
Role of ubiquitination in the occurrence and development of osteoporosis (Review)
- Authors:
- Xiaoxia Fan
- Rong Zhang
- Guocai Xu
- Peiyun Fan
- Wei Luo
- Chunmei Cai
- Ri-Li Ge
-
Affiliations: Research Center for High Altitude Medicine, Qinghai University, Xining, Qinghai 810000, P.R. China, Qinghai Provincial People's Hospital, Department of Endocrinology, Xining, Qinghai 810000, P.R. China - Published online on: June 26, 2024 https://doi.org/10.3892/ijmm.2024.5392
- Article Number: 68
-
Copyright : © Fan et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
The Lancet Diabetes Endocrinology: Osteoporosis: Overlooked in men for too long. Lancet Diabetes Endocrinol. 9:12021. View Article : Google Scholar | |
Shen Y, Huang X, Wu J, Lin X, Zhou X, Zhu Z, Pan X, Xu J, Qiao J, Zhang T, et al: The global burden of osteoporosis, low bone mass, and its related fracture in 204 countries and territories, 1990-2019. Front Endocrinol (Lausanne). 13:8822412022. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Huang Z, Wang Y, Xu W, Chen H, Xu J, Luo S, Zhang Y, Zhao D and Hu J: The efficacy and safety of denosumab in postmenopausal women with osteoporosis previously treated with bisphosphonates: A review. J Orthop Translat. 22:7–13. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu XM, Li N, Li K, Li XY, Zhang P, Xuan YJ and Cheng XG: Discordance in diagnosis of osteoporosis by quantitative computed tomography and dual-energy X-ray absorptiometry in Chinese elderly men. J Orthop Translat. 18:59–64. 2018. View Article : Google Scholar | |
Zhang YW, Cao MM, Li YJ, Dai GC, Lu PP, Zhang M, Bai LY, Chen XX, Zhang C, Shi L and Rui YF: The regulative effect and repercussion of probiotics and prebiotics on osteoporosis: Involvement of brain-gut-bone axis. Crit Rev Food Sci Nutr. 63:7510–7528. 2023. View Article : Google Scholar | |
Intemann J, De Gorter DJJ, Naylor AJ, Dankbar B and Wehmeyer C: Importance of osteocyte-mediated regulation of bone remodelling in inflammatory bone disease. Swiss Med Wkly. 150:w201872020.PubMed/NCBI | |
Amarasekara DS, Kim S and Rho J: Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci. 22:28512021. View Article : Google Scholar : PubMed/NCBI | |
Edwards JR and Mundy GR: Advances in osteoclast biology: Old findings and new insights from mouse models. Nat Rev Rheumatol. 7:235–243. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Chen G and Li YP: TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 4:160092016. View Article : Google Scholar | |
Han L, Wu J, Wang M, Zhang Z, Hua D, Lei S and Mo X: RNA modification-related genetic variants in genomic loci associated with bone mineral density and fracture. Genes (Basel). 13:18922022. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen Q and Xu H: Wnt/β-catenin signal transduction pathway in prostate cancer and associated drug resistance. Discov Oncol. 12:402021. View Article : Google Scholar | |
Hu R, Chen L, Chen X, Xie Z, Xia C and Chen Y: Aloperine improves osteoporosis in ovariectomized mice by inhibiting RANKL-induced NF-κB, ERK and JNK approaches. Int Immunopharmacol. 97:1077202021. View Article : Google Scholar | |
Hou H, Peng Q, Wang S, Zhang Y, Cao J, Deng Y, Wang Y, Sun WC and Wang HB: Anemonin attenuates RANKL-induced osteoclastogenesis and ameliorates LPS-induced inflammatory bone loss in mice via modulation of NFATc1. Front Pharmacol. 10:16962020. View Article : Google Scholar : PubMed/NCBI | |
Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Culley MK, Zhao Y and Zhao J: The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell. 9:754–69. 2018. View Article : Google Scholar : | |
van Huizen M and Kikkert M: The role of atypical ubiquitin chains in the regulation of the antiviral innate immune response. Front Cell Dev Biol. 7:3922020. View Article : Google Scholar : PubMed/NCBI | |
Akutsu M, Dikic I and Bremm A: Ubiquitin chain diversity at a glance. J Cell Sci. 129:875–880. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gundogdu M and Walden H: Structural basis of generic versus specific E2-RING E3 interactions in protein ubiquitination. Protein Sci. 28:1758–1770. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mennerich D, Kubaichuk K and Kietzmann T: DUBs, hypoxia, and cancer. Trends Cancer. 5:632–653. 2019. View Article : Google Scholar : PubMed/NCBI | |
Komander D and Rape M: The ubiquitin code. Annu Rev Biochem. 81:203–229. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zheng N and Shabek N: Ubiquitin ligases: Structure, function, and regulation. Annu Rev Biochem. 86:129–157. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Guo J, Wang Y, Ma Q, Shi Y, Cheng F, Lu Q, Fu W, Ouyang G, Zhang J, et al: Research progress of DUB enzyme in hepatocellular carcinoma. Front Oncol. 12:9202872022. View Article : Google Scholar : PubMed/NCBI | |
Clague MJ, Urbé S and Komander D: Breaking the chains: Deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol. 20:338–352. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bello AI, Goswami R, Brown SL, Costanzo K, Shores T, Allan S, Odah R and Mohan RD: Deubiquitinases in neurodegeneration. Cells. 11:5562022. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE and Shi Y: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 111:1041–1054. 2002. View Article : Google Scholar | |
Johnston SC, Larsen CN, Cook WJ, Wilkinson KD and Hill CP: Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8 A resolution. EMBO J. 16:3787–3796. 1997. View Article : Google Scholar : PubMed/NCBI | |
Li Y and Reverter D: Molecular mechanisms of DUBs regulation in signaling and disease. Int J Mol Sci. 22:9862021. View Article : Google Scholar : PubMed/NCBI | |
Komander D, Clague MJ and Urbé S: Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 10:550–563. 2009. View Article : Google Scholar : PubMed/NCBI | |
Al-Rawi R, Al-Beshri A, Mikhail FM and McCormick K: Fragile bones secondary to SMURF1 gene duplication. Calcif Tissue Int. 106:567–573. 2020. View Article : Google Scholar : PubMed/NCBI | |
Glimcher LH, Jones DC and Wein MN: Control of postnatal bone mass by the zinc finger adapter protein Schnurri-3. Ann N Y Acad Sci. 1116:174–181. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Peng S, Li J, Lu J, Guan D, Jiang F, Lu C, Li F, He X, Zhu H, et al: Inhibition of osteoblastic Smurf1 promotes bone formation in mouse models of distinctive age-related osteoporosis. Nat Commun. 9:34282018. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Huang J, Guo R, Wang Y, Chen D and Xing L: Smurf1 inhibits mesenchymal stem cell proliferation and differentiation into osteoblasts through JunB degradation. J Bone Miner Res. 25:1246–1256. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Qi M, Konermann A, Zhang L, Jin F and Jin Y: The p53/miR-17/Smurf1 pathway mediates skeletal deformities in an age-related model via inhibiting the function of mesenchymal stem cells. Aging (Albany NY). 7:205–218. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koganti P, Levy-Cohen G and Blank M: smurfs in protein homeostasis, signaling, and cancer. Front Oncol. 8:2952018. View Article : Google Scholar : PubMed/NCBI | |
Xu Z, Greenblatt MB, Yan G, Feng H, Sun J, Lotinun S, Brady N, Baron R, Glimcher LH and Zou W: SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nat Commun. 8:145702017. View Article : Google Scholar : PubMed/NCBI | |
Bonewald LF and Mundy GR: Role of transforming growth factor-beta in bone remodeling. Clin Orthop Relat Res. 261–276. 1990.PubMed/NCBI | |
Bai Y and Ying Y: The post-translational modifications of Smurf2 in TGF-β signaling. Front Mol Biosci. 7:1282020. View Article : Google Scholar | |
Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, Chijimatsu R, Pye M, Narimatsu M, Wrana JL, et al: A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 8:412020. View Article : Google Scholar : PubMed/NCBI | |
Shu L, Zhang H, Boyce BF and Xing L: Ubiquitin E3 ligase Wwp1 negatively regulates osteoblast function by inhibiting osteoblast differentiation and migration. J Bone Miner Res. 28:1925–1935. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ and Glimcher LH: Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science. 312:1223–1227. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Huang J, Zhang H, Wang Y, Matesic LE, Takahata M, Awad H, Chen D and Xing L: Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells. 29:1601–1610. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhu W, He X, Hua Y, Li Q, Wang J and Gan X: The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a mono-ubiquitination manner during osteogenic differentiation. J Biol Chem. 292:11178–11188. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Kou X, Chen C, Liu S, Liu Y, Yu W, Yu T, Yang R, Wang R, Zhou Y and Shi S: Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 28:918–933. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matsumoto Y, Larose J, Kent OA, Lim M, Changoor A, Zhang L, Storozhuk Y, Mao X, Grynpas MD, Cong F and Rottapel R: RANKL coordinates multiple osteoclastogenic pathways by regulating expression of ubiquitin ligase RNF146. J Clin Invest. 127:1303–1315. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y and Ding S: A high-throughput siRNA library screen identifies osteogenic suppressors in human mesenchymal stem cells. Proc Natl Acad Sci USA. 104:9673–9678. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Shang H, Zhang C, Liu Y, Zhao Y, Shuang F, Zhong H, Tang J and Hou S: The E3 ligase RNF185 negatively regulates osteogenic differentiation by targeting Dvl2 for degradation. Biochem Biophys Res Commun. 447:431–436. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Li X, Zhang H, Gu R, Wang Z, Gao Z and Xing L: Ubiquitin E3 ligase Itch negatively regulates osteoblast function by promoting proteasome degradation of osteogenic proteins. Bone Joint Res. 6:154–161. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang H and Xing L: Ubiquitin e3 ligase itch negatively regulates osteoblast differentiation from mesenchymal progenitor cells. Stem Cells. 31:1574–1583. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Wu C, Matesic LE, Li X, Wang Z, Boyce BF and Xing L: Ubiquitin E3 ligase Itch negatively regulates osteoclast formation by promoting deubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6. J Biol Chem. 288:22359–22368. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Zhao Y and Sun Y: USP2 is an SKP2 deubiquitylase that stabilizes both SKP2 and its substrates. J Biol Chem. 297:1011092021. View Article : Google Scholar : PubMed/NCBI | |
Thacker G, Kumar Y, Khan MP, Shukla N, Kapoor I, Kanaujiya JK, Lochab S, Ahmed S, Sanyal S, Chattopadhyay N and Trivedi AK: Skp2 inhibits osteogenesis by promoting ubiquitin-proteasome degradation of Runx2. Biochim Biophys Acta. 1863:510–519. 2016. View Article : Google Scholar : PubMed/NCBI | |
Eddins MJ, Marblestone JG, Suresh Kumar KG, Leach CA, Sterner DE, Mattern MR and Nicholson B: Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem Biophys. 60:113–118. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bettis T, Kim BJ and Hamrick MW: Impact of muscle atrophy on bone metabolism and bone strength: Implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int. 29:1713–1720. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Cai G, Chen P, Jiang T and Xia Z: UBE2E3 regulates cellular senescence and osteogenic differentiation of BMSCs during aging. PeerJ. 9:e122532021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang P, Xie Z, Wang S, Cen S, Li M, Liu W, Tang S, Ye G, Zheng G, et al: TRAF4 positively regulates the osteogenic differentiation of mesenchymal stem cells by acting as an E3 ubiquitin ligase to degrade Smurf2. Cell Death Differ. 26:2652–2666. 2019. View Article : Google Scholar : PubMed/NCBI | |
An H, Krist DT and Statsyuk AV: Crosstalk between kinases and Nedd4 family ubiquitin ligases. Mol Biosyst. 10:1643–1657. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wiszniak S, Harvey N and Schwarz Q: Cell autonomous roles of Nedd4 in craniofacial bone formation. Dev Biol. 410:98–107. 2016. View Article : Google Scholar | |
Jeon SA, Lee JH, Kim DW and Cho JY: E3-ubiquitin ligase NEDD4 enhances bone formation by removing TGFβ1-induced pSMAD1 in immature osteoblast. Bone. 116:248–258. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Lv L, Li W, Zhang X, Jiang Y, Ge W and Zhou Y: Protein deubiquitinase USP7 is required for osteogenic differentiation of human adipose-derived stem cells. Stem Cell Res Ther. 8:1862017. View Article : Google Scholar : PubMed/NCBI | |
Sun D, Peng Y, Ge S and Fu Q: USP1 inhibits NF-κB/NLRP3 induced pyroptosis through TRAF6 in osteoblastic MC3T3-E1 cells. J Musculoskelet Neuronal Interact. 22:536–545. 2022.PubMed/NCBI | |
Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC, Carano RA and Dixit VM: USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell. 146:918–930. 2011. View Article : Google Scholar : PubMed/NCBI | |
Chaugule S, Kim JM, Yang YS, Knobeloch KP, He X and Shim JH: Deubiquitinating enzyme USP8 is essential for skeletogenesis by regulating Wnt signaling. Int J Mol Sci. 22:102892021. View Article : Google Scholar : PubMed/NCBI | |
Kaushal K, Tyagi A, Karapurkar JK, Kim EJ, Tanguturi P, Kim KS, Jung HS and Ramakrishna S: Genome-wide CRISPR/Cas9-Based screening for deubiquitinase subfamily identifies ubiquitin-specific protease 11 as a novel regulator of osteogenic differentiation. Int J Mol Sci. 23:8562022. View Article : Google Scholar : PubMed/NCBI | |
Guo YC, Wang MY, Zhang SW, Wu YS, Zhou CC, Zheng RX, Shao B, Wang Y, Xie L, Liu WQ, et al: Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J. 37:e993982018. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Lee JM and Cho JY: Ubiquitin C-terminal hydrolase-L3 regulates Smad1 ubiquitination and osteoblast differentiation. FEBS Lett. 585:1121–1126. 2011. View Article : Google Scholar : PubMed/NCBI | |
Huang P, Yan R, Zhang X, Wang L, Ke X and Qu Y: Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. Pharmacol Ther. 196:79–90. 2019. View Article : Google Scholar | |
Zhou F, Li F, Fang P, Dai T, Yang B, van Dam H, Jia J, Zheng M and Zhang L: Ubiquitin-specific protease 4 antagonizes osteoblast differentiation through dishevelled. J Bone Miner Res. 31:1888–8198. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guasto A and Cormier-Daire V: Signaling pathways in bone development and their related skeletal dysplasia. Int J Mol Sci. 22:43212021. View Article : Google Scholar : PubMed/NCBI | |
Herhaus L and Sapkota GP: The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways. Cell Signal. 26:2186–2192. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baek D, Park KH, Lee KM, Jung S, Joung S, Kim J and Lee JW: Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Cell Death Dis. 12:2382021. View Article : Google Scholar : PubMed/NCBI | |
Hariri H, Kose O, Bezdjian A, Daniel SJ and St-Arnaud R: USP53 regulates bone homeostasis by controlling rankl expression in osteoblasts and bone marrow adipocytes. J Bone Miner Res. 38:578–596. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tsuru M, Ono A, Umeyama H, Takeuchi M and Nagata K: Ubiquitin-dependent proteolysis of CXCL7 leads to posterior longitudinal ligament ossification. PLoS One. 13:e01962042018. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Li S, Hu S, Yu W, Jiang B, Mao C, Li G, Yang R, Miao X, Jin M, et al: UCHL1 impairs periodontal ligament stem cell osteogenesis in periodontitis. J Dent Res. 102:61–71. 2023. View Article : Google Scholar | |
Cao Y, Zhang X, Hu M, Yang S, Li X, Han R, Zhou J, Li D and Liu D: CYLD inhibits osteoclastogenesis to ameliorate alveolar bone loss in mice with periodontitis. J Cell Physiol. 238:1036–1045. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ang E, Pavlos NJ, Rea SL, Qi M, Chai T, Walsh JP, Ratajczak T, Zheng MH and Xu J: Proteasome inhibitors impair RANKL-induced NF-kappaB activity in osteoclast-like cells via disruption of p62, TRAF6, CYLD, and IkappaBalpha signaling cascades. J Cell Physiol. 220:450–459. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J and Sun SC: Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest. 118:1858–1866. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hong JY, Bae WJ, Yi JK, Kim GT and Kim EC: Anti-inflammatory and anti-osteoclastogenic effects of zinc finger protein A20 overexpression in human periodontal ligament cells. J Periodontal Res. 51:529–539. 2016. View Article : Google Scholar | |
Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP and Ma A: Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 289:2350–2354. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lee MJ, Lim E, Mun S, Bae S, Murata K, Ivashkiv LB and Park-Min KH: Intravenous immunoglobulin (IVIG) attenuates TNF-induced pathologic bone resorption and suppresses osteoclastogenesis by inducing A20 expression. J Cell Physiol. 231:449–458. 2016. View Article : Google Scholar : | |
Martens A and van Loo G: A20 at the crossroads of cell death, inflammation, and autoimmunity. Cold Spring Harb Perspect Biol. 12:a0364182020. View Article : Google Scholar | |
Yan K, Wu C, Ye Y, Li L, Wang X, He W, Ren S and Xu Y: A20 inhibits osteoclastogenesis via TRAF6-dependent autophagy in human periodontal ligament cells under hypoxia. Cell Prolif. 53:e127782020. View Article : Google Scholar : PubMed/NCBI | |
Birol M and Echalier A: Structure and function of MPN (Mpr1/Pad1 N-terminal) domain-containing proteins. Curr Protein Pept Sci. 15:504–517. 2014. View Article : Google Scholar : PubMed/NCBI | |
Fiore A, Liang Y, Lin YH, Tung J, Wang H, Langlais D and Nijnik A: Deubiquitinase MYSM1 in the hematopoietic system and beyond: A current review. Int J Mol Sci. 21:30072020. View Article : Google Scholar : PubMed/NCBI | |
Li P, Yang YM, Sanchez S, Cui DC, Dang RJ, Wang XY, Lin QX, Wang Y, Wang C, Chen DF, et al: Deubiquitinase MYSM1 Is essential for normal bone formation and mesenchymal stem cell differentiation. Sci Rep. 6:222112016. View Article : Google Scholar : PubMed/NCBI | |
Haffner-Luntzer M, Kovtun A, Fischer V, Prystaz K, Hainzl A, Kroeger CM, Krikki I, Brinker TJ, Ignatius A and Gatzka M: Loss of p53 compensates osteopenia in murine Mysm1 deficiency. FASEB J. 32:1957–1968. 2018. View Article : Google Scholar | |
Lin YC, Zheng G, Liu HT, Wang P, Yuan WQ, Zhang YH, Peng XS, Li GJ, Wu YF and Shen HY: USP7 promotes the osteoclast differentiation of CD14+ human peripheral blood monocytes in osteoporosis via HMGB1 deubiquitination. J Orthop Translat. 40:80–91. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Wu Y, Shen Y, Guo J, Yuan P, Ma Q, Wang S, Jie Z, Zhou H, Fan S and Chen S: USP7 inhibits osteoclastogenesis via dual effects of attenuating TRAF6/TAK1 axis and stimulating STING signaling. Aging Dis. 14:2267–2283. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mustachio LM, Lu Y, Kawakami M, Roszik J, Freemantle SJ, Liu X and Dmitrovsky E: Evidence for the ISG15-specific deubiquitinase USP18 as an antineoplastic target. Cancer Res. 78:587–592. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Lu Y, Chen Z, Liu X, Hu W, Zheng L, Chen Y, Kurie JM, Shi M, Mustachio LM, et al: The ubiquitin-specific peptidase USP18 promotes lipolysis, fatty acid oxidation, and lung cancer growth. Mol Cancer Res. 19:667–677. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yim HY, Park C, Lee YD, Arimoto K, Jeon R, Baek SH, Zhang DE, Kim HH and Kim KI: Elevated response to type I IFN enhances RANKL-mediated osteoclastogenesis in Usp18-knockout mice. J Immunol. 196:3887–3895. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Wang M, Xue H, Liu W, Guo Y, Xu R, Shao B and Yuan Q: Ubiquitin-specific protease 34 inhibits osteoclast differentiation by regulating NF-κB signaling. J Bone Miner Res. 35:1597–1608. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Qiu M, Chang L, Qi J, Zhang L, Ryffel B and Deng L: The osteoprotective role of USP26 in coordinating bone formation and resorption. Cell Death Differ. 29:1123–1136. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhu Q, Fu Y, Cui CP, Ding Y, Deng Z, Ning C, Hu F, Qiu C, Yu B, Zhou X, et al: OTUB1 promotes osteoblastic bone formation through stabilizing FGFR2. Signal Transduct Target Ther. 8:1422023. View Article : Google Scholar : PubMed/NCBI | |
LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ and Siris ES: The clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. 33:2049–2102. 2022. View Article : Google Scholar : PubMed/NCBI | |
Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH and Shoback D: Pharmacological management of osteoporosis in postmenopausal women: An endocrine society* clinical practice guideline. J Clin Endocrinol Metab. 104:1595–1622. 2019. View Article : Google Scholar : PubMed/NCBI | |
McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, Hanley DA, Kendler DL, Yuen CK and Lewiecki EM: Bisphosphonate therapy for osteoporosis: Benefits, risks, and drug holiday. Am J Med. 126:13–20. 2013. View Article : Google Scholar | |
Shane E, Burr D, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster DW, et al: Atypical subtrochanteric and diaphyseal femoral fractures: Second report of a task force of the American society for bone and mineral research. J Bone Miner Res. 29:1–23. 2014. View Article : Google Scholar | |
Deeks ED: Denosumab: A review in postmenopausal osteoporosis. Drugs Aging. 35:163–173. 2018. View Article : Google Scholar : PubMed/NCBI | |
Morin SN, Feldman S, Funnell L, Giangregorio L, Kim S, McDonald-Blumer H, Santesso N, Ridout R, Ward W, Ashe MC, et al: Clinical practice guideline for management of osteoporosis and fracture prevention in Canada: 2023 Update. CMAJ. 195:E1333–E1348. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lobo RA, Pickar JH, Stevenson JC, Mack WJ and Hodis HN: Back to the future: Hormone replacement therapy as part of a prevention strategy for women at the onset of menopause. Atherosclerosis. 254:282–290. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gosset A, Pouillès JM and Trémollieres F: Menopausal hormone therapy for the management of osteoporosis. Best Pract Res Clin Endocrinol Metab. 35:1015512021. View Article : Google Scholar : PubMed/NCBI | |
Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, et al: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the women's health initiative randomized controlled trial. JAMA. 288:321–333. 2002. View Article : Google Scholar : PubMed/NCBI | |
Prior JC, Seifert-Klauss VR, Giustini D, Adachi JD, Kalyan S and Goshtasebi A: Estrogen-progestin therapy causes a greater increase in spinal bone mineral density than estrogen therapy-a systematic review and meta-analysis of controlled trials with direct randomization. J Musculoskelet Neuronal Interact. 17:146–154. 2017.PubMed/NCBI | |
de Villiers TJ, Hall JE, Pinkerton JV, Pérez SC, Rees M, Yang C and Pierroz DD: Revised global consensus statement on menopausal hormone therapy. Maturitas. 91:153–155. 2016. View Article : Google Scholar : PubMed/NCBI | |
Levin VA, Jiang X and Kagan R: Estrogen therapy for osteoporosis in the modern era. Osteoporos Int. 29:1049–1055. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abdi F, Mobedi H, Bayat F, Mosaffa N, Dolatian M and Ramezani Tehrani F: The effects of transdermal estrogen delivery on bone mineral density in postmenopausal women: A meta-analysis. Iran J Pharm Res. 16:380–389. 2017.PubMed/NCBI | |
Mosca L: Rationale and overview of the raloxifene use for the heart (RUTH) trial. Ann N Y Acad Sci. 949:181–185. 2001. View Article : Google Scholar | |
Ensrud K, Genazzani AR, Geiger MJ, McNabb M, Dowsett SA, Cox DA and Barrett-Connor E: Effect of raloxifene on cardiovascular adverse events in postmenopausal women with osteoporosis. Am J Cardiol. 97:520–527. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vahle JL, Long GG, Sandusky G, Westmore M, Ma YL and Sato M: Bone neoplasms in F344 rats given teriparatide [rhPTH(1-34)] are dependent on duration of treatment and dose. Toxicol Pathol. 32:426–438. 2004. View Article : Google Scholar : PubMed/NCBI | |
Andrews EB, Gilsenan AW, Midkiff K, Sherrill B, Wu Y, Mann BH and Masica D: The US postmarketing surveillance study of adult osteosarcoma and teriparatide: Study design and findings from the first 7 years. J Bone Miner Res. 27:2429–2437. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Guo J, Kanwal Z, Wu M, Lv X, Ibrahim NA, Li P, Buabeid MA, Arafa EA and Sun Q: Calcitonin and bone physiology: In vitro, in vivo, and clinical investigations. Int J Endocrinol. 2020:32368282020. View Article : Google Scholar : PubMed/NCBI | |
Holdsworth G, Roberts SJ and Ke HZ: Novel actions of sclerostin on bone. J Mol Endocrinol. 62:R167–R185. 2019. View Article : Google Scholar | |
Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, Liu S, Looker AC, Wallace TC and Wang DD: Calcium plus vitamin D supplementation and risk of fractures: An updated meta-analysis from the national osteoporosis foundation. Osteoporos Int. 27:367–376. 2016. View Article : Google Scholar : | |
Meng J, Zhang W, Wang C, Zhang W, Zhou C, Jiang G, Hong J, Yan S and Yan W: Catalpol suppresses osteoclastogenesis and attenuates osteoclast-derived bone resorption by modulating PTEN activity. Biochem Pharmacol. 171:1137152020. View Article : Google Scholar | |
Ferlazzo N, Andolina G, Cannata A, Costanzo MG, Rizzo V, Currò M, Ientile R and Caccamo D: Is melatonin the cornucopia of the 21st century? Antioxidants (Basel). 9:10882020. View Article : Google Scholar : PubMed/NCBI | |
Lian C, Wu Z, Gao B, Peng Y, Liang A, Xu C, Liu L, Qiu X, Huang J, Zhou H, et al: Melatonin reversed tumor necrosis factor-alpha-inhibited osteogenesis of human mesenchymal stem cells by stabilizing SMAD1 protein. J Pineal Res. 61:317–327. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zheng ZG, Cheng HM, Zhou YP, Zhu ST, Thu PM, Li HJ, Li P and Xu X: Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ. 27:2048–2065. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zheng HL, Xu WN, Zhou WS, Yang RZ, Chen PB, Liu T, Jiang LS and Jiang SD: Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis. 12:4972021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang C, Cao Y, Gu Y and Zhang L: Selective compounds enhance osteoblastic activity by targeting HECT domain of ubiquitin ligase Smurf1. Oncotarget. 8:50521–50533. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ye LC, Qian LF, Liang L, Jiang LJ, Che ZY and Guo YH: Overexpression of miR-195-5p reduces osteoporosis through activating BMP-2/SMAD/Akt/RUNX2 pathway via targeting SMURF1. J Biol Regul Homeost Agents. 35:1201–1216. 2021. | |
Oyajobi BO, Garrett IR, Gupta A, Flores A, Esparza J, Muñoz S, Zhao M and Mundy GR: Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications for myeloma bone disease. Br J Haematol. 139:434–438. 2007. View Article : Google Scholar : PubMed/NCBI | |
Uyama M, Sato MM, Kawanami M and Tamura M: Regulation of osteoblastic differentiation by the proteasome inhibitor bortezomib. Genes Cells. 17:548–558. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Liu Y, Zhao Z, Lu Y, Shen X, Zhu T, Hou M, He F, Yang H, Zhang Y, et al: Bortezomib rescues ovariectomy-induced bone loss via SMURF-mediated ubiquitination pathway. Oxid Med Cell Longev. 2021:96612002021. View Article : Google Scholar | |
Khedgikar V, Kushwaha P, Gautam J, Verma A, Changkija B, Kumar A, Sharma S, Nagar GK, Singh D, Trivedi PK, et al: Withaferin A: A proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis. 4:e7782013. View Article : Google Scholar : PubMed/NCBI | |
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S and Satyamoorthy K: Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc. 93:1955–1986. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Yang Y, Wang J, Yao S, Yao T, Xu Y, Chen Z, Yuan P, Gao J, Shen S and Ma J: miR-21-5p targets SKP2 to reduce osteoclastogenesis in a mouse model of osteoporosis. J Biol Chem. 296:1006172021. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Gao X, Li Y, Sun W, Xu Y, Tan Y, Du R, Zhong G, Zhao D, Liu Z, et al: The mechanosensitive lncRNA Neat1 promotes osteoblast function through paraspeckle-dependent Smurf1 mRNA retention. Bone Res. 10:182022. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Wu W, Jiao G, Chen Y and Liu H: LncRNA SNHG1 modulates p38 MAPK pathway through Nedd4 and thus inhibits osteogenic differentiation of bone marrow mesenchymal stem cells. Life Sci. 228:208–214. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Jin R, Duan J, Yang L, Cai Z, Zhu W, Nie Y, He J, Xia C, Gong Q, et al: Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex. Acta Biomater. 103:281–292. 2020. View Article : Google Scholar | |
Liu Y, Huang X, He X, Zhou Y, Jiang X, Chen-Kiang S, Jaffrey SR and Xu G: A novel effect of thalidomide and its analogs: Suppression of cereblon ubiquitination enhances ubiquitin ligase function. FASEB J. 29:4829–4839. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mishima K, Kitoh H, Ohkawara B, Okuno T, Ito M, Masuda A, Ishiguro N and Ohno K: Lansoprazole upregulates polyubiquitination of the TNF receptor-associated factor 6 and facilitates Runx2-mediated osteoblastogenesis. EBioMedicine. 2:2046–2061. 2015. View Article : Google Scholar | |
Li X, Sun W, Li J, Wang M, Zhang H, Pei L, Boyce BF, Wang Z and Xing L: Clomipramine causes osteoporosis by promoting osteoclastogenesis via E3 ligase Itch, which is prevented by zoledronic acid. Sci Rep. 7:413582017. View Article : Google Scholar : PubMed/NCBI |