Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
August-2024 Volume 54 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2024 Volume 54 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of ubiquitination in the occurrence and development of osteoporosis (Review)

  • Authors:
    • Xiaoxia Fan
    • Rong Zhang
    • Guocai Xu
    • Peiyun Fan
    • Wei Luo
    • Chunmei Cai
    • Ri-Li Ge
  • View Affiliations / Copyright

    Affiliations: Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China, Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China
    Copyright: © Fan et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 68
    |
    Published online on: June 26, 2024
       https://doi.org/10.3892/ijmm.2024.5392
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The ubiquitin (Ub)‑proteasome system (UPS) plays a pivotal role in maintaining protein homeostasis and function to modulate various cellular processes including skeletal cell differentiation and bone homeostasis. The Ub ligase E3 promotes the transfer of Ub to the target protein, especially transcription factors, to regulate the proliferation, differentiation and survival of bone cells, as well as bone formation. In turn, the deubiquitinating enzyme removes Ub from modified substrate proteins to orchestrate bone remodeling. As a result of abnormal regulation of ubiquitination, bone cell differentiation exhibits disorder and then bone homeostasis is affected, consequently leading to osteoporosis. The present review discussed the role and mechanism of UPS in bone remodeling. However, the specific mechanism of UPS in the process of bone remodeling is still not fully understood and further research is required. The study of the mechanism of action of UPS can provide new ideas and methods for the prevention and treatment of osteoporosis. In addition, the most commonly used osteoporosis drugs that target ubiquitination processes in the clinic are discussed in the current review.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

The Lancet Diabetes Endocrinology: Osteoporosis: Overlooked in men for too long. Lancet Diabetes Endocrinol. 9:12021. View Article : Google Scholar

2 

Shen Y, Huang X, Wu J, Lin X, Zhou X, Zhu Z, Pan X, Xu J, Qiao J, Zhang T, et al: The global burden of osteoporosis, low bone mass, and its related fracture in 204 countries and territories, 1990-2019. Front Endocrinol (Lausanne). 13:8822412022. View Article : Google Scholar : PubMed/NCBI

3 

Zhu Y, Huang Z, Wang Y, Xu W, Chen H, Xu J, Luo S, Zhang Y, Zhao D and Hu J: The efficacy and safety of denosumab in postmenopausal women with osteoporosis previously treated with bisphosphonates: A review. J Orthop Translat. 22:7–13. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Xu XM, Li N, Li K, Li XY, Zhang P, Xuan YJ and Cheng XG: Discordance in diagnosis of osteoporosis by quantitative computed tomography and dual-energy X-ray absorptiometry in Chinese elderly men. J Orthop Translat. 18:59–64. 2018. View Article : Google Scholar

5 

Zhang YW, Cao MM, Li YJ, Dai GC, Lu PP, Zhang M, Bai LY, Chen XX, Zhang C, Shi L and Rui YF: The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: Involvement of brain-gut-bone axis. Crit Rev Food Sci Nutr. 63:7510–7528. 2023. View Article : Google Scholar

6 

Intemann J, De Gorter DJJ, Naylor AJ, Dankbar B and Wehmeyer C: Importance of osteocyte-mediated regulation of bone remodelling in inflammatory bone disease. Swiss Med Wkly. 150:w201872020.PubMed/NCBI

7 

Amarasekara DS, Kim S and Rho J: Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci. 22:28512021. View Article : Google Scholar : PubMed/NCBI

8 

Edwards JR and Mundy GR: Advances in osteoclast biology: Old findings and new insights from mouse models. Nat Rev Rheumatol. 7:235–243. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Wu M, Chen G and Li YP: TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar

10 

Han L, Wu J, Wang M, Zhang Z, Hua D, Lei S and Mo X: RNA modification-related genetic variants in genomic loci associated with bone mineral density and fracture. Genes (Basel). 13:18922022. View Article : Google Scholar : PubMed/NCBI

11 

Wang C, Chen Q and Xu H: Wnt/β-catenin signal transduction pathway in prostate cancer and associated drug resistance. Discov Oncol. 12:402021. View Article : Google Scholar

12 

Hu R, Chen L, Chen X, Xie Z, Xia C and Chen Y: Aloperine improves osteoporosis in ovariectomized mice by inhibiting RANKL-induced NF-κB, ERK and JNK approaches. Int Immunopharmacol. 97:1077202021. View Article : Google Scholar

13 

Hou H, Peng Q, Wang S, Zhang Y, Cao J, Deng Y, Wang Y, Sun WC and Wang HB: Anemonin attenuates RANKL-induced osteoclastogenesis and ameliorates LPS-induced inflammatory bone loss in mice via modulation of NFATc1. Front Pharmacol. 10:16962020. View Article : Google Scholar : PubMed/NCBI

14 

Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI

15 

Cai J, Culley MK, Zhao Y and Zhao J: The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell. 9:754–69. 2018. View Article : Google Scholar :

16 

van Huizen M and Kikkert M: The role of atypical ubiquitin chains in the regulation of the antiviral innate immune response. Front Cell Dev Biol. 7:3922020. View Article : Google Scholar : PubMed/NCBI

17 

Akutsu M, Dikic I and Bremm A: Ubiquitin chain diversity at a glance. J Cell Sci. 129:875–880. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Gundogdu M and Walden H: Structural basis of generic versus specific E2-RING E3 interactions in protein ubiquitination. Protein Sci. 28:1758–1770. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Mennerich D, Kubaichuk K and Kietzmann T: DUBs, hypoxia, and cancer. Trends Cancer. 5:632–653. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Komander D and Rape M: The ubiquitin code. Annu Rev Biochem. 81:203–229. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Zheng N and Shabek N: Ubiquitin ligases: Structure, function, and regulation. Annu Rev Biochem. 86:129–157. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Zhao J, Guo J, Wang Y, Ma Q, Shi Y, Cheng F, Lu Q, Fu W, Ouyang G, Zhang J, et al: Research progress of DUB enzyme in hepatocellular carcinoma. Front Oncol. 12:9202872022. View Article : Google Scholar : PubMed/NCBI

23 

Clague MJ, Urbé S and Komander D: Breaking the chains: Deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 20:338–352. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Bello AI, Goswami R, Brown SL, Costanzo K, Shores T, Allan S, Odah R and Mohan RD: Deubiquitinases in neurodegeneration. Cells. 11:5562022. View Article : Google Scholar : PubMed/NCBI

25 

Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE and Shi Y: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 111:1041–1054. 2002. View Article : Google Scholar

26 

Johnston SC, Larsen CN, Cook WJ, Wilkinson KD and Hill CP: Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 16:3787–3796. 1997. View Article : Google Scholar : PubMed/NCBI

27 

Li Y and Reverter D: Molecular mechanisms of DUBs regulation in signaling and disease. Int J Mol Sci. 22:9862021. View Article : Google Scholar : PubMed/NCBI

28 

Komander D, Clague MJ and Urbé S: Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 10:550–563. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Al-Rawi R, Al-Beshri A, Mikhail FM and McCormick K: Fragile bones secondary to SMURF1 gene duplication. Calcif Tissue Int. 106:567–573. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Glimcher LH, Jones DC and Wein MN: Control of postnatal bone mass by the zinc finger adapter protein Schnurri-3. Ann N Y Acad Sci. 1116:174–181. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Liang C, Peng S, Li J, Lu J, Guan D, Jiang F, Lu C, Li F, He X, Zhu H, et al: Inhibition of osteoblastic Smurf1 promotes bone formation in mouse models of distinctive age-related osteoporosis. Nat Commun. 9:34282018. View Article : Google Scholar : PubMed/NCBI

32 

Zhao L, Huang J, Guo R, Wang Y, Chen D and Xing L: Smurf1 inhibits mesenchymal stem cell proliferation and differentiation into osteoblasts through JunB degradation. J Bone Miner Res. 25:1246–1256. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Liu W, Qi M, Konermann A, Zhang L, Jin F and Jin Y: The p53/miR-17/Smurf1 pathway mediates skeletal deformities in an age-related model via inhibiting the function of mesenchymal stem cells. Aging (Albany NY). 7:205–218. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Koganti P, Levy-Cohen G and Blank M: smurfs in protein homeostasis, signaling, and cancer. Front Oncol. 8:2952018. View Article : Google Scholar : PubMed/NCBI

35 

Xu Z, Greenblatt MB, Yan G, Feng H, Sun J, Lotinun S, Brady N, Baron R, Glimcher LH and Zou W: SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nat Commun. 8:145702017. View Article : Google Scholar : PubMed/NCBI

36 

Bonewald LF and Mundy GR: Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res. 261–276. 1990.PubMed/NCBI

37 

Bai Y and Ying Y: The post-translational modifications of Smurf2 in TGF-β signaling. Front Mol Biosci. 7:1282020. View Article : Google Scholar

38 

Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, Chijimatsu R, Pye M, Narimatsu M, Wrana JL, et al: A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 8:412020. View Article : Google Scholar : PubMed/NCBI

39 

Shu L, Zhang H, Boyce BF and Xing L: Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Miner Res. 28:1925–1935. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ and Glimcher LH: Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science. 312:1223–1227. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Zhao L, Huang J, Zhang H, Wang Y, Matesic LE, Takahata M, Awad H, Chen D and Xing L: Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells. 29:1601–1610. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Zhu W, He X, Hua Y, Li Q, Wang J and Gan X: The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a mono-ubiquitination manner during osteogenic differentiation. J Biol Chem. 292:11178–11188. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Liu D, Kou X, Chen C, Liu S, Liu Y, Yu W, Yu T, Yang R, Wang R, Zhou Y and Shi S: Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 28:918–933. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Matsumoto Y, Larose J, Kent OA, Lim M, Changoor A, Zhang L, Storozhuk Y, Mao X, Grynpas MD, Cong F and Rottapel R: RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146. J Clin Invest. 127:1303–1315. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Zhao Y and Ding S: A high-throughput siRNA library screen identifies osteogenic suppressors in human mesenchymal stem cells. Proc Natl Acad Sci USA. 104:9673–9678. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Zhou Y, Shang H, Zhang C, Liu Y, Zhao Y, Shuang F, Zhong H, Tang J and Hou S: The E3 ligase RNF185 negatively regulates osteogenic differentiation by targeting Dvl2 for degradation. Biochem Biophys Res Commun. 447:431–436. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Liu J, Li X, Zhang H, Gu R, Wang Z, Gao Z and Xing L: Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res. 6:154–161. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Zhang H and Xing L: Ubiquitin e3 ligase itch negatively regulates osteoblast differentiation from mesenchymal progenitor cells. Stem Cells. 31:1574–1583. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Zhang H, Wu C, Matesic LE, Li X, Wang Z, Boyce BF and Xing L: Ubiquitin E3 ligase Itch negatively regulates osteoclast formation by promoting deubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6. J Biol Chem. 288:22359–22368. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Zhang F, Zhao Y and Sun Y: USP2 is an SKP2 deubiquitylase that stabilizes both SKP2 and its substrates. J Biol Chem. 297:1011092021. View Article : Google Scholar : PubMed/NCBI

51 

Thacker G, Kumar Y, Khan MP, Shukla N, Kapoor I, Kanaujiya JK, Lochab S, Ahmed S, Sanyal S, Chattopadhyay N and Trivedi AK: Skp2 inhibits osteogenesis by promoting ubiquitin-proteasome degradation of Runx2. Biochim Biophys Acta. 1863:510–519. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Eddins MJ, Marblestone JG, Suresh Kumar KG, Leach CA, Sterner DE, Mattern MR and Nicholson B: Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem Biophys. 60:113–118. 2011. View Article : Google Scholar : PubMed/NCBI

53 

Bettis T, Kim BJ and Hamrick MW: Impact of muscle atrophy on bone metabolism and bone strength: Implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int. 29:1713–1720. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Liu Y, Cai G, Chen P, Jiang T and Xia Z: UBE2E3 regulates cellular senescence and osteogenic differentiation of BMSCs during aging. PeerJ. 9:e122532021. View Article : Google Scholar : PubMed/NCBI

55 

Li J, Wang P, Xie Z, Wang S, Cen S, Li M, Liu W, Tang S, Ye G, Zheng G, et al: TRAF4 positively regulates the osteogenic differentiation of mesenchymal stem cells by acting as an E3 ubiquitin ligase to degrade Smurf2. Cell Death Differ. 26:2652–2666. 2019. View Article : Google Scholar : PubMed/NCBI

56 

An H, Krist DT and Statsyuk AV: Crosstalk between kinases and Nedd4 family ubiquitin ligases. Mol Biosyst. 10:1643–1657. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Wiszniak S, Harvey N and Schwarz Q: Cell autonomous roles of Nedd4 in craniofacial bone formation. Dev Biol. 410:98–107. 2016. View Article : Google Scholar

58 

Jeon SA, Lee JH, Kim DW and Cho JY: E3-ubiquitin ligase NEDD4 enhances bone formation by removing TGFβ1-induced pSMAD1 in immature osteoblast. Bone. 116:248–258. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Tang Y, Lv L, Li W, Zhang X, Jiang Y, Ge W and Zhou Y: Protein deubiquitinase USP7 is required for osteogenic differentiation of human adipose-derived stem cells. Stem Cell Res Ther. 8:1862017. View Article : Google Scholar : PubMed/NCBI

60 

Sun D, Peng Y, Ge S and Fu Q: USP1 inhibits NF-κB/NLRP3 induced pyroptosis through TRAF6 in osteoblastic MC3T3-E1 cells. J Musculoskelet Neuronal Interact. 22:536–545. 2022.PubMed/NCBI

61 

Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC, Carano RA and Dixit VM: USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell. 146:918–930. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Chaugule S, Kim JM, Yang YS, Knobeloch KP, He X and Shim JH: Deubiquitinating enzyme USP8 is essential for skeletogenesis by regulating Wnt signaling. Int J Mol Sci. 22:102892021. View Article : Google Scholar : PubMed/NCBI

63 

Kaushal K, Tyagi A, Karapurkar JK, Kim EJ, Tanguturi P, Kim KS, Jung HS and Ramakrishna S: Genome-wide CRISPR/Cas9-Based screening for deubiquitinase subfamily identifies ubiquitin-specific protease 11 as a novel regulator of osteogenic differentiation. Int J Mol Sci. 23:8562022. View Article : Google Scholar : PubMed/NCBI

64 

Guo YC, Wang MY, Zhang SW, Wu YS, Zhou CC, Zheng RX, Shao B, Wang Y, Xie L, Liu WQ, et al: Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J. 37:e993982018. View Article : Google Scholar : PubMed/NCBI

65 

Kim JY, Lee JM and Cho JY: Ubiquitin C-terminal hydrolase-L3 regulates Smad1 ubiquitination and osteoblast differentiation. FEBS Lett. 585:1121–1126. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Huang P, Yan R, Zhang X, Wang L, Ke X and Qu Y: Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacol Ther. 196:79–90. 2019. View Article : Google Scholar

67 

Zhou F, Li F, Fang P, Dai T, Yang B, van Dam H, Jia J, Zheng M and Zhang L: Ubiquitin-specific protease 4 antagonizes osteoblast differentiation through dishevelled. J Bone Miner Res. 31:1888–8198. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Guasto A and Cormier-Daire V: Signaling pathways in bone development and their related skeletal dysplasia. Int J Mol Sci. 22:43212021. View Article : Google Scholar : PubMed/NCBI

69 

Herhaus L and Sapkota GP: The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways. Cell Signal. 26:2186–2192. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Baek D, Park KH, Lee KM, Jung S, Joung S, Kim J and Lee JW: Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Cell Death Dis. 12:2382021. View Article : Google Scholar : PubMed/NCBI

71 

Hariri H, Kose O, Bezdjian A, Daniel SJ and St-Arnaud R: USP53 regulates bone homeostasis by controlling rankl expression in osteoblasts and bone marrow adipocytes. J Bone Miner Res. 38:578–596. 2023. View Article : Google Scholar : PubMed/NCBI

72 

Tsuru M, Ono A, Umeyama H, Takeuchi M and Nagata K: Ubiquitin-dependent proteolysis of CXCL7 leads to posterior longitudinal ligament ossification. PLoS One. 13:e01962042018. View Article : Google Scholar : PubMed/NCBI

73 

Lin L, Li S, Hu S, Yu W, Jiang B, Mao C, Li G, Yang R, Miao X, Jin M, et al: UCHL1 impairs periodontal ligament stem cell osteogenesis in periodontitis. J Dent Res. 102:61–71. 2023. View Article : Google Scholar

74 

Cao Y, Zhang X, Hu M, Yang S, Li X, Han R, Zhou J, Li D and Liu D: CYLD inhibits osteoclastogenesis to ameliorate alveolar bone loss in mice with periodontitis. J Cell Physiol. 238:1036–1045. 2023. View Article : Google Scholar : PubMed/NCBI

75 

Ang E, Pavlos NJ, Rea SL, Qi M, Chai T, Walsh JP, Ratajczak T, Zheng MH and Xu J: Proteasome inhibitors impair RANKL-induced NF-kappaB activity in osteoclast-like cells via disruption of p62, TRAF6, CYLD, and IkappaBalpha signaling cascades. J Cell Physiol. 220:450–459. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J and Sun SC: Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest. 118:1858–1866. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Hong JY, Bae WJ, Yi JK, Kim GT and Kim EC: Anti-inflammatory and anti-osteoclastogenic effects of zinc finger protein A20 overexpression in human periodontal ligament cells. J Periodontal Res. 51:529–539. 2016. View Article : Google Scholar

78 

Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP and Ma A: Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 289:2350–2354. 2000. View Article : Google Scholar : PubMed/NCBI

79 

Lee MJ, Lim E, Mun S, Bae S, Murata K, Ivashkiv LB and Park-Min KH: Intravenous immunoglobulin (IVIG) attenuates TNF-induced pathologic bone resorption and suppresses osteoclastogenesis by inducing A20 expression. J Cell Physiol. 231:449–458. 2016. View Article : Google Scholar :

80 

Martens A and van Loo G: A20 at the crossroads of cell death, inflammation, and autoimmunity. Cold Spring Harb Perspect Biol. 12:a0364182020. View Article : Google Scholar

81 

Yan K, Wu C, Ye Y, Li L, Wang X, He W, Ren S and Xu Y: A20 inhibits osteoclastogenesis via TRAF6-dependent autophagy in human periodontal ligament cells under hypoxia. Cell Prolif. 53:e127782020. View Article : Google Scholar : PubMed/NCBI

82 

Birol M and Echalier A: Structure and function of MPN (Mpr1/Pad1 N-terminal) domain-containing proteins. Curr Protein Pept Sci. 15:504–517. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Fiore A, Liang Y, Lin YH, Tung J, Wang H, Langlais D and Nijnik A: Deubiquitinase MYSM1 in the hematopoietic system and beyond: A current review. Int J Mol Sci. 21:30072020. View Article : Google Scholar : PubMed/NCBI

84 

Li P, Yang YM, Sanchez S, Cui DC, Dang RJ, Wang XY, Lin QX, Wang Y, Wang C, Chen DF, et al: Deubiquitinase MYSM1 Is essential for normal bone formation and mesenchymal stem cell differentiation. Sci Rep. 6:222112016. View Article : Google Scholar : PubMed/NCBI

85 

Haffner-Luntzer M, Kovtun A, Fischer V, Prystaz K, Hainzl A, Kroeger CM, Krikki I, Brinker TJ, Ignatius A and Gatzka M: Loss of p53 compensates osteopenia in murine Mysm1 deficiency. FASEB J. 32:1957–1968. 2018. View Article : Google Scholar

86 

Lin YC, Zheng G, Liu HT, Wang P, Yuan WQ, Zhang YH, Peng XS, Li GJ, Wu YF and Shen HY: USP7 promotes the osteoclast differentiation of CD14+ human peripheral blood monocytes in osteoporosis via HMGB1 deubiquitination. J Orthop Translat. 40:80–91. 2023. View Article : Google Scholar : PubMed/NCBI

87 

Xie Z, Wu Y, Shen Y, Guo J, Yuan P, Ma Q, Wang S, Jie Z, Zhou H, Fan S and Chen S: USP7 inhibits osteoclastogenesis via dual effects of attenuating TRAF6/TAK1 axis and stimulating STING signaling. Aging Dis. 14:2267–2283. 2023. View Article : Google Scholar : PubMed/NCBI

88 

Mustachio LM, Lu Y, Kawakami M, Roszik J, Freemantle SJ, Liu X and Dmitrovsky E: Evidence for the ISG15-specific deubiquitinase USP18 as an antineoplastic target. Cancer Res. 78:587–592. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Liu X, Lu Y, Chen Z, Liu X, Hu W, Zheng L, Chen Y, Kurie JM, Shi M, Mustachio LM, et al: The ubiquitin-specific peptidase USP18 promotes lipolysis, fatty acid oxidation, and lung cancer growth. Mol Cancer Res. 19:667–677. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Yim HY, Park C, Lee YD, Arimoto K, Jeon R, Baek SH, Zhang DE, Kim HH and Kim KI: Elevated response to type I IFN enhances RANKL-mediated osteoclastogenesis in Usp18-knockout mice. J Immunol. 196:3887–3895. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Li Q, Wang M, Xue H, Liu W, Guo Y, Xu R, Shao B and Yuan Q: Ubiquitin-specific protease 34 inhibits osteoclast differentiation by regulating NF-κB signaling. J Bone Miner Res. 35:1597–1608. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Li C, Qiu M, Chang L, Qi J, Zhang L, Ryffel B and Deng L: The osteoprotective role of USP26 in coordinating bone formation and resorption. Cell Death Differ. 29:1123–1136. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Zhu Q, Fu Y, Cui CP, Ding Y, Deng Z, Ning C, Hu F, Qiu C, Yu B, Zhou X, et al: OTUB1 promotes osteoblastic bone formation through stabilizing FGFR2. Signal Transduct Target Ther. 8:1422023. View Article : Google Scholar : PubMed/NCBI

94 

LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ and Siris ES: The clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. 33:2049–2102. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH and Shoback D: Pharmacological management of osteoporosis in postmenopausal women: An endocrine society* clinical practice guideline. J Clin Endocrinol Metab. 104:1595–1622. 2019. View Article : Google Scholar : PubMed/NCBI

96 

McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, Hanley DA, Kendler DL, Yuen CK and Lewiecki EM: Bisphosphonate therapy for osteoporosis: Benefits, risks, and drug holiday. Am J Med. 126:13–20. 2013. View Article : Google Scholar

97 

Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster DW, et al: Atypical subtrochanteric and diaphyseal femoral fractures: Second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 29:1–23. 2014. View Article : Google Scholar

98 

Deeks ED: Denosumab: A review in postmenopausal osteoporosis. Drugs Aging. 35:163–173. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Morin SN, Feldman S, Funnell L, Giangregorio L, Kim S, McDonald-Blumer H, Santesso N, Ridout R, Ward W, Ashe MC, et al: Clinical practice guideline for management of osteoporosis and fracture prevention in Canada: 2023 Update. CMAJ. 195:E1333–E1348. 2023. View Article : Google Scholar : PubMed/NCBI

100 

Lobo RA, Pickar JH, Stevenson JC, Mack WJ and Hodis HN: Back to the future: Hormone replacement therapy as part of a prevention strategy for women at the onset of menopause. Atherosclerosis. 254:282–290. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Gosset A, Pouillès JM and Trémollieres F: Menopausal hormone therapy for the management of osteoporosis. Best Pract Res Clin Endocrinol Metab. 35:1015512021. View Article : Google Scholar : PubMed/NCBI

102 

Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, et al: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the women's health initiative randomized controlled trial. JAMA. 288:321–333. 2002. View Article : Google Scholar : PubMed/NCBI

103 

Prior JC, Seifert-Klauss VR, Giustini D, Adachi JD, Kalyan S and Goshtasebi A: Estrogen-progestin therapy causes a greater increase in spinal bone mineral density than estrogen therapy-a systematic review and meta-analysis of controlled trials with direct randomization. J Musculoskelet Neuronal Interact. 17:146–154. 2017.PubMed/NCBI

104 

de Villiers TJ, Hall JE, Pinkerton JV, Pérez SC, Rees M, Yang C and Pierroz DD: Revised global consensus statement on menopausal hormone therapy. Maturitas. 91:153–155. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Levin VA, Jiang X and Kagan R: Estrogen therapy for osteoporosis in the modern era. Osteoporos Int. 29:1049–1055. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Abdi F, Mobedi H, Bayat F, Mosaffa N, Dolatian M and Ramezani Tehrani F: The effects of transdermal estrogen delivery on bone mineral density in postmenopausal women: A meta-analysis. Iran J Pharm Res. 16:380–389. 2017.PubMed/NCBI

107 

Mosca L: Rationale and overview of the raloxifene use for the heart (RUTH) trial. Ann N Y Acad Sci. 949:181–185. 2001. View Article : Google Scholar

108 

Ensrud K, Genazzani AR, Geiger MJ, McNabb M, Dowsett SA, Cox DA and Barrett-Connor E: Effect of raloxifene on cardiovascular adverse events in postmenopausal women with osteoporosis. Am J Cardiol. 97:520–527. 2006. View Article : Google Scholar : PubMed/NCBI

109 

Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL and Sato M: Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol. 32:426–438. 2004. View Article : Google Scholar : PubMed/NCBI

110 

Andrews EB, Gilsenan AW, Midkiff K, Sherrill B, Wu Y, Mann BH and Masica D: The US postmarketing surveillance study of adult osteosarcoma and teriparatide: Study design and findings from the first 7 years. J Bone Miner Res. 27:2429–2437. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa EA and Sun Q: Calcitonin and bone physiology: In vitro, in vivo, and clinical investigations. Int J Endocrinol. 2020:32368282020. View Article : Google Scholar : PubMed/NCBI

112 

Holdsworth G, Roberts SJ and Ke HZ: Novel actions of sclerostin on bone. J Mol Endocrinol. 62:R167–R185. 2019. View Article : Google Scholar

113 

Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, Liu S, Looker AC, Wallace TC and Wang DD: Calcium plus vitamin D supplementation and risk of fractures: An updated meta-analysis from the national osteoporosis foundation. Osteoporos Int. 27:367–376. 2016. View Article : Google Scholar :

114 

Meng J, Zhang W, Wang C, Zhang W, Zhou C, Jiang G, Hong J, Yan S and Yan W: Catalpol suppresses osteoclastogenesis and attenuates osteoclast-derived bone resorption by modulating PTEN activity. Biochem Pharmacol. 171:1137152020. View Article : Google Scholar

115 

Ferlazzo N, Andolina G, Cannata A, Costanzo MG, Rizzo V, Currò M, Ientile R and Caccamo D: Is melatonin the cornucopia of the 21st century? Antioxidants (Basel). 9:10882020. View Article : Google Scholar : PubMed/NCBI

116 

Lian C, Wu Z, Gao B, Peng Y, Liang A, Xu C, Liu L, Qiu X, Huang J, Zhou H, et al: Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein. J Pineal Res. 61:317–327. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Zheng ZG, Cheng HM, Zhou YP, Zhu ST, Thu PM, Li HJ, Li P and Xu X: Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ. 27:2048–2065. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Zheng HL, Xu WN, Zhou WS, Yang RZ, Chen PB, Liu T, Jiang LS and Jiang SD: Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis. 12:4972021. View Article : Google Scholar : PubMed/NCBI

119 

Zhang Y, Wang C, Cao Y, Gu Y and Zhang L: Selective compounds enhance osteoblastic activity by targeting HECT domain of ubiquitin ligase Smurf1. Oncotarget. 8:50521–50533. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Ye LC, Qian LF, Liang L, Jiang LJ, Che ZY and Guo YH: Overexpression of miR-195-5p reduces osteoporosis through activating BMP-2/SMAD/Akt/RUNX2 pathway via targeting SMURF1. J Biol Regul Homeost Agents. 35:1201–1216. 2021.

121 

Oyajobi BO, Garrett IR, Gupta A, Flores A, Esparza J, Muñoz S, Zhao M and Mundy GR: Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications for myeloma bone disease. Br J Haematol. 139:434–438. 2007. View Article : Google Scholar : PubMed/NCBI

122 

Uyama M, Sato MM, Kawanami M and Tamura M: Regulation of osteoblastic differentiation by the proteasome inhibitor bortezomib. Genes Cells. 17:548–558. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Fang Y, Liu Y, Zhao Z, Lu Y, Shen X, Zhu T, Hou M, He F, Yang H, Zhang Y, et al: Bortezomib rescues ovariectomy-induced bone loss via SMURF-mediated ubiquitination pathway. Oxid Med Cell Longev. 2021:96612002021. View Article : Google Scholar

124 

Khedgikar V, Kushwaha P, Gautam J, Verma A, Changkija B, Kumar A, Sharma S, Nagar GK, Singh D, Trivedi PK, et al: Withaferin A: A proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis. 4:e7782013. View Article : Google Scholar : PubMed/NCBI

125 

Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S and Satyamoorthy K: Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc. 93:1955–1986. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Huang Y, Yang Y, Wang J, Yao S, Yao T, Xu Y, Chen Z, Yuan P, Gao J, Shen S and Ma J: miR-21-5p targets SKP2 to reduce osteoclastogenesis in a mouse model of osteoporosis. J Biol Chem. 296:1006172021. View Article : Google Scholar : PubMed/NCBI

127 

Liu C, Gao X, Li Y, Sun W, Xu Y, Tan Y, Du R, Zhong G, Zhao D, Liu Z, et al: The mechanosensitive lncRNA Neat1 promotes osteoblast function through paraspeckle-dependent Smurf1 mRNA retention. Bone Res. 10:182022. View Article : Google Scholar : PubMed/NCBI

128 

Jiang Y, Wu W, Jiao G, Chen Y and Liu H: LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells. Life Sci. 228:208–214. 2019. View Article : Google Scholar : PubMed/NCBI

129 

Liu L, Jin R, Duan J, Yang L, Cai Z, Zhu W, Nie Y, He J, Xia C, Gong Q, et al: Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex. Acta Biomater. 103:281–292. 2020. View Article : Google Scholar

130 

Liu Y, Huang X, He X, Zhou Y, Jiang X, Chen-Kiang S, Jaffrey SR and Xu G: A novel effect of thalidomide and its analogs: Suppression of cereblon ubiquitination enhances ubiquitin ligase function. FASEB J. 29:4829–4839. 2015. View Article : Google Scholar : PubMed/NCBI

131 

Mishima K, Kitoh H, Ohkawara B, Okuno T, Ito M, Masuda A, Ishiguro N and Ohno K: Lansoprazole upregulates polyubiquitination of the TNF receptor-associated factor 6 and facilitates Runx2-mediated osteoblastogenesis. EBioMedicine. 2:2046–2061. 2015. View Article : Google Scholar

132 

Li X, Sun W, Li J, Wang M, Zhang H, Pei L, Boyce BF, Wang Z and Xing L: Clomipramine causes osteoporosis by promoting osteoclastogenesis via E3 ligase Itch, which is prevented by zoledronic acid. Sci Rep. 7:413582017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Fan X, Zhang R, Xu G, Fan P, Luo W, Cai C and Ge R: Role of ubiquitination in the occurrence and development of osteoporosis (Review). Int J Mol Med 54: 68, 2024.
APA
Fan, X., Zhang, R., Xu, G., Fan, P., Luo, W., Cai, C., & Ge, R. (2024). Role of ubiquitination in the occurrence and development of osteoporosis (Review). International Journal of Molecular Medicine, 54, 68. https://doi.org/10.3892/ijmm.2024.5392
MLA
Fan, X., Zhang, R., Xu, G., Fan, P., Luo, W., Cai, C., Ge, R."Role of ubiquitination in the occurrence and development of osteoporosis (Review)". International Journal of Molecular Medicine 54.2 (2024): 68.
Chicago
Fan, X., Zhang, R., Xu, G., Fan, P., Luo, W., Cai, C., Ge, R."Role of ubiquitination in the occurrence and development of osteoporosis (Review)". International Journal of Molecular Medicine 54, no. 2 (2024): 68. https://doi.org/10.3892/ijmm.2024.5392
Copy and paste a formatted citation
x
Spandidos Publications style
Fan X, Zhang R, Xu G, Fan P, Luo W, Cai C and Ge R: Role of ubiquitination in the occurrence and development of osteoporosis (Review). Int J Mol Med 54: 68, 2024.
APA
Fan, X., Zhang, R., Xu, G., Fan, P., Luo, W., Cai, C., & Ge, R. (2024). Role of ubiquitination in the occurrence and development of osteoporosis (Review). International Journal of Molecular Medicine, 54, 68. https://doi.org/10.3892/ijmm.2024.5392
MLA
Fan, X., Zhang, R., Xu, G., Fan, P., Luo, W., Cai, C., Ge, R."Role of ubiquitination in the occurrence and development of osteoporosis (Review)". International Journal of Molecular Medicine 54.2 (2024): 68.
Chicago
Fan, X., Zhang, R., Xu, G., Fan, P., Luo, W., Cai, C., Ge, R."Role of ubiquitination in the occurrence and development of osteoporosis (Review)". International Journal of Molecular Medicine 54, no. 2 (2024): 68. https://doi.org/10.3892/ijmm.2024.5392
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team