nat Rev Clin Oncol.
12:573–583. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lei JT, Shao J, Zhang J, Iglesia M, Chan
DW, Cao J, Anurag M, Singh P, He X, Kosaka Y, et al: Functional
annotation of ESR1 gene fusions in estrogen receptor-positive
breast cancer. Cell Rep. 24:1434–1444.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Siddika T, Balasuriya N, Frederick MI,
Rozik P, Heinemann IU and O'Donoghue P: Delivery of active AKT1 to
human cells. Cells. 11:38342022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
George B, Gui B, Raguraman R, Paul AM,
Nakshatri H, Pillai MR and Kumar R: AKT1 transcriptomic landscape
in breast cancer cells. Cells. 11:22902022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Keniry M and Parsons R: The role of PTEN
signaling perturbations in cancer and in targeted therapy.
Oncogene. 27:5477–5485. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen J, Sun J, Wang Q, Du Y, Cheng J, Yi
J, Xie B, Jin S, Chen G, Wang L, et al: Systemic deficiency of PTEN
accelerates breast cancer growth and metastasis. Front Oncol.
12:8254842022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Sy SMH, Huen MSY, Zhu Y and Chen J: PALB2
regulates recombinational repair through chromatin association and
oligomerization. J Biol Chem. 284:18302–18310. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Antoniou AC, Casadei S, Heikkinen T,
Barrowdale D, Pylkäs K, Roberts J, Lee A, Subramanian D, De Leeneer
K, Fostira F, et al: Breast-cancer risk in families with mutations
in PALB2. N Engl J Med. 371:497–506. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gao LB, Pan XM, Sun H, Wang X, Rao L, Li
LJ, Liang WB, Lv ML, Yang WZ and Zhang L: The association between
ATM D1853N polymorphism and breast cancer susceptibility: A
meta-analysis. J Exp Clin Cancer Res. 29:1172010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Apostolou P and Papasotiriou I: Current
perspectives on CHEK2 mutations in breast cancer. Breast Cancer
(Dove Med Press). 9:331–335. 2017.PubMed/NCBI
|
|
85
|
Stewart GS, Wang B, Bignell CR, Taylor AMR
and Elledge SJ: MDC1 is a mediator of the mammalian DNA damage
checkpoint. Nature. 421:961–966. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Patel AN, Goyal S, Wu H, Schiff D, Moran
MS and Haffty BG: Mediator of DNA damage checkpoint protein 1
(MDC1) expression as a prognostic marker for nodal recurrence in
early-stage breast cancer patients treated with breast-conserving
surgery and radiation therapy. Breast Cancer Res Treat.
126:601–607. 2011. View Article : Google Scholar
|
|
87
|
Liu C, Chang H, Li XH, Qi YF, Wang JO,
Zhang Y and Yang XH: Network meta-analysis on the effects of DNA
damage response-related gene mutations on overall survival of
breast cancer based on TCGA database. J Cell Biochem.
118:4728–4734. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang YA, Jian JW, Hung CF, Peng HP, Yang
CF, Cheng HS and Yang AS: Germline breast cancer susceptibility
gene mutations and breast cancer outcomes. BMC Cancer. 18:3152018.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Breast Cancer Association Consortium;
Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C,
Wahlström C, Pooley KA, Parsons MT, Fortuno C, et al: Breast cancer
risk genes-association analysis in more than 113,000 women. N Engl
J Med. 384:428–439. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Alexandrov LB, Nik-Zainal S, Wedge DC,
Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A,
Børresen-Dale AL, et al: Signatures of mutational processes in
human cancer. Nature. 500:415–421. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Vogelstein B, Papadopoulos N, Velculescu
VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes.
Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ke L, Li S and Cui H: The prognostic role
of tumor mutation burden on survival of breast cancer: A systematic
review and meta-analysis. BMC Cancer. 22:11852022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Narang P, Chen M, Sharma AA, Anderson KS
and Wilson MA: The neoepitope landscape of breast cancer:
Implications for immunotherapy. BMC Cancer. 19:2002019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Stratton MR, Campbell PJ and Futreal PA:
The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang G, Wang Y, Chen B, Guo L, Cao L, Ren
C, Wen L, Li K, Jia M, Li C, et al: Characterization of frequently
mutated cancer genes in Chinese breast tumors: A comparison of
Chinese and TCGA cohorts. Ann Transl Med. 7:1792019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhou S, Liu S, Zhao L and Sun HX: A
comprehensive survey of genomic mutations in breast cancer reveals
recurrent neoantigens as potential therapeutic targets. Front
Oncol. 12:7864382022. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Carraro DM, Koike Folgueira MAA, Garcia
Lisboa BC, Ribeiro Olivieri EH, Vitorino Krepischi AC, de Carvalho
AF, de Carvalho Mota LD, Puga RD, do Socorro Maciel M, Michelli RA,
et al: Comprehensive analysis of BRCA1, BRCA2 and TP53 germline
mutation and tumor characterization: A portrait of early-onset
breast cancer in Brazil. PLoS One. 8:e575812013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kurian AW: BRCA1 and BRCA2 mutations
across race and ethnicity: Distribution and clinical implications.
Curr Opin Obstet Gynecol. 22:72–78. 2010. View Article : Google Scholar
|
|
99
|
Winter C, Nilsson MP, Olsson E, George AM,
Chen Y, Kvist A, Törngren T, Vallon-Christersson J, Hegardt C,
Häkkinen J, et al: Targeted sequencing of BRCA1 and BRCA2 across a
large unselected breast cancer cohort suggests that one-third of
mutations are somatic. Ann Oncol. 27:1532–1538. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Staaf J, Glodzik D, Bosch A,
Vallon-Christersson J, Reuterswärd C, Häkkinen J, Degasperi A,
Amarante TD, Saal LH, Hegardt C, et al: Whole-genome sequencing of
triple-negative breast cancers in a population-based clinical
study. Nat Med. 25:1526–1533. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Larsen MJ, Kruse TA, Tan Q, Lænkholm AV,
Bak M, Lykkesfeldt AE, Sørensen KP, Hansen TV, Ejlertsen B, Gerdes
AM and Thomassen M: Classifications within molecular subtypes
enables identification of BRCA1/BRCA2 mutation carriers by RNA
tumor profiling. PLoS One. 8:e642682013. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
De Talhouet S, Peron J, Vuilleumier A,
Friedlaender A, Viassolo V, Ayme A, Bodmer A, Treilleux I, Lang N,
Tille JC, et al: Clinical outcome of breast cancer in carriers of
BRCA1 and BRCA2 mutations according to molecular subtypes. Sci Rep.
10:70732020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Linger RJ and Kruk PA: BRCA1 16 years
later: risk-associated BRCA1 mutations and their functional
implications. FEBS J. 277:3086–3096. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lavoro A, Scalisi A, Candido S, Zanghì GN,
Rizzo R, Gattuso G, Caruso G, Libra M and Falzone L: Identification
of the most common BRCA alterations through analysis of germline
mutation databases: Is droplet digital PCR an additional strategy
for the assessment of such alterations in breast and ovarian cancer
families. Int J Oncol. 60:582022. View Article : Google Scholar
|
|
105
|
Sabine VS, Crozier C, Brookes CL, Drake C,
Piper T, van de Velde CJ, Hasenburg A, Kieback DG, Markopoulos C,
Dirix L, et al: Mutational analysis of PI3K/AKT signaling pathway
in tamoxifen exemestane adjuvant multinational pathology study. J
Clin Oncol. 32:2951–2958. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Meyer DS, Brinkhaus H, Müller U, Müller M
and Cardiff RD; mBentires-Alj M: Luminal expression of PIK3CA
mutant H1047R in the mammary gland induces heterogeneous tumors.
Cancer Res. 71:4344–4351. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Forbes SA, Bindal N, Bamford S, Cole C,
Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, et al:
COSMIC: Mining complete cancer genomes in the catalogue of somatic
mutations in cancer. Nucleic Acids Res. 39(Database Issue):
D945–D950. 2011. View Article : Google Scholar :
|
|
108
|
Mangone FR, Bobrovnitchaia IG, Salaorni S,
Manuli E and Nagai MA: PIK3CA exon 20 mutations are associated with
poor prognosis in breast cancer patients. Clinics (Sao Paulo).
67:1285–1290. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Arsenic R, Treue D, Lehmann A, Hummel M,
Dietel M, Denkert C and Budczies J: Comparison of targeted
next-generation sequencing and sanger sequencing for the detection
of PIK3CA mutations in breast cancer. BMC Clin Pathol. 15:202015.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Martínez-Sáez O, Chic N, Pascual T, Adamo
B, Vidal M, González-Farré B, Sanfeliu E, Schettini F, Conte B,
Brasó-Maristany F, et al: Frequency and spectrum of PIK3CA somatic
mutations in breast cancer. Breast Cancer Res. 22:452020.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li X, Chen X, Wen L, Wang Y, Chen B, Xue
Y, Guo L and Liao N: Impact of TP53 mutations in breast cancer:
Clinicopathological features and prognosisImpact of TP53 mutations
in breast CA. Thorac Cancer. 11:1861–1868. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Behring M, Vazquez AI, Cui X, Irvin MR,
Ojesina AI, Agarwal S, Manne U and Shrestha S: Gain of function in
somatic TP53 mutations is associated with immune-rich breast tumors
and changes in tumor-associated macrophages. Mol Genet Genomic Med.
7:e10012019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Perumal D, Imai N, Laganà A, Finnigan J,
Melnekoff D, Leshchenko VV, Solovyov A, Madduri D, Chari A, Cho HJ,
et al: Mutation-derived neoantigen-specific T-cell responses in
multiple myeloma. Clin Cancer Res. 26:450–464. 2020. View Article : Google Scholar
|
|
114
|
Walerych D, Napoli M, Collavin L and Del
Sal G: The rebel angel: Mutant p53 as the driving oncogene in
breast cancer. Carcinogenesis. 33:2007–2017. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Boyle DP, McArt DG, Irwin G,
Wilhelm-Benartzi CS, Lioe TF, Sebastian E, McQuaid S, Hamilton PW,
James JA, Mullan PB, et al: The prognostic significance of the
aberrant extremes of p53 immunophenotypes in breast cancer.
Histopathology. 65:340–352. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Weis KE, Ekena K, Thomas JA, Lazennec G
and Katzenellenbogen BS: Constitutively active human estrogen
receptors containing amino acid substitutions for tyrosine 537 in
the receptor protein. Mol Endocrinol. 10:1388–1398. 1996.PubMed/NCBI
|
|
117
|
Zhang QX, Borg A, Wolf DM, Oesterreich S
and Fuqua SA: An estrogen receptor mutant with strong
hormone-independent activity from a metastatic breast cancer.
Cancer Res. 57:1244–1249. 1997.PubMed/NCBI
|
|
118
|
De Mattos-Arruda L, Weigelt B, Cortes J,
Won HH, Ng CKY, Nuciforo P, Bidard FC, Aura C, Saura C, Peg V, et
al: Capturing intra-tumor genetic heterogeneity by de novo mutation
profiling of circulating cell-free tumor DNA: A proof-of-principle.
Ann Oncol. 25:1729–1735. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Toy W, Shen Y, Won H, Green B, Sakr RA,
Will M, Li Z, Gala K, Fanning S, King TA, et al: ESR1
ligand-binding domain mutations in hormone-resistant breast cancer.
Nat Genet. 45:1439–1445. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Carpten JD, Faber AL, Horn C, Donoho GP,
Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage
S, et al: A transforming mutation in the pleckstrin homology domain
of AKT1 in cancer. Nature. 448:439–444. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Rudolph M, Anzeneder T, Schulz A, Beckmann
G, Byrne AT, Jeffers M, Pena C, Politz O, Köchert K, Vonk R and
Reischl J: AKT1 (E17K) mutation profiling in breast cancer:
Prevalence, concurrent oncogenic alterations, and blood-based
detection. BMC Cancer. 16:6222016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wu W, Chen Y, Huang L, Li W, Tao C and
Shen H: Effects of AKT1 E17K mutation hotspots on the biological
behavior of breast cancer cells. Int J Clin Exp Pathol. 13:332–346.
2020.PubMed/NCBI
|
|
123
|
Xie R, Yan Z, Jing J, Wang Y, Zhang J, Li
Y, Liu X, Yu X and Wu C: Functional defects of cancer-associated
MDC1 mutations in DNA damage repair. DNA Repair (Amst).
114:1033302022. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J,
Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al: An
immunogenic personal neoantigen vaccine for patients with melanoma.
Nature. 547:217–221. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Tran E, Robbins PF, Lu YC, Prickett TD,
Gartner JJ, Jia L, Pasetto A, Zheng Z, Ray S, Groh EM, et al:
T-cell transfer therapy targeting mutant KRAS in cancer. N Engl J
Med. 375:2255–2262. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Barroso-Sousa R, Jain E, Cohen O, Kim D,
Buendia-Buendia J, Winer E, Lin N, Tolaney SM and Wagle N:
Prevalence and mutational determinants of high tumor mutation
burden in breast cancer. Ann Oncol. 31:387–394. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Zhu Y, Meng X, Ruan X, Lu X, Yan F and
Wang F: Characterization of neoantigen load subgroups in
gynecologic and breast cancers. Front Bioeng Biotechnol. 8:7022020.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Richters MM, Xia H, Campbell KM,
Gillanders WE, Griffith OL and Griffith M: Best practices for
bioinformatic characterization of neoantigens for clinical utility.
Genome Med. 11:562019. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Ren Y, Cherukuri Y, Wickland DP, Sarangi
V, Tian S, Carter JM, Mansfield AS, Block MS, Sherman ME, Knutson
KL, et al: HLA class-I and class-II restricted neoantigen loads
predict overall survival in breast cancer. Oncoimmunology.
9:17449472020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Sahin U and Türeci Ö: Personalized
vaccines for cancer immunotherapy. Science. 359:1355–1360. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Parkhurst MR, Robbins PF, Tran E, Prickett
TD, Gartner JJ, Jia L, Ivey G, Li YF, El-Gamil M, Lalani A, et al:
Unique neoantigens arise from somatic mutations in patients with
gastrointestinal cancers. Cancer Discov. 9:1022–1035. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Sueangoen N, Grove H, Chuangchot N,
Prasopsiri J, Rungrotmongkol T, Sanachai K, Darai N, Thongchot S,
Suriyaphol P, Sa-Nguanraksa D, et al: Stimulating T cell responses
against patient-derived breast cancer cells with neoantigen
peptide-loaded peripheral blood mononuclear cells. Cancer Immunol
Immunother. 73:432024. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Jain KK: Personalized immuno-oncology. Med
Princ Pract. 30:1–16. 2021. View Article : Google Scholar :
|
|
134
|
Zhang X, Kim S, Hundal J, Herndon JM, Li
S, Petti AA, Soysal SD, Li L, McLellan MD, Hoog J, et al: Breast
cancer neoantigens can induce CD8+ T-cell responses and antitumor
immunity. Cancer Immunol Res. 5:516–523. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Xiuli Z, Goedegebuure SP, Myers NB,
Vickery T, McLellan MD, Gao F, Sturmoski MA, Chen MY, Kim SW, Chen
I, et al: Neoantigen DNA vaccines are safe, feasible, and capable
of inducing neoantigen-specific immune responses in patients with
triple negative breast cancer. medRxiv: 2021.2011.2019.21266466.
2021.
|
|
136
|
Disis MLN, Guthrie KA, Liu Y, Coveler AL,
Higgins DM, Childs JS, Dang Y and Salazar LG: Safety and outcomes
of a plasmid DNA vaccine encoding the ERBB2 intracellular domain in
patients with advanced-stage ERBB2-positive breast cancer: A phase
1 nonrandomized clinical trial. JAMA Oncol. 9:71–78. 2023.
View Article : Google Scholar
|
|
137
|
Morisaki T, Kubo M, Umebayashi M, Yew PY,
Yoshimura S, Park JH, Kiyotani K, Kai M, Yamada M, Oda Y, et al:
Neoantigens elicit T cell responses in breast cancer. Sci Rep.
11:135902021. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Chang MT, Asthana S, Gao SP, Lee BH,
Chapman JS, Kandoth C, Gao J, Socci ND, Solit DB, Olshen AB, et al:
Identifying recurrent mutations in cancer reveals widespread
lineage diversity and mutational specificity. Nat Biotechnol.
34:155–163. 2016. View Article : Google Scholar :
|
|
139
|
Neefjes J, Jongsma ML, Paul P and Bakke O:
Towards a systems understanding of MHC class I and MHC class II
antigen presentation. Nat Rev Immunol. 11:823–836. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Klebanoff CA and Wolchok JD: Shared cancer
neoantigens: Making private matters public. J Exp Med. 215:5–7.
2018. View Article : Google Scholar :
|
|
141
|
Malekzadeh P, Pasetto A, Robbins PF,
Parkhurst MR, Paria BC, Jia L, Gartner JJ, Hill V, Yu Z, Restifo
NP, et al: Neoantigen screening identifies broad TP53 mutant
immunogenicity in patients with epithelial cancers. J Clin Invest.
129:1109–1114. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Pecher G, Häring A, Kaiser L and Thiel E:
Mucin gene (MUC1) transfected dendritic cells as vaccine: results
of a phase I/II clinical trial. Cancer Immunol Immunother.
51:669–673. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Sharma A, Koldovsky U, Xu S, Mick R, Roses
R, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, et
al: HER-2 pulsed dendritic cell vaccine can eliminate HER-2
expression and impact ductal carcinoma in situ. Cancer.
118:4354–4362. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Pettitt SJ, Frankum JR, Punta M, Lise S,
Alexander J, Chen Y, Yap TA, Haider S, Tutt ANJ and Lord CJ:
Clinical BRCA1/2 reversion analysis identifies hotspot mutations
and predicted neoantigens associated with therapy resistance.
Cancer Discov. 10:1475–1488. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Ruangapirom L, Sutivijit N, Teerapakpinyo
C, Mutirangura A and Doungkamchan C: Identification of shared
neoantigens in BRCA1-related breast cancer. Vaccines (Basel).
10:15972022. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Iiizumi S, Ohtake J, Murakami N, Kouro T,
Kawahara M, Isoda F, Hamana H, Kishi H, Nakamura N and Sasada T:
Identification of novel HLA class II-restricted neoantigens derived
from driver mutations. Cancers (Basel). 11:2662019. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Chandran SS, Ma J, Klatt MG, Dündar F,
Bandlamudi C, Razavi P, Wen HY, Weigelt B, Zumbo P, Fu SN, et al:
Immunogenicity and therapeutic targeting of a public neoantigen
derived from mutated PIK3CA. Nat Med. 28:946–957. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Lo W, Parkhurst M, Robbins PF, Tran E, Lu
YC, Jia L, Gartner JJ, Pasetto A, Deniger D, Malekzadeh P, et al:
Immunologic recognition of a shared p53 mutated neoantigen in a
patient with metastatic colorectal cancer. Cancer Immunol Res.
7:534–543. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Kim SP, Vale NR, Zacharakis N, Krishna S,
Yu Z, Gasmi B, Gartner JJ, Sindiri S, Malekzadeh P, Deniger DC, et
al: Adoptive cellular therapy with autologous tumor-infiltrating
lymphocytes and T-cell receptor-engineered T cells targeting common
p53 neoantigens in human solid tumors. Cancer Immunol Res.
10:932–946. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Zacharakis N, Huq LM, Seitter SJ, Kim SP,
Gartner JJ, Sindiri S, Hill VK, Li YF, Paria BC, Ray S, et al:
Breast cancers are immunogenic: Immunologic analyses and a phase II
pilot clinical trial using mutation-reactive autologous
lymphocytes. J Clin Oncol. 40:1741–1754. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
O'Connell MJ: Selection and the cell
cycle: Positive Darwinian selection in a well-known DNA damage
response pathway. J Mol Evol. 71:444–457. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Su YC, Lee WC, Wang CC, Yeh SA, Chen WH
and Chen PJ: Targeting PI3K/AKT/mTOR signaling pathway as a
radiosensitization in head and neck squamous cell carcinomas. Int J
Mol Sci. 23:157492022. View Article : Google Scholar : PubMed/NCBI
|