|
1
|
Sun X, Yang Y, Meng X, Li J, Liu X and Liu
H: PANoptosis: Mechanisms, biology, and role in disease. Immunol
Rev. 321:246–262. 2024. View Article : Google Scholar
|
|
2
|
Lee S, Karki R, Wang Y, Nguyen LN,
Kalathur RC and Kanneganti T-D: AIM2 forms a complex with pyrin and
ZBP1 to drive PANoptosis and host defence. Nature. 597:415–419.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gullett JM, Tweedell RE and Kanneganti TD:
It's all in the PAN: Crosstalk, plasticity, redundancies, switches,
and interconnectedness encompassed by PANoptosis underlying the
totality of cell death-associated biological effects. Cells.
11:14952022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yan WT, Yang YD, Hu XM, Ning WY, Liao LS,
Lu S, Zhao WJ, Zhang Q and Xiong K: Do pyroptosis, apoptosis, and
necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from
cell and rodent studies. Neural Regen Res. 17:1761–1768. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pan H, Pan J, Li P and Gao J:
Characterization of PANoptosis patterns predicts survival and
immunotherapy response in gastric cancer. Clin Immunol.
238:1090192022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pandian N and Kanneganti TD: PANoptosis: A
unique innate immune inflammatory cell death modality. J Immunol.
209:1625–1633. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Piamsiri C, Maneechote C, Siri-Angkul N,
Chattipakorn SC and Chattipakorn N: Targeting necroptosis as
therapeutic potential in chronic myocardial infarction. J Biomed
Sci. 28:252021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang H, Yu W, Wang Y, Wu R, Dai Y, Deng Y,
Wang S, Yuan J and Tan R: p53 contributes to cardiovascular
diseases via mitochondria dysfunction: A new paradigm. Free Radic
Biol Med. 208:846–858. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Toldo S and Abbate A: The role of the
NLRP3 inflammasome and pyroptosis in cardiovascular diseases. Nat
Rev Cardiol. 21:219–237. 2024. View Article : Google Scholar
|
|
10
|
Bi Y, Xu H, Wang X, Zhu H, Ge J, Ren J and
Zhang Y: FUNDC1 protects against doxorubicin-induced cardiomyocyte
PANoptosis through stabilizing mtDNA via interaction with TUFM.
Cell Death Dis. 13:10202022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang Y and Kanneganti TD: From pyroptosis,
apoptosis and necroptosis to PANoptosis: A mechanistic compendium
of programmed cell death pathways. Comput Struct Biotechnol J.
19:4641–4657. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen W, Gullett JM, Tweedell RE and
Kanneganti TD: Innate immune inflammatory cell death: PANoptosis
and PANoptosomes in host defense and disease. Eur J Immunol.
53:e22502352023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ji X, Huang X, Li C, Guan N, Pan T, Dong J
and Li L: Effect of tumor-associated macrophages on the pyroptosis
of breast cancer tumor cells. Cell Commun Signal. 21:1972023.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nagata S and Tanaka M: Programmed cell
death and the immune system. Nat Rev Immunol. 17:333–340. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Man SM, Karki R and Kanneganti TD:
Molecular mechanisms and functions of pyroptosis, inflammatory
caspases and inflammasomes in infectious diseases. Immunol Rev.
277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wu Y, Zhang J, Yu S, Li Y, Zhu J, Zhang K
and Zhang R: Cell pyroptosis in health and inflammatory diseases.
Cell Death Discov. 8:1912022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu X, Xia S, Zhang Z, Wu H and Lieberman
J: Channelling inflammation: Gasdermins in physiology and disease.
Nat Rev Drug Discov. 20:384–405. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Feng Y, Li M, Yangzhong X, Zhang X, Zu A,
Hou Y, Li L and Sun S: Pyroptosis in inflammation-related
respiratory disease. J Physiol Biochem. 78:721–737. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhu H and Sun A: Programmed necrosis in
heart disease: Molecular mechanisms and clinical implications. J
Mol Cell Cardiol. 116:125–134. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mishra PK, Adameova A, Hill JA, Baines CP,
Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC,
et al: Guidelines for evaluating myocardial cell death. Am J
Physiol Heart Circ Physiol. 317:H891–H922. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Shi Z, Yuan S, Shi L, Li J, Ning G, Kong X
and Feng S: Programmed cell death in spinal cord injury
pathogenesis and therapy. Cell Proliferation. 54:e129922021.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X
and Liu NF: Programmed cell death in atherosclerosis and vascular
calcification. Cell Death Dis. 13:4672022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shi C, Cao P, Wang Y, Zhang Q, Zhang D,
Wang Y, Wang L and Gong Z: PANoptosis: A cell death characterized
by pyroptosis, apoptosis, and necroptosis. J Inflamm Res.
16:1523–1532. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wei Q, Ren H, Zhang J, Yao W, Zhao B and
Miao J: An inhibitor of Grp94 inhibits OxLDL-Induced autophagy and
apoptosis in VECs and stabilized atherosclerotic plaques. Front
Cardiovasc Med. 8:7575912021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Guo J, Li J, Zhang J, Guo X, Liu H, Li P,
Zhang Y, Lin C and Fan Z: LncRNA PVT1 knockdown alleviated
ox-LDL-induced vascular endothelial cell injury and atherosclerosis
by miR-153-3p/GRB2 axis via ERK/p38 pathway. Nutr Metab Cardiovasc
Dis. 31:3508–3521. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang W, Tang W, Shan E, Zhang L, Chen S,
Yu C and Gao Y: MiR-130a-5p contributed to the progression of
endothelial cell injury by regulating FAS. Eur J Histochem.
66:33422022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sayed S, Faruq O, Preya UH and Kim JT:
Cathepsin S knockdown suppresses endothelial inflammation,
angiogenesis, and complement protein activity under hyperglycemic
conditions in vitro by inhibiting NF-κB signaling. Int J Mol Sci.
24:54282023. View Article : Google Scholar
|
|
28
|
Tang H, Li K, Zhang S, Lan H, Liang L,
Huang C and Li T: Inhibitory effect of paeonol on apoptosis,
oxidative stress, and inflammatory response in human umbilical vein
endothelial cells induced by high glucose and palmitic acid induced
through regulating SIRT1/FOXO3a/NF-κB pathway. J Interferon
Cytokine Res. 41:111–124. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu X, Xu Y, Cheng S, Zhou X, Zhou F, He
P, Hu F, Zhang L, Chen Y and Jia Y: Geniposide combined with
Notoginsenoside R1 attenuates inflammation and apoptosis in
atherosclerosis via the AMPK/mTOR/Nrf2 signaling pathway. Front
Pharmacol. 12:6873942021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Du M, Wang C, Yang L, Liu B, Zheng Z, Yang
L, Zhang F, Peng J, Huang D and Huang K: The role of long noncoding
RNA Nron in atherosclerosis development and plaque stability.
iScience. 25:1039782022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sinha SK, Miikeda A, Fouladian Z,
Mehrabian M, Edillor C, Shih D, Zhou Z, Paul MK, Charugundla S,
Davis RC, et al: Local M-CSF (Macrophage Colony-stimulating factor)
expression regulates macrophage proliferation and apoptosis in
atherosclerosis. Arterioscler Thromb Vasc Biol. 41:220–233. 2021.
View Article : Google Scholar
|
|
32
|
Niu N, Miao H and Ren H: Effect of
miR-182-5p on apoptosis in myocardial infarction. Heliyon.
9:e215242023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lin M, Liu X, Zheng H, Huang X, Wu Y,
Huang A, Zhu H, Hu Y, Mai W and Huang Y: IGF-1 enhances BMSC
viability, migration, and anti-apoptosis in myocardial infarction
via secreted frizzled-related protein 2 pathway. Stem Cell Res
Ther. 11:222020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fu DL, Jiang H, Li CY, Gao T, Liu MR and
Li HW: MicroRNA-338 in MSCs-derived exosomes inhibits cardiomyocyte
apoptosis in myocardial infarction. Eur Rev Med Pharmacol Sci.
24:10107–10117. 2020.PubMed/NCBI
|
|
35
|
Wu H, Zhao ZA, Liu J, Hao K, Yu Y, Han X,
Li J, Wang Y, Lei W, Dong N, et al: Long noncoding RNA Meg3
regulates cardiomyocyte apoptosis in myocardial infarction. Gene
Ther. 25:511–523. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao L, Yang XR and Han X: MicroRNA-146b
induces the PI3K/Akt/NF-κB signaling pathway to reduce vascular
inflammation and apoptosis in myocardial infarction by targeting
PTEN. Exp Ther Med. 17:1171–1181. 2019.PubMed/NCBI
|
|
37
|
Luo C, Xiong S, Huang Y, Deng M, Zhang J,
Chen J, Yang R and Ke X: The Novel Non-coding transcriptional
regulator Gm18840 drives cardiomyocyte apoptosis in myocardial
infarction post ischemia/reperfusion. Front Cell Dev Biol.
9:6159502021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhou F, Fu WD and Chen L: MiRNA-182
regulates the cardiomyocyte apoptosis in heart failure. Eur Rev Med
Pharmacol Sci. 23:4917–4923. 2019.PubMed/NCBI
|
|
39
|
Zhang Y, Li C, Meng H, Guo D, Zhang Q, Lu
W, Wang Q, Wang Y and Tu P: BYD Ameliorates oxidative
stress-induced myocardial apoptosis in heart failure post-acute
myocardial infarction via the P38 MAPK-CRYAB signaling pathway.
Front Physiol. 9:5052018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yan X, Wu H, Ren J, Liu Y, Wang S, Yang J,
Qin S and Wu D: Shenfu Formula reduces cardiomyocyte apoptosis in
heart failure rats by regulating microRNAs. J Ethnopharmacol.
227:105–112. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Colpman P, Dasgupta A and Archer SL: The
role of mitochondrial dynamics and mitotic fission in regulating
the cell cycle in cancer and pulmonary arterial hypertension:
Implications for dynamin-related protein 1 and mitofusin2 in
hyperproliferative diseases. Cells. 12:18972023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dabral S, Tian X, Kojonazarov B, Savai R,
Ghofrani HA, Weissmann N, Florio M, Sun J, Jonigk D, Maegel L, et
al: Notch1 signalling regulates endothelial proliferation and
apoptosis in pulmonary arterial hypertension. Eur Respir J.
48:1137–1149. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jiang DT, Tuo L, Bai X, Bing WD, Qu QX,
Zhao X, Song GM, Bi YW and Sun WY: Prostaglandin E1 reduces
apoptosis and improves the homing of mesenchymal stem cells in
pulmonary arterial hypertension by regulating hypoxia-inducible
factor 1 alpha. Stem Cell Res Ther. 13:3162022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Jiang Y, Hei B, Hao W, Lin S, Wang Y, Liu
X, Meng X and Guan Z: Clinical value of lncRNA SOX2-OT in pulmonary
arterial hypertension and its role in pulmonary artery smooth
muscle cell proliferation, migration, apoptosis, and inflammatory.
Heart Lung. 55:16–23. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hu F, Liu H, Wang C, Li H and Qiao L:
Expression of the microRNA-30 family in pulmonary arterial
hypertension and the role of microRNA-30d-5p in the regulation of
pulmonary arterial smooth muscle cell toxicity and apoptosis. Exp
Ther Med. 23:1082022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li X, Liu C, Qi W, Meng Q, Zhao H, Teng Z,
Xu R, Wu X, Zhu F, Qin Y, et al: Endothelial Dec1-PPARγ axis
impairs proliferation and apoptosis homeostasis under hypoxia in
pulmonary arterial hypertension. Front Cell Dev Biol. 9:7571682021.
View Article : Google Scholar
|
|
47
|
Cuthbertson I, Morrell NW and Caruso P:
BMPR2 mutation and metabolic reprogramming in pulmonary arterial
hypertension. Circ Res. 132:109–126. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Vera-Zambrano A, Lago-Docampo M, Gallego
N, Franco-Gonzalez JF, Morales-Cano D, Cruz-Utrilla A,
Villegas-Esguevillas M, Fernández-Malavé E, Escribano-Subías P,
Tenorio-Castaño JA, et al: Novel Loss-of-function KCNA5 variants in
pulmonary arterial hypertension. Am J Respir Cell Mol Biol.
69:147–158. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ye B, Peng X, Su D, Liu D, Huang Y, Huang
Y and Pang Y: Effects of YM155 on the proliferation and apoptosis
of pulmonary artery smooth muscle cells in a rat model of high
pulmonary blood flow-induced pulmonary arterial hypertension. Clin
Exp Hypertens. 44:470–479. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lu Y, Wu J, Sun Y, Xin L, Jiang Z, Lin H,
Zhao M and Cui X: Qiliqiangxin prevents right ventricular
remodeling by inhibiting apoptosis and improving metabolism
reprogramming with pulmonary arterial hypertension. Am J Transl
Res. 12:5655–5669. 2020.PubMed/NCBI
|
|
51
|
Xu YJ, Zheng L, Hu YW and Wang Q:
Pyroptosis and its relationship to atherosclerosis. Clin Chim Acta.
476:28–37. 2018. View Article : Google Scholar
|
|
52
|
Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z,
Lin Y, Bai X, Liu X, Chen X, et al: Nicotine promotes
atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis.
Cell Death Dis. 9:1712018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Din AU, Hassan A, Zhu Y, Yin T, Gregersen
H and Wang G: Amelioration of TMAO through probiotics and its
potential role in atherosclerosis. Appl Microbiol Biotechnol.
103:9217–9228. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wu P, Chen J, Chen J, Tao J, Wu S, Xu G,
Wang Z, Wei D and Yin W: Trimethylamine N-oxide promotes
apoE-/-mice atherosclerosis by inducing vascular endothelial cell
pyroptosis via the SDHB/ROS pathway. J Cell Physiol. 235:6582–6591.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Moore KJ, Sheedy FJ and Fisher EA:
Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol.
13:709–721. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Peng X, Chen H, Li Y, Huang D, Huang B and
Sun D: Effects of NIX-mediated mitophagy on ox-LDL-induced
macrophage pyroptosis in atherosclerosis. Cell Biol Int.
44:1481–1490. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xu S, Chen H, Ni H and Dai Q: Targeting
HDAC6 attenuates nicotine-induced macrophage pyroptosis via
NF-κB/NLRP3 pathway. Atherosclerosis. 317:1–9. 2021. View Article : Google Scholar
|
|
58
|
Wu L, Xie W, Li Y, Ni Q, Timashev P, Lyu
M, Xia L, Zhang Y, Liu L, Yuan Y, et al: Biomimetic nanocarriers
guide extracellular ATP homeostasis to remodel energy metabolism
for activating innate and adaptive immunity system. Adv Sci
(Weinh). 9:e21053762022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kiyan Y, Tkachuk S, Hilfiker-Kleiner D,
Haller H, Fuhrman B and Dumler I: oxLDL induces inflammatory
responses in vascular smooth muscle cells via urokinase receptor
association with CD36 and TLR4. J Mol Cell Cardiol. 66:72–82. 2014.
View Article : Google Scholar
|
|
60
|
Pang Q, Wang P, Pan Y, Dong X, Zhou T,
Song X and Zhang A: Irisin protects against vascular calcification
by activating autophagy and inhibiting NLRP3-mediated vascular
smooth muscle cell pyroptosis in chronic kidney disease. Cell Death
Dis. 13:2832022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li Y, Niu X, Xu H, Li Q, Meng L, He M,
Zhang J and Zhang Z and Zhang Z: VX-765 attenuates atherosclerosis
in ApoE deficient mice by modulating VSMCs pyroptosis. Exp Cell
Res. 389:1118472020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yue RC, Lu SZ, Luo Y, Wang T, Liang H,
Zeng J, Liu J and Hu HX: Calpain silencing alleviates myocardial
ischemia-reperfusion injury through the NLRP3/ASC/Caspase-1 axis in
mice. Life Sci. 233:1166312019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ding S, Liu D, Wang L, Wang G and Zhu Y:
Inhibiting MicroRNA-29a protects myocardial ischemia-reperfusion
injury by targeting SIRT1 and suppressing oxidative stress and
NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther.
372:128–135. 2020. View Article : Google Scholar
|
|
64
|
Rauf A, Shah M, Yellon DM and Davidson SM:
Role of Caspase 1 in ischemia/reperfusion injury of the myocardium.
J Cardiovasc Pharmacol. 74:194–200. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Do Carmo H, Arjun S, Petrucci O, Yellon DM
and Davidson SM: The Caspase 1 inhibitor VX-765 protects the
isolated rat heart via the RISK pathway. Cardiovasc Drugs Ther.
32:165–168. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhang X, Fu Y, Li H, Shen L, Chang Q, Pan
L, Hong S and Yin X: H3 relaxin inhibits the collagen synthesis via
ROS- and P2X7R-mediated NLRP3 inflammasome activation in cardiac
fibroblasts under high glucose. J Cell Mol Med. 22:1816–1825. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zeng C, Duan F, Hu J, Luo B, Huang B, Lou
X, Sun X, Li H, Zhang X, Yin S and Tan H: NLRP3
inflammasome-mediated pyroptosis contributes to the pathogenesis of
non-ischemic dilated cardiomyopathy. Redox Biol. 34:1015232020.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bai Y, Sun X, Chu Q, Li A, Qin Y, Li Y,
Yue E, Wang H, Li G, Zahra SM, et al: Caspase-1 regulate
AngII-induced cardiomyocyte hypertrophy via upregulation of IL-1β.
Biosci Rep. 38:BSR201714382018. View Article : Google Scholar
|
|
69
|
Aluganti Narasimhulu C and Singla DK:
Amelioration of diabetes-induced inflammation mediated pyroptosis,
sarcopenia, and adverse muscle remodelling by bone morphogenetic
protein-7. J Cachexia Sarcopenia Muscle. 12:403–420. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
He S, Ma C, Zhang L, Bai J, Wang X, Zheng
X, Zhang J, Xin W, Li Y, Jiang Y, et al: GLI1-mediated pulmonary
artery smooth muscle cell pyroptosis contributes to hypoxia-induced
pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol.
318:L472–L482. 2020. View Article : Google Scholar
|
|
71
|
Cero FT, Hillestad V, Sjaastad I, Yndestad
A, Aukrust P, Ranheim T, Lunde IG, Olsen MB, Lien E, Zhang L, et
al: Absence of the inflammasome adaptor ASC reduces hypoxia-induced
pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol.
309:L378–L387. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang M, Xin W, Yu Y, Yang X, Ma C, Zhang
H, Liu Y, Zhao X, Guan X, Wang X and Zhu D: Programmed death-ligand
1 triggers PASMCs pyroptosis and pulmonary vascular fibrosis in
pulmonary hypertension. J Mol Cell Cardiol. 138:23–33. 2020.
View Article : Google Scholar
|
|
73
|
Udjus C, Cero FT, Halvorsen B, Behmen D,
Carlson CR, Bendiksen BA, Espe EKS, Sjaastad I, Løberg EM, Yndestad
A, et al: Caspase-1 induces smooth muscle cell growth in
hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol
Physiol. 316:L999–L1012. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zha LH, Zhou J, Li TZ, Luo H, He JN, Zhao
L and Yu ZX: NLRC3: A novel noninvasive biomarker for pulmonary
hypertension diagnosis. Aging Dis. 9:843–851. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chai SD, Li ZK, Liu R, Liu T, Dong MF,
Tang PZ, Wang JT and Ma SJ: The role of miRNA-155 in
monocrotaline-induced pulmonary arterial hypertension through
c-Fos/NLRP3/caspase-1. Mol Cell Toxicol. 16:311–320. 2020.
View Article : Google Scholar
|
|
76
|
Tang B, Chen G, Liang M, Yao J and Wu Z:
Ellagic acid prevents monocrotaline-induced pulmonary artery
hypertension via inhibiting NLRP3 inflammasome activation in rats.
Int J Cardiol. 180:134–141. 2015. View Article : Google Scholar
|
|
77
|
Lin J, Li H, Yang M, Ren J, Huang Z, Han
F, Huang J, Ma J, Zhang D, Zhang Z, et al: A role of RIP3-mediated
macrophage necrosis in atherosclerosis development. Cell Rep.
3:200–210. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Guo N, Zhou H, Zhang Q, Fu Y, Jia Q, Gan
X, Wang Y, He S, Li C, Tao Z, et al: Exploration and bioinformatic
prediction for profile of mRNA bound to circular RNA
BTBD7_hsa_circ_0000563 in coronary artery disease. BMC Cardiovasc
Disord. 24:712024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Meng L, Jin W, Wang Y, Huang H, Li J and
Zhang C: RIP3-dependent necrosis induced inflammation exacerbates
atherosclerosis. Biochem Biophys Res Commun. 473:497–502. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Karunakaran D, Geoffrion M, Wei L, Gan W,
Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L,
Maegdefessel L, et al: Targeting macrophage necroptosis for
therapeutic and diagnostic interventions in atherosclerosis. Sci
Adv. 2:e16002242016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Meng L, Jin W and Wang X: RIP3-mediated
necrotic cell death accelerates systematic inflammation and
mortality. Proc Natl Acad Sci USA. 112:11007–11012. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Rasheed A, Robichaud S, Nguyen MA,
Geoffrion M, Wyatt H, Cottee ML, Dennison T, Pietrangelo A, Lee R,
Lagace TA, et al: Loss of MLKL (Mixed Lineage Kinase Domain-Like
Protein) decreases necrotic core but increases macrophage lipid
accumulation in atherosclerosis. Arterioscler Thromb Vasc Biol.
40:1155–1167. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Akhtar S, Hartmann P, Karshovska E,
Rinderknecht FA, Subramanian P, Gremse F, Grommes J, Jacobs M,
Kiessling F, Weber C, et al: Endothelial hypoxia-inducible
Factor-1α promotes atherosclerosis and monocyte recruitment by
upregulating MicroRNA-19a. Hypertension. 66:1220–1226. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Luedde M, Lutz M, Carter N, Sosna J,
Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F,
et al: RIP3, a kinase promoting necroptotic cell death, mediates
adverse remodelling after myocardial infarction. Cardiovasc Res.
103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu
M, Shi Z, Mu N, Yu L and Ma H: Melatonin attenuates chronic pain
related myocardial ischemic susceptibility through inhibiting
RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol.
125:185–194. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Guo X, Yin H, Li L, Chen Y, Li J, Doan J,
Steinmetz R and Liu Q: Cardioprotective role of tumor necrosis
factor receptor-associated factor 2 by suppressing apoptosis and
necroptosis. Circulation. 136:729–742. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li L, Chen Y, Doan J, Murray J, Molkentin
JD and Liu Q: Transforming growth factor β-activated kinase 1
signaling pathway critically regulates myocardial survival and
remodeling. Circulation. 130:2162–2172. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Zhang DY, Wang BJ, Ma M, Yu K, Zhang Q and
Zhang XW: MicroRNA-325-3p protects the heart after myocardial
infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC
Mol Biol. 20:172019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yue LJ, Zhu XY, Li RS, Chang HJ, Gong B,
Tian CC, Liu C, Xue YX, Zhou Q, Xu TS and Wang DJ: S-allyl-cysteine
sulfoxide (alliin) alleviates myocardial infarction by modulating
cardiomyocyte necroptosis and autophagy. Int J Mol Med.
44:1943–1951. 2019.PubMed/NCBI
|
|
90
|
Liu J, Wu P, Wang Y, Du Y, A N, Liu S,
Zhang Y, Zhou N, Xu Z and Yang Z: Ad-HGF improves the cardiac
remodeling of rat following myocardial infarction by upregulating
autophagy and necroptosis and inhibiting apoptosis. Am J Transl
Res. 8:4605–4627. 2016.PubMed/NCBI
|
|
91
|
Škėmienė K, Jablonskienė G, Liobikas J and
Borutaitė V: Protecting the heart against
ischemia/reperfusion-induced necrosis and apoptosis: The effect of
anthocyanins. Medicina (Kaunas). 49:84–88. 2013.PubMed/NCBI
|
|
92
|
Szobi A, Gonçalvesová E, Varga ZV, Leszek
P, Kuśmierczyk M, Hulman M, Kyselovič J, Ferdinandy P and Adameová
A: Analysis of necroptotic proteins in failing human hearts. J
Transl Med. 15:862017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Marunouchi T, Nishiumi C, Iinuma S, Yano E
and Tanonaka K: Effects of Hsp90 inhibitor on the RIP1-RIP3-MLKL
pathway during the development of heart failure in mice. Eur J
Pharmacol. 898:1739872021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yang J, Zhang F, Shi H, Gao Y, Dong Z, Ma
L, Sun X, Li X, Chang S, Wang Z, et al: Neutrophil-derived advanced
glycation end products-Nε-(carboxymethyl) lysine promotes
RIP3-mediated myocardial necroptosis via RAGE and exacerbates
myocardial ischemia/reperfusion injury. FASEB J. 33:14410–14422.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv
F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3
substrate mediating ischemia- and oxidative stress-induced
myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Koshinuma S, Miyamae M, Kaneda K, Kotani J
and Figueredo VM: Combination of necroptosis and apoptosis
inhibition enhances cardioprotection against myocardial
ischemia-reperfusion injury. J Anesth. 28:235–241. 2014. View Article : Google Scholar
|
|
97
|
Xiao G, Zhuang W, Wang T, Lian G, Luo L,
Ye C, Wang H and Xie L: Transcriptomic analysis identifies
Toll-like and Nod-like pathways and necroptosis in pulmonary
arterial hypertension. J Cell Mol Med. 24:11409–11421. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jarabicová I, Horváth C, Veľasová E, Bies
Piváčková L, Vetešková J, Klimas J, Křenek P and Adameová A:
Analysis of necroptosis and its association with pyroptosis in
organ damage in experimental pulmonary arterial hypertension. J
Cell Mol Med. 26:2633–2645. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tweedell RE and Kanneganti TD: Advances in
inflammasome research: Recent breakthroughs and future hurdles.
Trends Mol Med. 26:969–971. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhao P, Yao R, Du X and Yao Y: Research
progress on the role of PANoptosis in human diseases. Zhonghua Yi
Xue Za Zhi. 102:2549–2554. 2022.
|
|
101
|
Malireddi RKS, Kesavardhana S and
Kanneganti TD: ZBP1 and TAK1: Master Regulators of NLRP3
Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis).
Front Cell Infect Microbiol. 9:4062019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zheng M and Kanneganti TD: The regulation
of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis,
apoptosis, and necroptosis (PANoptosis). Immunol Rev. 297:26–38.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Karki R, Lee S, Mall R, Pandian N, Wang Y,
Sharma BR, Malireddi RS, Yang D, Trifkovic S, Steele JA, et al:
ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine
storm disrupt IFN therapeutic efficacy during coronavirus
infection. Sci Immunol. 7:eabo62942022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Oberst A, Dillon CP, Weinlich R, McCormick
LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS and Green DR:
Catalytic activity of the caspase-8-FLIP(L) complex inhibits
RIPK3-dependent necrosis. Nature. 471:363–367. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Gurung P, Anand PK, Malireddi RK, Vande
Walle L, Van Opdenbosch N, Dillon CP, Weinlich R, Green DR,
Lamkanfi M and Kanneganti TD: FADD and caspase-8 mediate priming
and activation of the canonical and noncanonical Nlrp3
inflammasomes. J Immunol. 192:1835–1846. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang L, Zhu Y, Zhang L, Guo L, Wang X, Pan
Z, Jiang X, Wu F and He G: Mechanisms of PANoptosis and relevant
small-molecule compounds for fighting diseases. Cell Death Dis.
14:8512023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Liu X, Tang AL, Cheng J, Gao N, Zhang G
and Xiao C: RIPK1 in the inflammatory response and sepsis: Recent
advances, drug discovery and beyond. Front Immunol. 14:11141032023.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Qi Z, Zhu L, Wang K and Wang N:
PANoptosis: Emerging mechanisms and disease implications. Life Sci.
333:1221582023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Tian J, Zhang YY, Peng YW, Liu B, Zhang
XJ, Hu ZY, Hu CP, Luo XJ and Peng J: Polymyxin B reduces brain
injury in ischemic stroke rat through a mechanism involving
targeting ESCRT-III Machinery and RIPK1/RIPK3/MLKL pathway. J
Cardiovasc Transl Res. 15:1129–1142. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Duan X, Liu X, Liu N, Huang Y, Jin Z,
Zhang S, Ming Z and Chen H: Inhibition of keratinocyte necroptosis
mediated by RIPK1/RIPK3/MLKL provides a protective effect against
psoriatic inflammation. Cell Death Dis. 11:1342020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Meng Y, Davies KA, Fitzgibbon C, Young SN,
Garnish SE, Horne CR, Luo C, Garnier JM, Liang LY, Cowan AD, et al:
Human RIPK3 maintains MLKL in an inactive conformation prior to
cell death by necroptosis. Nat Commun. 12:67832021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Alaaeldin R, Abdel-Rahman IM, Ali FEM,
Bekhit AA, Elhamadany EY, Zhao QL, Cui ZG and Fathy M: Dual
Topoisomerase I/II Inhibition-Induced Apoptosis and Necro-Apoptosis
in cancer cells by a novel ciprofloxacin derivative via
RIPK1/RIPK3/MLKL activation. Molecules. 27:79932022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Morgan MJ and Kim YS: Roles of RIPK3 in
necroptosis, cell signaling, and disease. Exp Mol Med.
54:1695–1704. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang YY, Liu WN, Li YQ, Zhang XJ, Yang J,
Luo XJ and Peng J: Ligustroflavone reduces necroptosis in rat brain
after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway.
Naunyn Schmiedebergs Arch Pharmacol. 392:1085–1095. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yan ZY, Jiao HY, Chen JB, Zhang KW, Wang
XH, Jiang YM, Liu YY, Xue Z, Ma QY, Li XJ and Chen JX:
Antidepressant mechanism of traditional Chinese medicine formula
Xiaoyaosan in CUMS-induced depressed mouse model via
RIPK1-RIPK3-MLKL mediated necroptosis based on Network Pharmacology
Analysis. Front Pharmacol. 12:7735622021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Karki R, Sharma BR, Tuladhar S, Williams
EP, Zalduondo L, Samir P, Zheng M, Sundaram B, Banoth B, Malireddi
RKS, et al: Synergism of TNF-α and IFN-γ triggers inflammatory cell
death, tissue damage, and mortality in SARS-CoV-2 infection and
cytokine shock syndromes. bioRxiv [Preprint] 2020.10.29.361048.
2020.
|
|
117
|
Ma W, Chen X, Wu X, Li J, Mei C, Jing W,
Teng L, Tu H, Jiang X, Wang G, et al: Long noncoding RNA SPRY4-IT1
promotes proliferation and metastasis of hepatocellular carcinoma
via mediating TNF signaling pathway. J Cell Physiol. 235:7849–7862.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Kawasaki T and Kawai T: Toll-Like receptor
signaling pathways. Front Immunol. 5:4612014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Damoogh S, Vosough M, Hadifar S, Rasoli M,
Gorjipour A, Falsafi S and Behrouzi A: Evaluation of E. coli
Nissle1917 derived metabolites in modulating key mediator genes of
the TLR signaling pathway. BMC Res Notes. 14:1562021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Azam S, Jakaria M, Kim IS, Kim J, Haque ME
and Choi DK: Regulation of Toll-like receptor (TLR) signaling
pathway by polyphenols in the treatment of Age-linked
neurodegenerative diseases: Focus on TLR4 signaling. Front Immunol.
10:10002019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Chipurupalli S, Samavedam U and Robinson
N: Crosstalk between ER stress, autophagy and inflammation. Front
Med (Lausanne). 8:7583112021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng
D, Xie Z, Zeng J, Xu K, Shen J, et al: PTP1B inhibitor alleviates
deleterious microglial activation and neuronal injury after
ischemic stroke by modulating the ER stress-autophagy axis via PERK
signaling in microglia. Aging (Albany NY). 13:3405–3427. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Tait SWG and Green DR: Mitochondria and
cell death: Outer membrane permeabilization and beyond. Nat Rev Mol
Cell Biol. 11:621–632. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Shi FL, Li Q, Xu R, Yuan LS, Chen Y, Shi
ZJ, Li YP, Zhou ZY, Xu LH, Zha QB, et al: Blocking reverse electron
transfer-mediated mitochondrial DNA oxidation rescues cells from
PANoptosis. Acta Pharmacol Sin. 45:594–608. 2024. View Article : Google Scholar
|
|
125
|
Yuan X, Zhang S, Zhong X, Yuan H, Song D,
Wang X, Yu H and Guo Z: The induction of PANoptosis in KRAS-mutant
pancreatic ductal adenocarcinoma cells by a multispecific platinum
complex. SCC. 1978–1984
|
|
126
|
She R, Liu D, Liao J, Wang G, Ge J and Mei
Z: Mitochondrial dysfunctions induce PANoptosis and ferroptosis in
cerebral ischemia/reperfusion injury: From pathology to therapeutic
potential. Front Cell Neurosci. 17:11916292023. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Briard B, Malireddi RKS and Kanneganti TD:
Role of inflammasomes/pyroptosis and PANoptosis during fungal
infection. PLoS Pathog. 17:e10093582021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Klionsky DJ, Petroni G, Amaravadi RK,
Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K,
Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO
J. 40:e1088632021. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Debnath J, Gammoh N and Ryan KM: Autophagy
and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol.
24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
González-Rodríguez P, Klionsky DJ and
Joseph B: Autophagy regulation by RNA alternative splicing and
implications in human diseases. Nat Commun. 13:27352022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S,
Abdellatif A, Abdoli A, Abel S, Abeliovich H, Abildgaard MH,
Princely Abudu Y, Acevedo-Arozena A, et al: Guidelines for the use
and interpretation of assays for monitoring autophagy (4th
edition)1. Autophagy. 17:1–382. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ajoolabady A, Kaplowitz N, Lebeaupin C,
Kroemer G, Kaufman RJ, Malhi H and Ren J: Endoplasmic reticulum
stress in liver diseases. Hepatology. 77:619–639. 2023. View Article : Google Scholar
|
|
133
|
Ren J, Bi Y, Sowers JR, Hetz C and Zhang
Y: Endoplasmic reticulum stress and unfolded protein response in
cardiovascular diseases. Nat Rev Cardiol. 18:499–521. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Chen X and Cubillos-Ruiz JR: Endoplasmic
reticulum stress signals in the tumour and its microenvironment.
Nat Rev Cancer. 21:71–88. 2021. View Article : Google Scholar :
|
|
135
|
Marciniak SJ, Chambers JE and Ron D:
Pharmacological targeting of endoplasmic reticulum stress in
disease. Nat Rev Drug Discov. 21:115–140. 2022. View Article : Google Scholar
|
|
136
|
Hu C, Wu Z and Li L: Pre-treatments
enhance the therapeutic effects of mesenchymal stem cells in liver
diseases. J Cell Mol Med. 24:40–49. 2020. View Article : Google Scholar
|
|
137
|
Rafiq K, Hanscom M, Valerie K, Steinberg
SF and Sabri A: Novel mode for neutrophil protease cathepsin
G-mediated signaling: Membrane shedding of epidermal growth factor
is required for cardiomyocyte anoikis. Circ Res. 102:32–41. 2008.
View Article : Google Scholar
|
|
138
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu
X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in
tumor progression and immune escape: from mechanisms to treatments.
Mol Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Weems A D, Welf ES, Dr Iscoll MK , Zhou
FY, Mazloom-Farsibaf H, Chang BJ, Murali VS, Gihana GM, Weiss BG,
Chi J, et al: Blebs promote cell survival by assembling oncogenic
signalling hubs. Nature. 615:517–525. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Nakad A, Jonard P, Geubel A, Warzee P,
Coppens JP, Dehennin JP and Dive C: CA 19-9 in neoplasms.
Comparison with CEA. Acta Gastroenterol Belg. 50:36–44. 1987.In
French. PubMed/NCBI
|
|
141
|
Taylor MJ: Clinical cryobiology of
tissues: Preservation of corneas. Cryobiology. 23:323–353. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Paolillo M, Galiazzo MC, Daga A, Ciusani
E, Serra M, Colombo L and Schinelli S: An RGD small-molecule
integrin antagonist induces detachment-mediated anoikis in glioma
cancer stem cells. Int J Oncol. 53:2683–2694. 2018.PubMed/NCBI
|
|
143
|
Bourguignon LYW: Matrix Hyaluronan-CD44
interaction activates MicroRNA and LncRNA signaling associated with
chemoresistance, invasion, and tumor progression. Front Oncol.
9:4922019. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Zhu P, Lu H, Wang M, Chen K, Chen Z and
Yang L: Targeted mechanical forces enhance the effects of tumor
immunotherapy by regulating immune cells in the tumor
microenvironment. Cancer Biol Med. 20:44–55. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Tong J, Lan XT, Zhang Z, Liu Y, Sun DY,
Wang XJ, Ou-Yang SX, Zhuang CL, Shen FM, Wang P and Li DJ:
Ferroptosis inhibitor liproxstatin-1 alleviates metabolic
dysfunction-associated fatty liver disease in mice: Potential
involvement of PANoptosis. Acta Pharmacol Sin. 44:1014–1028. 2023.
View Article : Google Scholar :
|