Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2024 Volume 54 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 54 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review)

  • Authors:
    • Xinyu Gao
    • Cuixue Ma
    • Shan Liang
    • Meihong Chen
    • Yuan He
    • Wei Lei
  • View Affiliations / Copyright

    Affiliations: Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
    Copyright: © Gao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 74
    |
    Published online on: July 4, 2024
       https://doi.org/10.3892/ijmm.2024.5398
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

PANoptosis, a complex form of proinflammatory programmed cell death, including apoptosis, pyroptosis and necroptosis, has been an emerging concept in recent years that has been widely reported in cancer, infectious diseases and neurological disorders. Cardiovascular diseases (CVDs) are an important global health problem, posing a serious threat to individuals' lives. An increasing body of research shows that inflammation has a pivotal role in CVDs, which provides an important theoretical basis for PANoptosis to promote the progression of CVDs. To date, only sporadic studies on PANoptosis in CVDs have been reported and its role in the field of CVDs has not been fully explored. Elucidating the various modes of cardiomyocyte death, the specific molecular mechanisms and the links among the various modes of death under various stressful stimuli is of notable clinical significance for a deeper understanding of the pathophysiology of CVDs. The present review summarizes the molecular mechanisms of apoptosis, pyroptosis, necroptosis and PANoptosis and their prospects in the field of CVDs.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Sun X, Yang Y, Meng X, Li J, Liu X and Liu H: PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev. 321:246–262. 2024. View Article : Google Scholar

2 

Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC and Kanneganti T-D: AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature. 597:415–419. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Gullett JM, Tweedell RE and Kanneganti TD: It's all in the PAN: Crosstalk, plasticity, redundancies, switches, and interconnectedness encompassed by PANoptosis underlying the totality of cell death-associated biological effects. Cells. 11:14952022. View Article : Google Scholar : PubMed/NCBI

4 

Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, Zhao WJ, Zhang Q and Xiong K: Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res. 17:1761–1768. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Pan H, Pan J, Li P and Gao J: Characterization of PANoptosis patterns predicts survival and immunotherapy response in gastric cancer. Clin Immunol. 238:1090192022. View Article : Google Scholar : PubMed/NCBI

6 

Pandian N and Kanneganti TD: PANoptosis: A unique innate immune inflammatory cell death modality. J Immunol. 209:1625–1633. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Piamsiri C, Maneechote C, Siri-Angkul N, Chattipakorn SC and Chattipakorn N: Targeting necroptosis as therapeutic potential in chronic myocardial infarction. J Biomed Sci. 28:252021. View Article : Google Scholar : PubMed/NCBI

8 

Wang H, Yu W, Wang Y, Wu R, Dai Y, Deng Y, Wang S, Yuan J and Tan R: p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm. Free Radic Biol Med. 208:846–858. 2023. View Article : Google Scholar : PubMed/NCBI

9 

Toldo S and Abbate A: The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat Rev Cardiol. 21:219–237. 2024. View Article : Google Scholar

10 

Bi Y, Xu H, Wang X, Zhu H, Ge J, Ren J and Zhang Y: FUNDC1 protects against doxorubicin-induced cardiomyocyte PANoptosis through stabilizing mtDNA via interaction with TUFM. Cell Death Dis. 13:10202022. View Article : Google Scholar : PubMed/NCBI

11 

Wang Y and Kanneganti TD: From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J. 19:4641–4657. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Chen W, Gullett JM, Tweedell RE and Kanneganti TD: Innate immune inflammatory cell death: PANoptosis and PANoptosomes in host defense and disease. Eur J Immunol. 53:e22502352023. View Article : Google Scholar : PubMed/NCBI

13 

Ji X, Huang X, Li C, Guan N, Pan T, Dong J and Li L: Effect of tumor-associated macrophages on the pyroptosis of breast cancer tumor cells. Cell Commun Signal. 21:1972023. View Article : Google Scholar : PubMed/NCBI

14 

Nagata S and Tanaka M: Programmed cell death and the immune system. Nat Rev Immunol. 17:333–340. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Man SM, Karki R and Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Wu Y, Zhang J, Yu S, Li Y, Zhu J, Zhang K and Zhang R: Cell pyroptosis in health and inflammatory diseases. Cell Death Discov. 8:1912022. View Article : Google Scholar : PubMed/NCBI

17 

Liu X, Xia S, Zhang Z, Wu H and Lieberman J: Channelling inflammation: Gasdermins in physiology and disease. Nat Rev Drug Discov. 20:384–405. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Feng Y, Li M, Yangzhong X, Zhang X, Zu A, Hou Y, Li L and Sun S: Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem. 78:721–737. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Zhu H and Sun A: Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol. 116:125–134. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, et al: Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol. 317:H891–H922. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Shi Z, Yuan S, Shi L, Li J, Ning G, Kong X and Feng S: Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Proliferation. 54:e129922021. View Article : Google Scholar : PubMed/NCBI

22 

Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X and Liu NF: Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis. 13:4672022. View Article : Google Scholar : PubMed/NCBI

23 

Shi C, Cao P, Wang Y, Zhang Q, Zhang D, Wang Y, Wang L and Gong Z: PANoptosis: A cell death characterized by pyroptosis, apoptosis, and necroptosis. J Inflamm Res. 16:1523–1532. 2023. View Article : Google Scholar : PubMed/NCBI

24 

Wei Q, Ren H, Zhang J, Yao W, Zhao B and Miao J: An inhibitor of Grp94 inhibits OxLDL-Induced autophagy and apoptosis in VECs and stabilized atherosclerotic plaques. Front Cardiovasc Med. 8:7575912021. View Article : Google Scholar : PubMed/NCBI

25 

Guo J, Li J, Zhang J, Guo X, Liu H, Li P, Zhang Y, Lin C and Fan Z: LncRNA PVT1 knockdown alleviated ox-LDL-induced vascular endothelial cell injury and atherosclerosis by miR-153-3p/GRB2 axis via ERK/p38 pathway. Nutr Metab Cardiovasc Dis. 31:3508–3521. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Wang W, Tang W, Shan E, Zhang L, Chen S, Yu C and Gao Y: MiR-130a-5p contributed to the progression of endothelial cell injury by regulating FAS. Eur J Histochem. 66:33422022. View Article : Google Scholar : PubMed/NCBI

27 

Sayed S, Faruq O, Preya UH and Kim JT: Cathepsin S knockdown suppresses endothelial inflammation, angiogenesis, and complement protein activity under hyperglycemic conditions in vitro by inhibiting NF-κB signaling. Int J Mol Sci. 24:54282023. View Article : Google Scholar

28 

Tang H, Li K, Zhang S, Lan H, Liang L, Huang C and Li T: Inhibitory effect of paeonol on apoptosis, oxidative stress, and inflammatory response in human umbilical vein endothelial cells induced by high glucose and palmitic acid induced through regulating SIRT1/FOXO3a/NF-κB pathway. J Interferon Cytokine Res. 41:111–124. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Liu X, Xu Y, Cheng S, Zhou X, Zhou F, He P, Hu F, Zhang L, Chen Y and Jia Y: Geniposide combined with Notoginsenoside R1 attenuates inflammation and apoptosis in atherosclerosis via the AMPK/mTOR/Nrf2 signaling pathway. Front Pharmacol. 12:6873942021. View Article : Google Scholar : PubMed/NCBI

30 

Du M, Wang C, Yang L, Liu B, Zheng Z, Yang L, Zhang F, Peng J, Huang D and Huang K: The role of long noncoding RNA Nron in atherosclerosis development and plaque stability. iScience. 25:1039782022. View Article : Google Scholar : PubMed/NCBI

31 

Sinha SK, Miikeda A, Fouladian Z, Mehrabian M, Edillor C, Shih D, Zhou Z, Paul MK, Charugundla S, Davis RC, et al: Local M-CSF (Macrophage Colony-stimulating factor) expression regulates macrophage proliferation and apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol. 41:220–233. 2021. View Article : Google Scholar

32 

Niu N, Miao H and Ren H: Effect of miR-182-5p on apoptosis in myocardial infarction. Heliyon. 9:e215242023. View Article : Google Scholar : PubMed/NCBI

33 

Lin M, Liu X, Zheng H, Huang X, Wu Y, Huang A, Zhu H, Hu Y, Mai W and Huang Y: IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Res Ther. 11:222020. View Article : Google Scholar : PubMed/NCBI

34 

Fu DL, Jiang H, Li CY, Gao T, Liu MR and Li HW: MicroRNA-338 in MSCs-derived exosomes inhibits cardiomyocyte apoptosis in myocardial infarction. Eur Rev Med Pharmacol Sci. 24:10107–10117. 2020.PubMed/NCBI

35 

Wu H, Zhao ZA, Liu J, Hao K, Yu Y, Han X, Li J, Wang Y, Lei W, Dong N, et al: Long noncoding RNA Meg3 regulates cardiomyocyte apoptosis in myocardial infarction. Gene Ther. 25:511–523. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Zhao L, Yang XR and Han X: MicroRNA-146b induces the PI3K/Akt/NF-κB signaling pathway to reduce vascular inflammation and apoptosis in myocardial infarction by targeting PTEN. Exp Ther Med. 17:1171–1181. 2019.PubMed/NCBI

37 

Luo C, Xiong S, Huang Y, Deng M, Zhang J, Chen J, Yang R and Ke X: The Novel Non-coding transcriptional regulator Gm18840 drives cardiomyocyte apoptosis in myocardial infarction post ischemia/reperfusion. Front Cell Dev Biol. 9:6159502021. View Article : Google Scholar : PubMed/NCBI

38 

Zhou F, Fu WD and Chen L: MiRNA-182 regulates the cardiomyocyte apoptosis in heart failure. Eur Rev Med Pharmacol Sci. 23:4917–4923. 2019.PubMed/NCBI

39 

Zhang Y, Li C, Meng H, Guo D, Zhang Q, Lu W, Wang Q, Wang Y and Tu P: BYD Ameliorates oxidative stress-induced myocardial apoptosis in heart failure post-acute myocardial infarction via the P38 MAPK-CRYAB signaling pathway. Front Physiol. 9:5052018. View Article : Google Scholar : PubMed/NCBI

40 

Yan X, Wu H, Ren J, Liu Y, Wang S, Yang J, Qin S and Wu D: Shenfu Formula reduces cardiomyocyte apoptosis in heart failure rats by regulating microRNAs. J Ethnopharmacol. 227:105–112. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Colpman P, Dasgupta A and Archer SL: The role of mitochondrial dynamics and mitotic fission in regulating the cell cycle in cancer and pulmonary arterial hypertension: Implications for dynamin-related protein 1 and mitofusin2 in hyperproliferative diseases. Cells. 12:18972023. View Article : Google Scholar : PubMed/NCBI

42 

Dabral S, Tian X, Kojonazarov B, Savai R, Ghofrani HA, Weissmann N, Florio M, Sun J, Jonigk D, Maegel L, et al: Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension. Eur Respir J. 48:1137–1149. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Jiang DT, Tuo L, Bai X, Bing WD, Qu QX, Zhao X, Song GM, Bi YW and Sun WY: Prostaglandin E1 reduces apoptosis and improves the homing of mesenchymal stem cells in pulmonary arterial hypertension by regulating hypoxia-inducible factor 1 alpha. Stem Cell Res Ther. 13:3162022. View Article : Google Scholar : PubMed/NCBI

44 

Jiang Y, Hei B, Hao W, Lin S, Wang Y, Liu X, Meng X and Guan Z: Clinical value of lncRNA SOX2-OT in pulmonary arterial hypertension and its role in pulmonary artery smooth muscle cell proliferation, migration, apoptosis, and inflammatory. Heart Lung. 55:16–23. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Hu F, Liu H, Wang C, Li H and Qiao L: Expression of the microRNA-30 family in pulmonary arterial hypertension and the role of microRNA-30d-5p in the regulation of pulmonary arterial smooth muscle cell toxicity and apoptosis. Exp Ther Med. 23:1082022. View Article : Google Scholar : PubMed/NCBI

46 

Li X, Liu C, Qi W, Meng Q, Zhao H, Teng Z, Xu R, Wu X, Zhu F, Qin Y, et al: Endothelial Dec1-PPARγ axis impairs proliferation and apoptosis homeostasis under hypoxia in pulmonary arterial hypertension. Front Cell Dev Biol. 9:7571682021. View Article : Google Scholar

47 

Cuthbertson I, Morrell NW and Caruso P: BMPR2 mutation and metabolic reprogramming in pulmonary arterial hypertension. Circ Res. 132:109–126. 2023. View Article : Google Scholar : PubMed/NCBI

48 

Vera-Zambrano A, Lago-Docampo M, Gallego N, Franco-Gonzalez JF, Morales-Cano D, Cruz-Utrilla A, Villegas-Esguevillas M, Fernández-Malavé E, Escribano-Subías P, Tenorio-Castaño JA, et al: Novel Loss-of-function KCNA5 variants in pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 69:147–158. 2023. View Article : Google Scholar : PubMed/NCBI

49 

Ye B, Peng X, Su D, Liu D, Huang Y, Huang Y and Pang Y: Effects of YM155 on the proliferation and apoptosis of pulmonary artery smooth muscle cells in a rat model of high pulmonary blood flow-induced pulmonary arterial hypertension. Clin Exp Hypertens. 44:470–479. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Lu Y, Wu J, Sun Y, Xin L, Jiang Z, Lin H, Zhao M and Cui X: Qiliqiangxin prevents right ventricular remodeling by inhibiting apoptosis and improving metabolism reprogramming with pulmonary arterial hypertension. Am J Transl Res. 12:5655–5669. 2020.PubMed/NCBI

51 

Xu YJ, Zheng L, Hu YW and Wang Q: Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta. 476:28–37. 2018. View Article : Google Scholar

52 

Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, Lin Y, Bai X, Liu X, Chen X, et al: Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 9:1712018. View Article : Google Scholar : PubMed/NCBI

53 

Din AU, Hassan A, Zhu Y, Yin T, Gregersen H and Wang G: Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl Microbiol Biotechnol. 103:9217–9228. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Wu P, Chen J, Chen J, Tao J, Wu S, Xu G, Wang Z, Wei D and Yin W: Trimethylamine N-oxide promotes apoE-/-mice atherosclerosis by inducing vascular endothelial cell pyroptosis via the SDHB/ROS pathway. J Cell Physiol. 235:6582–6591. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Moore KJ, Sheedy FJ and Fisher EA: Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol. 13:709–721. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Peng X, Chen H, Li Y, Huang D, Huang B and Sun D: Effects of NIX-mediated mitophagy on ox-LDL-induced macrophage pyroptosis in atherosclerosis. Cell Biol Int. 44:1481–1490. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Xu S, Chen H, Ni H and Dai Q: Targeting HDAC6 attenuates nicotine-induced macrophage pyroptosis via NF-κB/NLRP3 pathway. Atherosclerosis. 317:1–9. 2021. View Article : Google Scholar

58 

Wu L, Xie W, Li Y, Ni Q, Timashev P, Lyu M, Xia L, Zhang Y, Liu L, Yuan Y, et al: Biomimetic nanocarriers guide extracellular ATP homeostasis to remodel energy metabolism for activating innate and adaptive immunity system. Adv Sci (Weinh). 9:e21053762022. View Article : Google Scholar : PubMed/NCBI

59 

Kiyan Y, Tkachuk S, Hilfiker-Kleiner D, Haller H, Fuhrman B and Dumler I: oxLDL induces inflammatory responses in vascular smooth muscle cells via urokinase receptor association with CD36 and TLR4. J Mol Cell Cardiol. 66:72–82. 2014. View Article : Google Scholar

60 

Pang Q, Wang P, Pan Y, Dong X, Zhou T, Song X and Zhang A: Irisin protects against vascular calcification by activating autophagy and inhibiting NLRP3-mediated vascular smooth muscle cell pyroptosis in chronic kidney disease. Cell Death Dis. 13:2832022. View Article : Google Scholar : PubMed/NCBI

61 

Li Y, Niu X, Xu H, Li Q, Meng L, He M, Zhang J and Zhang Z and Zhang Z: VX-765 attenuates atherosclerosis in ApoE deficient mice by modulating VSMCs pyroptosis. Exp Cell Res. 389:1118472020. View Article : Google Scholar : PubMed/NCBI

62 

Yue RC, Lu SZ, Luo Y, Wang T, Liang H, Zeng J, Liu J and Hu HX: Calpain silencing alleviates myocardial ischemia-reperfusion injury through the NLRP3/ASC/Caspase-1 axis in mice. Life Sci. 233:1166312019. View Article : Google Scholar : PubMed/NCBI

63 

Ding S, Liu D, Wang L, Wang G and Zhu Y: Inhibiting MicroRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther. 372:128–135. 2020. View Article : Google Scholar

64 

Rauf A, Shah M, Yellon DM and Davidson SM: Role of Caspase 1 in ischemia/reperfusion injury of the myocardium. J Cardiovasc Pharmacol. 74:194–200. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Do Carmo H, Arjun S, Petrucci O, Yellon DM and Davidson SM: The Caspase 1 inhibitor VX-765 protects the isolated rat heart via the RISK pathway. Cardiovasc Drugs Ther. 32:165–168. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Zhang X, Fu Y, Li H, Shen L, Chang Q, Pan L, Hong S and Yin X: H3 relaxin inhibits the collagen synthesis via ROS- and P2X7R-mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose. J Cell Mol Med. 22:1816–1825. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Zeng C, Duan F, Hu J, Luo B, Huang B, Lou X, Sun X, Li H, Zhang X, Yin S and Tan H: NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol. 34:1015232020. View Article : Google Scholar : PubMed/NCBI

68 

Bai Y, Sun X, Chu Q, Li A, Qin Y, Li Y, Yue E, Wang H, Li G, Zahra SM, et al: Caspase-1 regulate AngII-induced cardiomyocyte hypertrophy via upregulation of IL-1β. Biosci Rep. 38:BSR201714382018. View Article : Google Scholar

69 

Aluganti Narasimhulu C and Singla DK: Amelioration of diabetes-induced inflammation mediated pyroptosis, sarcopenia, and adverse muscle remodelling by bone morphogenetic protein-7. J Cachexia Sarcopenia Muscle. 12:403–420. 2021. View Article : Google Scholar : PubMed/NCBI

70 

He S, Ma C, Zhang L, Bai J, Wang X, Zheng X, Zhang J, Xin W, Li Y, Jiang Y, et al: GLI1-mediated pulmonary artery smooth muscle cell pyroptosis contributes to hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 318:L472–L482. 2020. View Article : Google Scholar

71 

Cero FT, Hillestad V, Sjaastad I, Yndestad A, Aukrust P, Ranheim T, Lunde IG, Olsen MB, Lien E, Zhang L, et al: Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol. 309:L378–L387. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Zhang M, Xin W, Yu Y, Yang X, Ma C, Zhang H, Liu Y, Zhao X, Guan X, Wang X and Zhu D: Programmed death-ligand 1 triggers PASMCs pyroptosis and pulmonary vascular fibrosis in pulmonary hypertension. J Mol Cell Cardiol. 138:23–33. 2020. View Article : Google Scholar

73 

Udjus C, Cero FT, Halvorsen B, Behmen D, Carlson CR, Bendiksen BA, Espe EKS, Sjaastad I, Løberg EM, Yndestad A, et al: Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 316:L999–L1012. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Zha LH, Zhou J, Li TZ, Luo H, He JN, Zhao L and Yu ZX: NLRC3: A novel noninvasive biomarker for pulmonary hypertension diagnosis. Aging Dis. 9:843–851. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Chai SD, Li ZK, Liu R, Liu T, Dong MF, Tang PZ, Wang JT and Ma SJ: The role of miRNA-155 in monocrotaline-induced pulmonary arterial hypertension through c-Fos/NLRP3/caspase-1. Mol Cell Toxicol. 16:311–320. 2020. View Article : Google Scholar

76 

Tang B, Chen G, Liang M, Yao J and Wu Z: Ellagic acid prevents monocrotaline-induced pulmonary artery hypertension via inhibiting NLRP3 inflammasome activation in rats. Int J Cardiol. 180:134–141. 2015. View Article : Google Scholar

77 

Lin J, Li H, Yang M, Ren J, Huang Z, Han F, Huang J, Ma J, Zhang D, Zhang Z, et al: A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3:200–210. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Guo N, Zhou H, Zhang Q, Fu Y, Jia Q, Gan X, Wang Y, He S, Li C, Tao Z, et al: Exploration and bioinformatic prediction for profile of mRNA bound to circular RNA BTBD7_hsa_circ_0000563 in coronary artery disease. BMC Cardiovasc Disord. 24:712024. View Article : Google Scholar : PubMed/NCBI

79 

Meng L, Jin W, Wang Y, Huang H, Li J and Zhang C: RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis. Biochem Biophys Res Commun. 473:497–502. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Karunakaran D, Geoffrion M, Wei L, Gan W, Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L, Maegdefessel L, et al: Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv. 2:e16002242016. View Article : Google Scholar : PubMed/NCBI

81 

Meng L, Jin W and Wang X: RIP3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc Natl Acad Sci USA. 112:11007–11012. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Rasheed A, Robichaud S, Nguyen MA, Geoffrion M, Wyatt H, Cottee ML, Dennison T, Pietrangelo A, Lee R, Lagace TA, et al: Loss of MLKL (Mixed Lineage Kinase Domain-Like Protein) decreases necrotic core but increases macrophage lipid accumulation in atherosclerosis. Arterioscler Thromb Vasc Biol. 40:1155–1167. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Akhtar S, Hartmann P, Karshovska E, Rinderknecht FA, Subramanian P, Gremse F, Grommes J, Jacobs M, Kiessling F, Weber C, et al: Endothelial hypoxia-inducible Factor-1α promotes atherosclerosis and monocyte recruitment by upregulating MicroRNA-19a. Hypertension. 66:1220–1226. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F, et al: RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res. 103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu M, Shi Z, Mu N, Yu L and Ma H: Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol. 125:185–194. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Guo X, Yin H, Li L, Chen Y, Li J, Doan J, Steinmetz R and Liu Q: Cardioprotective role of tumor necrosis factor receptor-associated factor 2 by suppressing apoptosis and necroptosis. Circulation. 136:729–742. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Li L, Chen Y, Doan J, Murray J, Molkentin JD and Liu Q: Transforming growth factor β-activated kinase 1 signaling pathway critically regulates myocardial survival and remodeling. Circulation. 130:2162–2172. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Zhang DY, Wang BJ, Ma M, Yu K, Zhang Q and Zhang XW: MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC Mol Biol. 20:172019. View Article : Google Scholar : PubMed/NCBI

89 

Yue LJ, Zhu XY, Li RS, Chang HJ, Gong B, Tian CC, Liu C, Xue YX, Zhou Q, Xu TS and Wang DJ: S-allyl-cysteine sulfoxide (alliin) alleviates myocardial infarction by modulating cardiomyocyte necroptosis and autophagy. Int J Mol Med. 44:1943–1951. 2019.PubMed/NCBI

90 

Liu J, Wu P, Wang Y, Du Y, A N, Liu S, Zhang Y, Zhou N, Xu Z and Yang Z: Ad-HGF improves the cardiac remodeling of rat following myocardial infarction by upregulating autophagy and necroptosis and inhibiting apoptosis. Am J Transl Res. 8:4605–4627. 2016.PubMed/NCBI

91 

Škėmienė K, Jablonskienė G, Liobikas J and Borutaitė V: Protecting the heart against ischemia/reperfusion-induced necrosis and apoptosis: The effect of anthocyanins. Medicina (Kaunas). 49:84–88. 2013.PubMed/NCBI

92 

Szobi A, Gonçalvesová E, Varga ZV, Leszek P, Kuśmierczyk M, Hulman M, Kyselovič J, Ferdinandy P and Adameová A: Analysis of necroptotic proteins in failing human hearts. J Transl Med. 15:862017. View Article : Google Scholar : PubMed/NCBI

93 

Marunouchi T, Nishiumi C, Iinuma S, Yano E and Tanonaka K: Effects of Hsp90 inhibitor on the RIP1-RIP3-MLKL pathway during the development of heart failure in mice. Eur J Pharmacol. 898:1739872021. View Article : Google Scholar : PubMed/NCBI

94 

Yang J, Zhang F, Shi H, Gao Y, Dong Z, Ma L, Sun X, Li X, Chang S, Wang Z, et al: Neutrophil-derived advanced glycation end products-Nε-(carboxymethyl) lysine promotes RIP3-mediated myocardial necroptosis via RAGE and exacerbates myocardial ischemia/reperfusion injury. FASEB J. 33:14410–14422. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Koshinuma S, Miyamae M, Kaneda K, Kotani J and Figueredo VM: Combination of necroptosis and apoptosis inhibition enhances cardioprotection against myocardial ischemia-reperfusion injury. J Anesth. 28:235–241. 2014. View Article : Google Scholar

97 

Xiao G, Zhuang W, Wang T, Lian G, Luo L, Ye C, Wang H and Xie L: Transcriptomic analysis identifies Toll-like and Nod-like pathways and necroptosis in pulmonary arterial hypertension. J Cell Mol Med. 24:11409–11421. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Jarabicová I, Horváth C, Veľasová E, Bies Piváčková L, Vetešková J, Klimas J, Křenek P and Adameová A: Analysis of necroptosis and its association with pyroptosis in organ damage in experimental pulmonary arterial hypertension. J Cell Mol Med. 26:2633–2645. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Tweedell RE and Kanneganti TD: Advances in inflammasome research: Recent breakthroughs and future hurdles. Trends Mol Med. 26:969–971. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Zhao P, Yao R, Du X and Yao Y: Research progress on the role of PANoptosis in human diseases. Zhonghua Yi Xue Za Zhi. 102:2549–2554. 2022.

101 

Malireddi RKS, Kesavardhana S and Kanneganti TD: ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis). Front Cell Infect Microbiol. 9:4062019. View Article : Google Scholar : PubMed/NCBI

102 

Zheng M and Kanneganti TD: The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 297:26–38. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Karki R, Lee S, Mall R, Pandian N, Wang Y, Sharma BR, Malireddi RS, Yang D, Trifkovic S, Steele JA, et al: ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci Immunol. 7:eabo62942022. View Article : Google Scholar : PubMed/NCBI

104 

Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS and Green DR: Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 471:363–367. 2011. View Article : Google Scholar : PubMed/NCBI

105 

Gurung P, Anand PK, Malireddi RK, Vande Walle L, Van Opdenbosch N, Dillon CP, Weinlich R, Green DR, Lamkanfi M and Kanneganti TD: FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 192:1835–1846. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Wang L, Zhu Y, Zhang L, Guo L, Wang X, Pan Z, Jiang X, Wu F and He G: Mechanisms of PANoptosis and relevant small-molecule compounds for fighting diseases. Cell Death Dis. 14:8512023. View Article : Google Scholar : PubMed/NCBI

107 

Liu X, Tang AL, Cheng J, Gao N, Zhang G and Xiao C: RIPK1 in the inflammatory response and sepsis: Recent advances, drug discovery and beyond. Front Immunol. 14:11141032023. View Article : Google Scholar : PubMed/NCBI

108 

Qi Z, Zhu L, Wang K and Wang N: PANoptosis: Emerging mechanisms and disease implications. Life Sci. 333:1221582023. View Article : Google Scholar : PubMed/NCBI

109 

Tian J, Zhang YY, Peng YW, Liu B, Zhang XJ, Hu ZY, Hu CP, Luo XJ and Peng J: Polymyxin B reduces brain injury in ischemic stroke rat through a mechanism involving targeting ESCRT-III Machinery and RIPK1/RIPK3/MLKL pathway. J Cardiovasc Transl Res. 15:1129–1142. 2022. View Article : Google Scholar : PubMed/NCBI

110 

Duan X, Liu X, Liu N, Huang Y, Jin Z, Zhang S, Ming Z and Chen H: Inhibition of keratinocyte necroptosis mediated by RIPK1/RIPK3/MLKL provides a protective effect against psoriatic inflammation. Cell Death Dis. 11:1342020. View Article : Google Scholar : PubMed/NCBI

111 

Meng Y, Davies KA, Fitzgibbon C, Young SN, Garnish SE, Horne CR, Luo C, Garnier JM, Liang LY, Cowan AD, et al: Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nat Commun. 12:67832021. View Article : Google Scholar : PubMed/NCBI

112 

Alaaeldin R, Abdel-Rahman IM, Ali FEM, Bekhit AA, Elhamadany EY, Zhao QL, Cui ZG and Fathy M: Dual Topoisomerase I/II Inhibition-Induced Apoptosis and Necro-Apoptosis in cancer cells by a novel ciprofloxacin derivative via RIPK1/RIPK3/MLKL activation. Molecules. 27:79932022. View Article : Google Scholar : PubMed/NCBI

113 

Morgan MJ and Kim YS: Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med. 54:1695–1704. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Zhang YY, Liu WN, Li YQ, Zhang XJ, Yang J, Luo XJ and Peng J: Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway. Naunyn Schmiedebergs Arch Pharmacol. 392:1085–1095. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Yan ZY, Jiao HY, Chen JB, Zhang KW, Wang XH, Jiang YM, Liu YY, Xue Z, Ma QY, Li XJ and Chen JX: Antidepressant mechanism of traditional Chinese medicine formula Xiaoyaosan in CUMS-induced depressed mouse model via RIPK1-RIPK3-MLKL mediated necroptosis based on Network Pharmacology Analysis. Front Pharmacol. 12:7735622021. View Article : Google Scholar : PubMed/NCBI

116 

Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi RKS, et al: Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. bioRxiv [Preprint] 2020.10.29.361048. 2020.

117 

Ma W, Chen X, Wu X, Li J, Mei C, Jing W, Teng L, Tu H, Jiang X, Wang G, et al: Long noncoding RNA SPRY4-IT1 promotes proliferation and metastasis of hepatocellular carcinoma via mediating TNF signaling pathway. J Cell Physiol. 235:7849–7862. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Kawasaki T and Kawai T: Toll-Like receptor signaling pathways. Front Immunol. 5:4612014. View Article : Google Scholar : PubMed/NCBI

119 

Damoogh S, Vosough M, Hadifar S, Rasoli M, Gorjipour A, Falsafi S and Behrouzi A: Evaluation of E. coli Nissle1917 derived metabolites in modulating key mediator genes of the TLR signaling pathway. BMC Res Notes. 14:1562021. View Article : Google Scholar : PubMed/NCBI

120 

Azam S, Jakaria M, Kim IS, Kim J, Haque ME and Choi DK: Regulation of Toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of Age-linked neurodegenerative diseases: Focus on TLR4 signaling. Front Immunol. 10:10002019. View Article : Google Scholar : PubMed/NCBI

121 

Chipurupalli S, Samavedam U and Robinson N: Crosstalk between ER stress, autophagy and inflammation. Front Med (Lausanne). 8:7583112021. View Article : Google Scholar : PubMed/NCBI

122 

Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng D, Xie Z, Zeng J, Xu K, Shen J, et al: PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging (Albany NY). 13:3405–3427. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Tait SWG and Green DR: Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 11:621–632. 2010. View Article : Google Scholar : PubMed/NCBI

124 

Shi FL, Li Q, Xu R, Yuan LS, Chen Y, Shi ZJ, Li YP, Zhou ZY, Xu LH, Zha QB, et al: Blocking reverse electron transfer-mediated mitochondrial DNA oxidation rescues cells from PANoptosis. Acta Pharmacol Sin. 45:594–608. 2024. View Article : Google Scholar

125 

Yuan X, Zhang S, Zhong X, Yuan H, Song D, Wang X, Yu H and Guo Z: The induction of PANoptosis in KRAS-mutant pancreatic ductal adenocarcinoma cells by a multispecific platinum complex. SCC. 1978–1984

126 

She R, Liu D, Liao J, Wang G, Ge J and Mei Z: Mitochondrial dysfunctions induce PANoptosis and ferroptosis in cerebral ischemia/reperfusion injury: From pathology to therapeutic potential. Front Cell Neurosci. 17:11916292023. View Article : Google Scholar : PubMed/NCBI

127 

Briard B, Malireddi RKS and Kanneganti TD: Role of inflammasomes/pyroptosis and PANoptosis during fungal infection. PLoS Pathog. 17:e10093582021. View Article : Google Scholar : PubMed/NCBI

128 

Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI

129 

Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI

130 

González-Rodríguez P, Klionsky DJ and Joseph B: Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun. 13:27352022. View Article : Google Scholar : PubMed/NCBI

131 

Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif A, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Princely Abudu Y, Acevedo-Arozena A, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy. 17:1–382. 2021. View Article : Google Scholar : PubMed/NCBI

132 

Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H and Ren J: Endoplasmic reticulum stress in liver diseases. Hepatology. 77:619–639. 2023. View Article : Google Scholar

133 

Ren J, Bi Y, Sowers JR, Hetz C and Zhang Y: Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol. 18:499–521. 2021. View Article : Google Scholar : PubMed/NCBI

134 

Chen X and Cubillos-Ruiz JR: Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer. 21:71–88. 2021. View Article : Google Scholar :

135 

Marciniak SJ, Chambers JE and Ron D: Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov. 21:115–140. 2022. View Article : Google Scholar

136 

Hu C, Wu Z and Li L: Pre-treatments enhance the therapeutic effects of mesenchymal stem cells in liver diseases. J Cell Mol Med. 24:40–49. 2020. View Article : Google Scholar

137 

Rafiq K, Hanscom M, Valerie K, Steinberg SF and Sabri A: Novel mode for neutrophil protease cathepsin G-mediated signaling: Membrane shedding of epidermal growth factor is required for cardiomyocyte anoikis. Circ Res. 102:32–41. 2008. View Article : Google Scholar

138 

Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI

139 

Weems A D, Welf ES, Dr Iscoll MK , Zhou FY, Mazloom-Farsibaf H, Chang BJ, Murali VS, Gihana GM, Weiss BG, Chi J, et al: Blebs promote cell survival by assembling oncogenic signalling hubs. Nature. 615:517–525. 2023. View Article : Google Scholar : PubMed/NCBI

140 

Nakad A, Jonard P, Geubel A, Warzee P, Coppens JP, Dehennin JP and Dive C: CA 19-9 in neoplasms. Comparison with CEA. Acta Gastroenterol Belg. 50:36–44. 1987.In French. PubMed/NCBI

141 

Taylor MJ: Clinical cryobiology of tissues: Preservation of corneas. Cryobiology. 23:323–353. 1986. View Article : Google Scholar : PubMed/NCBI

142 

Paolillo M, Galiazzo MC, Daga A, Ciusani E, Serra M, Colombo L and Schinelli S: An RGD small-molecule integrin antagonist induces detachment-mediated anoikis in glioma cancer stem cells. Int J Oncol. 53:2683–2694. 2018.PubMed/NCBI

143 

Bourguignon LYW: Matrix Hyaluronan-CD44 interaction activates MicroRNA and LncRNA signaling associated with chemoresistance, invasion, and tumor progression. Front Oncol. 9:4922019. View Article : Google Scholar : PubMed/NCBI

144 

Zhu P, Lu H, Wang M, Chen K, Chen Z and Yang L: Targeted mechanical forces enhance the effects of tumor immunotherapy by regulating immune cells in the tumor microenvironment. Cancer Biol Med. 20:44–55. 2023. View Article : Google Scholar : PubMed/NCBI

145 

Tong J, Lan XT, Zhang Z, Liu Y, Sun DY, Wang XJ, Ou-Yang SX, Zhuang CL, Shen FM, Wang P and Li DJ: Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: Potential involvement of PANoptosis. Acta Pharmacol Sin. 44:1014–1028. 2023. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gao X, Ma C, Liang S, Chen M, He Y and Lei W: PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review). Int J Mol Med 54: 74, 2024.
APA
Gao, X., Ma, C., Liang, S., Chen, M., He, Y., & Lei, W. (2024). PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review). International Journal of Molecular Medicine, 54, 74. https://doi.org/10.3892/ijmm.2024.5398
MLA
Gao, X., Ma, C., Liang, S., Chen, M., He, Y., Lei, W."PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review)". International Journal of Molecular Medicine 54.3 (2024): 74.
Chicago
Gao, X., Ma, C., Liang, S., Chen, M., He, Y., Lei, W."PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review)". International Journal of Molecular Medicine 54, no. 3 (2024): 74. https://doi.org/10.3892/ijmm.2024.5398
Copy and paste a formatted citation
x
Spandidos Publications style
Gao X, Ma C, Liang S, Chen M, He Y and Lei W: PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review). Int J Mol Med 54: 74, 2024.
APA
Gao, X., Ma, C., Liang, S., Chen, M., He, Y., & Lei, W. (2024). PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review). International Journal of Molecular Medicine, 54, 74. https://doi.org/10.3892/ijmm.2024.5398
MLA
Gao, X., Ma, C., Liang, S., Chen, M., He, Y., Lei, W."PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review)". International Journal of Molecular Medicine 54.3 (2024): 74.
Chicago
Gao, X., Ma, C., Liang, S., Chen, M., He, Y., Lei, W."PANoptosis: Novel insight into regulated cell death and its potential role in cardiovascular diseases (Review)". International Journal of Molecular Medicine 54, no. 3 (2024): 74. https://doi.org/10.3892/ijmm.2024.5398
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team