Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October-2024 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2024 Volume 54 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review)

  • Authors:
    • Polytimi Sidiropoulou
    • Martha Katsarou
    • Maria Sifaki
    • Maria Papasavva
    • Nikolaos Drakoulis
  • View Affiliations / Copyright

    Affiliations: 1st Department of Dermatology‑Venereology, School of Medicine, National and Kapodistrian University of Athens, ‘A. Sygros’ Hospital for Skin and Venereal Diseases, 16121 Athens, Greece, Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece, Department of Pharmacy, School of Health Sciences, Frederick University, 1036 Nicosia, Cyprus
    Copyright: © Sidiropoulou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 85
    |
    Published online on: August 5, 2024
       https://doi.org/10.3892/ijmm.2024.5409
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Topical therapy remains a critical component in the management of immune‑mediated inflammatory dermatoses such as psoriasis and atopic dermatitis. In this field, macrolactam immunomodulators, including calcineurin and mammalian target of rapamycin inhibitors, can offer steroid‑free therapeutic alternatives. Despite their potential for skin‑selective treatment compared with topical corticosteroids, the physicochemical properties of these compounds, such as high lipophilicity and large molecular size, do not meet the criteria for efficient penetration into the skin, especially with conventional topical vehicles. Thus, more sophisticated approaches are needed to address the pharmacokinetic limitations of traditional formulations. In this regard, interest has increasingly focused on nanoparticulate systems to optimize penetration kinetics and enhance the efficacy and safety of topical calcineurin and mTOR inhibitors in inflamed skin. Several types of nanovectors have been explored as topical carriers to deliver tacrolimus in both psoriatic and atopic skin, while preclinical data on nanocarrier‑based delivery of topical sirolimus in inflamed skin are also emerging. Given the promising preliminary outcomes and the complexities of drug delivery across inflamed skin, further research is required to translate these nanotherapeutics into clinical settings for inflammatory skin diseases. The present review outlined the dermatokinetic profiles of topical calcineurin and mTOR inhibitors, particularly tacrolimus, pimecrolimus and sirolimus, focusing on their penetration kinetics in psoriatic and atopic skin. It also summarizes the potential anti‑inflammatory benefits of topical sirolimus and explores novel preclinical studies investigating dermally applied nanovehicles to evaluate and optimize the skin delivery, efficacy and safety of these ‘hard‑to‑formulate’ macromolecules in the context of psoriasis and atopic dermatitis.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Rodriguez-Cerdeira C, Sanchez-Blanco E and Molares-Vila A: Clinical application of development of nonantibiotic macrolides that correct inflammation-driven immune dysfunction in inflammatory skin diseases. Mediators Inflamm. 2012:5637092012. View Article : Google Scholar : PubMed/NCBI

2 

Marsland AM and Griffiths CEM: Therapeutic potential of macrolide immunosuppressants in dermatology. Expert Opin Investig Drugs. 13:125–137. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Kemény L: The golden ages of inflammatory skin diseases: Skyrocketing developments in the therapy of psoriasis and atopic dermatitis. Acad Dermatol Venereol. 35:2239–2240. 2021. View Article : Google Scholar

4 

Leducq S, Giraudeau B, Tavernier E and Maruani A: Topical use of mammalian target of rapamycin inhibitors in dermatology: A systematic review with meta-analysis. J Am Acad Dermatol. 80:735–742. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Reynolds NJ and Al-Daraji WI: Calcineurin inhibitors and sirolimus: Mechanisms of action and applications in dermatology. Clin Exp Dermatol. 27:555–561. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Remitz A, De Pità O, Mota A, Serra-Baldrich E, Vakirlis E and Kapp A: Position statement: Topical calcineurin inhibitors in atopic dermatitis. J Eur Acad Dermatol Venereol. 32:2074–2082. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Alavi A and Shear NH: New perspectives on topical calcineurin inhibitors: Role in dermatology today and into the future. J Cutan Med Surg. 23(4 Suppl): 3S–4S. 2019. View Article : Google Scholar : PubMed/NCBI

8 

Buerger C: Epidermal mTORC1 signaling contributes to the pathogenesis of psoriasis and could serve as a therapeutic target. Front Immunol. 9:27862018. View Article : Google Scholar : PubMed/NCBI

9 

Peramo A and Marcelo CL: Visible effects of rapamycin (sirolimus) on human skin explants in vitro. Arch Dermatol Res. 305:163–171. 2013. View Article : Google Scholar

10 

Bornhövd E, Burgdorf WH and Wollenberg A: Macrolactam immunomodulators for topical treatment of inflammatory skin diseases. J Am Acad Dermatol. 45:736–743. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Gutfreund K, Bienias W, Szewczyk A and Kaszuba A: Topical calcineurin inhibitors in dermatology. Part I: Properties, method and effectiveness of drug use. Postepy Dermatol Alergol. 30:165–169. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Pinter A, Tsianakas A and Eichner A; ScaTAC study group: Efficacy and safety of topical tacrolimus microemulsion applied twice daily in patients with mild to moderate scalp psoriasis. Dermatol Ther (Heidelb). 14:521–532. 2024. View Article : Google Scholar : PubMed/NCBI

13 

Kirchner GI, Meier-Wiedenbach I and Manns MP: Clinical pharmacokinetics of everolimus. Clin Pharmacokinet. 43:83–95. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Bos JD and Meinardi MM: The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 9:165–169. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Pariser D: Topical corticosteroids and topical calcineurin inhibitors in the treatment of atopic dermatitis: Focus on percutaneous absorption. Am J Ther. 16:264–273. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Alomar A, Berth-Jones J, Bos JD, Giannetti A, Reitamo S, Ruzicka T, Stalder JF and Thestrup-Pedersen K; European Working Group on Atopic Dermatitis: The role of topical calcineurin inhibitors in atopic dermatitis. Br J Dermatol. 151(Suppl 70): S3–S27. 2004. View Article : Google Scholar

17 

Mao J, Wang H, Xie Y, Fu Y, Li Y, Liu P, Du H, Zhu J, Dong L, Hussain M, et al: Transdermal delivery of rapamycin with poor water-solubility by dissolving polymeric microneedles for anti-angiogenesis. J Mater Chem B. 8:928–934. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Kang JH, Chon J, Kim YI, Lee HJ, Oh DW, Lee HG, Han CS, Kim DW and Park CW: Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. Int J Nanomedicine. 14:5381–5396. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Chen Y, Feng X and Meng S: Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin Drug Deliv. 16:847–867. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Pandey P, Satija S, Wadhwa R, Mehta M, Purohit D, Gupta G, Prasher P, Chellappan DK, Awasthi R, Dureja H and Dua K: Emerging trends in nanomedicine for topical delivery in skin disorders: Current and translational approaches. Dermatol Ther. 33:e132922020. View Article : Google Scholar : PubMed/NCBI

21 

Abdel-Mottaleb MM, Try C, Pellequer Y and Lamprecht A: Nanomedicine strategies for targeting skin inflammation. Nanomedicine (Lond). 9:1727–1743. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Hwa C, Bauer EA and Cohen DE: Skin biology. Dermatol Ther. 24:464–470. 2011. View Article : Google Scholar

23 

Münch S, Wohlrab J and Neubert RHH: Dermal and transdermal delivery of pharmaceutically relevant macromolecules. Eur J Pharm Biopharm. 119:235–242. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Eyerich S, Eyerich K, Traidl-Hoffmann C and Biedermann T: Cutaneous barriers and skin immunity: Differentiating A connected network. Trends Immunol. 39:315–327. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Bäsler K, Bergmann S, Heisig M, Naegel A, Zorn-Kruppa M and Brandner JM: The role of tight junctions in skin barrier function and dermal absorption. J Control Release. 242:105–118. 2016. View Article : Google Scholar : PubMed/NCBI

26 

Andrews SN, Jeong E and Prausnitz MR: Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum. Pharm Res. 30:1099–1109. 2013. View Article : Google Scholar :

27 

Knudsen NØ and Pedersen GP: pH and drug delivery. pH of the Skin: Issues and Challenges. 54. Karger Publishers; Berlin: pp. 143–151. 2018

28 

Pyo SM and Maibach HI: Skin metabolism: Relevance of skin enzymes for rational drug design. Skin Pharmacol Physiol. 32:283–294. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Kubo A, Nagao K, Yokouchi M, Sasaki H and Amagai M: External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 206:2937–2946. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Vogt A, Wischke C, Neffe AT, Ma N, Alexiev U and Lendlein A: Nanocarriers for drug delivery into and through the skin-Do existing technologies match clinical challenges? J Control Release. 242:3–15. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Chavira A, Belda-Ferre P, Kosciolek T, Ali F, Dorrestein PC and Knight R: The microbiome and its potential for pharmacology. Concepts and Principles of Pharmacology. Handbook of Experimental Pharmacology. Barrett JE, Page CP and Michel MC: 260. Springer; Cham: pp. 301–326. 2019, View Article : Google Scholar

32 

Savić V, Ilić T, Nikolić I, Marković B, Čalija B, Cekić N and Savić S: Tacrolimus-loaded lecithin-based nanostructured lipid carrier and nanoemulsion with propylene glycol monocaprylate as a liquid lipid: Formulation characterization and assessment of dermal delivery compared to referent ointment. Int J Pharm. 569:1186242019. View Article : Google Scholar

33 

Raphael AP, Garrastazu G, Sonvico F and Prow TW: Formulation design for topical drug and nanoparticle treatment of skin disease. Ther Deliv. 6:197–216. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Viegas J, Dias S, Carvalho AM and Sarmento B: Characterization of a human lesioned-skin model to assess the influence of skin integrity on drug permeability. Biomed Pharmacother. 169:1158412023. View Article : Google Scholar : PubMed/NCBI

35 

Chiang A, Tudela E and Maibach HI: Percutaneous absorption in diseased skin: An overview. J Appl Toxicol. 32:537–563. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Jakasa I, De Jongh CM, Verberk MM, Bos JD and Kežić S: Percutaneous penetration of sodium lauryl sulphate is increased in uninvolved skin of patients with atopic dermatitis compared with control subjects. Br J Dermatol. 155:104–109. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Gattu S and Maibach HI: Modest but increased penetration through damaged skin: An overview of the in vivo human model. Skin Pharmacol Physiol. 24:2–9. 2011. View Article : Google Scholar

38 

Orsmond A, Bereza-Malcolm L, Lynch T, March L and Xue M: Skin barrier dysregulation in psoriasis. Int J Mol Sci. 22:108412021. View Article : Google Scholar : PubMed/NCBI

39 

Kocsis D, Horváth S, Kemény Á, Varga-Medveczky Z, Pongor C, Molnár R, Mihály A, Farkas D, Naszlady BM, Fülöp A, et al: Drug delivery through the psoriatic epidermal barrier-A 'skin-on-a-chip' permeability study and ex vivo optical imaging. Int J Mol Sci. 23:42372022. View Article : Google Scholar

40 

Zuberbier T, Chong SU, Grunow K, Guhl S, Welker P, Grassberger M and Henz BM: The ascomycin macrolactam pimecrolimus (Elidel, SDZ ASM 981) is a potent inhibitor of mediator release from human dermal mast cells and peripheral blood basophils. J Allergy Clin Immunol. 108:275–280. 2001. View Article : Google Scholar : PubMed/NCBI

41 

Hoetzenecker W, Meingassner JG, Ecker R, Stingl G, Stuetz A and Elbe-Bürger A: Corticosteroids but not pimecrolimus affect viability, maturation and immune function of murine epidermal Langerhans cells. J Invest Dermatol. 122:673–684. 2004. View Article : Google Scholar : PubMed/NCBI

42 

Learned C, Alsukait S and Rosmarin D: Usage of topical calcineurin inhibitors in the medicare population from 2013 to 2018. J Drugs Dermatol. 21:912–913. 2022. View Article : Google Scholar : PubMed/NCBI

43 

Guenther L, Lynde C and Poulin Y: Off-label use of topical calcineurin inhibitors in dermatologic disorders. J Cutan Med Surg. 23(4 Suppl): 27S–34S. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Wang L, Lu W, Yuan J, Zeng B, Li D, Zhang F and Li J: Utility of dermoscopy for evaluating the therapeutic efficacy of tacrolimus ointment plus 308-nm excimer laser combination therapy in localized vitiligo patients. Exp Ther Med. 15:3981–3988. 2018.PubMed/NCBI

45 

Bos JD: Non-steroidal topical immunomodulators provide skin-selective, self-limiting treatment in atopic dermatitis. Eur J Dermatol. 13:455–461. 2003.PubMed/NCBI

46 

Kumar P, Ashawat MS, Pandit V, Singh Verma CP, Ankalgi AD and Kumar M: Recent trends in nanocarriers for the management of atopic dermatitis. Pharm Nanotechnol. 11:397–409. 2023. View Article : Google Scholar : PubMed/NCBI

47 

Jain A, Doppalapudi S, Domb AJ and Khan W: Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis. J Control Release. 243:132–145. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Pople PV and Singh KK: Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis. Int J Pharm. 398:165–178. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Hanna S, Zip C and Shear NH: What Is the risk of harm associated with topical calcineurin inhibitors? J Cutan Med Surg. 23(4 Suppl): 19S–26S. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Chat VS, Kearns DG, Uppal SK, Han G and Wu JJ: Management of psoriasis with topicals: Applying the 2020 AAD-NPF guidelines of care to clinical practice. Cutis. 110(2 Suppl): S8–S14. 2022. View Article : Google Scholar

51 

Malecic N and Young H: Tacrolimus for the management of psoriasis: Clinical utility and place in therapy. Psoriasis (Auckl). 6:153–163. 2016.PubMed/NCBI

52 

Zonneveld IM, Rubins A, Jablonska S, Dobozy A, Ruzicka T, Kind P, Dubertret L and Bos JD: Topical tacrolimus is not effective in chronic plaque psoriasis. A pilot study. Arch Dermatol. 134:1101–1102. 1998. View Article : Google Scholar : PubMed/NCBI

53 

Remitz A, Reitamo S, Erkko P, Granlund H and Lauerma AI: Tacrolimus ointment improves psoriasis in a microplaque assay. Br J Dermatol. 141:103–107. 1999. View Article : Google Scholar : PubMed/NCBI

54 

Quartier J, Lapteva M, Boulaguiem Y, Guerrier S and Kalia YN: Influence of molecular structure and physicochemical properties of immunosuppressive drugs on micelle formulation characteristics and cutaneous delivery. Pharmaceutics. 15:12782023. View Article : Google Scholar : PubMed/NCBI

55 

Sehgal VN, Srivastava G and Dogra S: Tacrolimus in dermatology-pharmacokinetics, mechanism of action, drug interactions, dosages, and side effects: Part I. Skinmed. 7:27–30. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Stuetz A, Grassberger M and Meingassner JG: Pimecrolimus (Elidel, SDZ ASM 981)-preclinical pharmacologic profile and skin selectivity. Semin Cutan Med Surg. 20:233–241. 2001. View Article : Google Scholar

57 

Stuetz A, Baumann K, Grassberger M, Wolff K and Meingassner JG: Discovery of topical calcineurin inhibitors and pharmacological profile of pimecrolimus. Int Arch Allergy Immunol. 141:199–212. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Billich A, Aschauer H, Aszódi A and Stuetz A: Percutaneous absorption of drugs used in atopic eczema: Pimecrolimus permeates less through skin than corticosteroids and tacrolimus. Int J Pharm. 269:29–35. 2004. View Article : Google Scholar

59 

Nghiem P, Pearson G and Langley RG: Tacrolimus and pimecrolimus: From clever prokaryotes to inhibiting calcineurin and treating atopic dermatitis. J Am Acad Dermatol. 46:228–241. 2002. View Article : Google Scholar : PubMed/NCBI

60 

Ruzicka T, Assmann T and Homey B: Tacrolimus: The drug for the turn of the millennium? Arch Dermatol. 135:574–580. 1999. View Article : Google Scholar : PubMed/NCBI

61 

Lauerma AI, Surber C and Maibach HI: Absorption of topical tacrolimus (FK506) in vitro through human skin: Comparison with cyclosporin A. Skin Pharmacol Physiol. 10:230–234. 1997. View Article : Google Scholar

62 

Lauerma AI, Stein B, Lee HL, Homey B, Bloom E and Maibach HI: Topical tacrolimus (FK506): Percutaneous absorption and effect on allergic and irritant contact dermatitis. J Invest Dermatol. 110:4911993.

63 

Undre NA: Pharmacokinetics of tacrolimus ointment: Clinical relevance. Tacrolimus Ointment. Ruzicka T and Reitamo S: Springer; Berlin, Heidelberg: pp. 99–110. 2004, View Article : Google Scholar

64 

Meingassner JG, Aschauer H, Stuetz A and Billich A: Pimecrolimus permeates less than tacrolimus through normal, inflamed, or corticosteroid-pretreated skin. Exp Dermatol. 14:752–757. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Undre NA, Moloney FJ, Ahmadi S, Stevenson P and Murphy GM: Skin and systemic pharmacokinetics of tacrolimus following topical application of tacrolimus ointment in adults with moderate to severe atopic dermatitis. Br J Dermatol. 160:665–669. 2009. View Article : Google Scholar

66 

Gschwind HP, Waldmeier F, Zollinger M, Schweitzer A and Grassberger M: Pimecrolimus: Skin disposition after topical administration in minipigs in vivo and in human skin in vitro. Eur J Pharm Sci. 33:9–19. 2008. View Article : Google Scholar

67 

Weiss HM, Fresneau M, Moenius T, Stuetz A and Billich A: Binding of pimecrolimus and tacrolimus to skin and plasma proteins: Implications for systemic exposure after topical application. Drug Metab Dispos. 36:1812–1818. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Luger T, Boguniewicz M, Carr W, Cork M, Deleuran M, Eichenfield L, Eigenmann P, Fölster-Holst R, Gelmetti C, Gollnick H, et al: Pimecrolimus in atopic dermatitis: Consensus on safety and the need to allow use in infants. Pediatr Allergy Immunol. 26:306–315. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Cury Martins J, Martins C, Aoki V, Gois AF, Ishii HA and Da Silva EM: Topical tacrolimus for atopic dermatitis. Cochrane Database Syst Rev. 2015:CD0098642015.PubMed/NCBI

70 

Fogel AL, Hill S and Teng JMC: Advances in the therapeutic use of mammalian target of rapamycin (mTOR) inhibitors in dermatology. J Am Acad Dermatol. 72:879–889. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Roy T, Boateng ST, Uddin MB, Banang-Mbeumi S, Yadav RK, Bock CR, Folahan JT, Siwe-Noundou X, Walker AL, King JA, et al: The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds. Cells. 12:16712023. View Article : Google Scholar : PubMed/NCBI

72 

Wang J, Cui B, Chen Z and Ding X: The regulation of skin homeostasis, repair and the pathogenesis of skin diseases by spatiotemporal activation of epidermal mTOR signaling. Front Cell Dev Biol. 10:9509732022. View Article : Google Scholar : PubMed/NCBI

73 

Mercurio L, Albanesi C and Madonna S: Recent updates on the involvement of PI3K/AKT/mTOR molecular cascade in the pathogenesis of hyperproliferative skin disorders. Front Med (Lausanne). 8:6656472021. View Article : Google Scholar : PubMed/NCBI

74 

Huang T, Lin X, Meng X and Lin M: Phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin pathway in psoriasis pathogenesis. A potential therapeutic target? Acta Derm Venerol. 94:371–379. 2014. View Article : Google Scholar

75 

Chamcheu JC, Chaves-Rodriquez MI, Adhami VM, Siddiqui IA, Wood GS, Longley BJ and Mukhtar H: Upregulation of PI3K/AKT/mTOR, FABP5 and PPARβ/δ in human psoriasis and imiquimod-induced murine psoriasiform dermatitis model. Acta Derm Venerol. 96:854–856. 2016.

76 

Buerger C, Malisiewicz B, Eiser A, Hardt K and Boehncke WH: Mammalian target of rapamycin and its downstream signalling components are activated in psoriatic skin. Br J Dermatol. 169:156–159. 2013. View Article : Google Scholar : PubMed/NCBI

77 

Wei KC and Lai PC: Combination of everolimus and tacrolimus: A potentially effective regimen for recalcitrant psoriasis. Dermatol Ther. 28:25–27. 2015. View Article : Google Scholar :

78 

Frigerio E, Colombo MD, Franchi C, Altomare A, Garutti C and Altomare GF: Severe psoriasis treated with a new macrolide: Everolimus. Br J Dermatol. 156:372–374. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Reitamo S, Spuls P, Sassolas B, Lahfa M, Claudy A and Griffiths CE; Sirolimus European Psoriasis Study Group: Efficacy of sirolimus (rapamycin) administered concomitantly with a subtherapeutic dose of cyclosporin in the treatment of severe psoriasis: A randomized controlled trial. Br J Dermatol. 145:438–445. 2001. View Article : Google Scholar : PubMed/NCBI

80 

Van Velsen SGA, Haeck IM and Bruijnzeel-Koomen CAFM: Severe atopic dermatitis treated with everolimus. J Dermatolog Treat. 20:365–367. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Feldman SR: Adherence must always be considered: Is everolimus really ineffective as a treatment for atopic dermatitis? J Dermatolog Treat. 20:317–318. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Ormerod AD, Shah SAA, Copeland P, Omar G and Winfield A: Treatment of psoriasis with topical sirolimus: Preclinical development and a randomized, double-blind trial. Br J Dermatol. 152:758–764. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Meingassner JG and Stütz A: Immunosuppressive macrolides of the type FK 506: A novel class of topical agents for treatment of skin diseases? J Invest Dermatol. 98:851–855. 1992. View Article : Google Scholar : PubMed/NCBI

84 

Meingassner JG and Stütz A: Anti-inflammatory effects of macrophilin-lnteracting drugs in animal models of irritant and allergic contact dermatitis. Int Arch Allergy Immunol. 99:486–489. 1992. View Article : Google Scholar : PubMed/NCBI

85 

Duncan JI: Differential inhibition of cutaneous T-cell-mediated reactions and epidermal cell proliferation by cyclosporin A, FK-506, and rapamycin. J Invest Dermatol. 102:84–88. 1994. View Article : Google Scholar : PubMed/NCBI

86 

Yang F, Tanaka M, Wataya-Kaneda M, Yang L, Nakamura A, Matsumoto S, Attia M, Murota H and Katayama I: Topical application of rapamycin ointment ameliorates Dermatophagoides farina body extract-induced atopic dermatitis in NC/Nga mice. Exp Dermatol. 23:568–572. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Jung KE, Lee YJ, Ryu YH, Kim JE, Kim HS, Kim BJ, Kang H and Park YM: Effects of topically applied rapamycin and mycophenolic acid on TNCB-induced atopic dermatitis-like skin lesions in NC/Nga mice. Int Immunopharmacol. 26:432–438. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Bürger C, Shirsath N, Lang V, Diehl S, Kaufmann R, Weigert A, Han YY, Ringel C and Wolf P: Blocking mTOR signalling with rapamycin ameliorates imiquimod-induced psoriasis in mice. Acta Derm Venerol. 97:1087–1094. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Gao M and Si X: Rapamycin ameliorates psoriasis by regulating the expression and methylation levels of tropomyosin via ERK1/2 and mTOR pathways in vitro and in vivo. Exp Dermatol. 27:1112–1119. 2018. View Article : Google Scholar : PubMed/NCBI

90 

Kim HR, Kim JC, Kang SY, Kim HO, Park CW and Chung BY: Rapamycin alleviates 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced aggravated dermatitis in mice with imiquimod-induced psoriasis-like dermatitis by inducing autophagy. Int J Mol Sci. 22:39682021. View Article : Google Scholar : PubMed/NCBI

91 

Rancan F, Guo X, Rajes K, Sidiropoulou P, Zabihi F, Hoffmann L, Hadam S, Blume-Peytavi U, Rühl E, Haag R and Vogt A: Topical delivery of rapamycin by means of microenvironment-sensitive core-multi-shell nanocarriers: Assessment of anti-inflammatory activity in an ex vivo Skin/T cell co-culture model. Int J Nanomedicine. 16:7137–7151. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Rancan F, Rajes K, Sidiropoulou P, Hadam S, Guo X, Zabihi F, Mirastschijski U, Rühl E, Haag R, Blume-Peytavi U and Vogt A: Efficacy of topically applied rapamycin-loaded redox-sensitive nanocarriers in a human skin/T cell co-culture model. Int Immunopharmacol. 117:1099032023. View Article : Google Scholar : PubMed/NCBI

93 

Dong S, Li D and Shi D: Skin barrier-inflammatory pathway is a driver of the psoriasis-atopic dermatitis transition. Front Med (Lausanne). 11:13355512024. View Article : Google Scholar : PubMed/NCBI

94 

Furue M and Kadono T: 'Inflammatory skin march' in atopic dermatitis and psoriasis. Inflamm Res. 66:833–842. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Sehgal SN: Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc. 35(3 Suppl): 7S–14S. 2003. View Article : Google Scholar : PubMed/NCBI

96 

Haeri A, Osouli M, Bayat F, Alavi S and Dadashzadeh S: Nanomedicine approaches for sirolimus delivery: A review of pharmaceutical properties and preclinical studies. Artif Cells Nanomed Biotechnol. 46(Suppl 1): S1–S14. 2018. View Article : Google Scholar

97 

Balestri R, Rizzoli L, Pedrolli A, Urru SAM, Rech G, Neri I, Girardelli CR and Magnano M: Analysis of current data on the use of topical mTOR inhibitors in the treatment of facial angiofibromas in tuberous sclerosis complex-an update. Eur Acad Dermatol Venereol. 37:474–487. 2023. View Article : Google Scholar

98 

Tanaka M, Wataya-Kaneda M, Nakamura A, Matsumoto S and Katayama I: First left-right comparative study of topical rapamycin vs vehicle for facial angiofibromas in patients with tuberous sclerosis complex. Br J Dermatol. 169:1314–1318. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Kitayama K, Maeda S, Nakamura A, Katayama I and Wataya-Kaneda M: Efficiency of sirolimus delivery to the skin is dependent on administration route and formulation. J Dermatol Sci. 94:350–353. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Le Guyader G, Do B, Vieillard V, Andrieux K and Paul M: Comparison of the in vitro and ex vivo permeation of existing topical formulations used in the treatment of facial angiofibroma and characterization of the variations observed. Pharmaceutics. 12:10602020. View Article : Google Scholar : PubMed/NCBI

101 

Germer G, Ohigashi T, Yuzawa H, Kosugi N, Flesch R, Rancan F, Vogt A and Rühl E: Improved skin permeability after topical treatment with serine protease: Probing the penetration of rapamycin by scanning transmission X-ray microscopy. ACS Omega. 6:12213–12222. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Kovačević AB, Müller RH and Keck CM: Formulation development of lipid nanoparticles: Improved lipid screening and development of tacrolimus loaded nanostructured lipid carriers (NLC). Int J Pharm. 576:1189182020. View Article : Google Scholar

103 

Dantas IL, Bastos KTS, Machado M, Galvao JG, Lima AD, Gonsalves JKMC, Almeida EDP, Araújo AAS, de Meneses CT, Sarmento VHV, et al: Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus. J Therm Anal Calorim. 132:1557–1566. 2018. View Article : Google Scholar

104 

Wang R, Li L, Wang B, Zhang T and Sun L: FK506-loaded solid lipid nanoparticles: Preparation, characterization and in vitro transdermal drug delivery. Afr J Pharm Pharmacol. 6:904–913. 2012.

105 

Khan AS, Shah KU, Mohaini MA, Alsalman AJ, Hawaj MAA, Alhashem YN, Ghazanfar S, Khan KA, Niazi ZR and Farid A: Tacrolimus-loaded solid lipid nanoparticle gel: Formulation development and in vitro assessment for topical applications. Gels. 8:1292022. View Article : Google Scholar : PubMed/NCBI

106 

Andrade LM, Silva LAD, Krawczyk-Santos AP, Amorim ICDSM, Rocha PBRD, Lima EM, Anjos JLV, Alonso A, Marreto RN and Taveira SF: Improved tacrolimus skin permeation by co-encapsulation with clobetasol in lipid nanoparticles: Study of drug effects in lipid matrix by electron paramagnetic resonance. Eur J Pharm Biopharm. 119:142–149. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Fereig SA, El-Zaafarany GM, Arafa MG and Abdel-Mottaleb MMA: Tacrolimus-loaded chitosan nanoparticles for enhanced skin deposition and management of plaque psoriasis. Carbohydr Polym. 268:1182382021. View Article : Google Scholar : PubMed/NCBI

108 

Yu K, Wang Y, Wan T, Zhai Y, Cao S, Ruan W, Wu C and Xu Y: Tacrolimus nanoparticles based on chitosan combined with nicotinamide: Enhancing percutaneous delivery and treatment efficacy for atopic dermatitis and reducing dose. Int J Nanomedicine. 13:129–142. 2017. View Article : Google Scholar

109 

Viegas JSR, Praça FG, Caron AL, Suzuki I, Silvestrini AVP, Medina WSG, Del Ciampo JO, Kravicz M and Bentley MVLB: Nanostructured lipid carrier co-delivering tacrolimus and TNF-α siRNA as an innovate approach to psoriasis. Drug Deliv Transl Res. 10:646–660. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Nam SH, Ji XY and Park J: Investigation of tacrolimus loaded nanostructured lipid carriers for topical drug delivery. Bull Korean Chem Soc. 32:956–960. 2011. View Article : Google Scholar

111 

Erdogan M, Wright JR Jr and McAlister VC: Liposomal tacrolimus lotion as a novel topical agent for treatment of immune-mediated skin disorders: Experimental studies in a murine model. Br J Dermatol. 146:964–967. 2002. View Article : Google Scholar : PubMed/NCBI

112 

Patel SS, Patel MS, Salampure S, Vishwanath B and Patel NM: Development and evaluation of liposomes for topical delivery of tacrolimus (Fk-506). J Sci Res. 2:585–596. 2010. View Article : Google Scholar

113 

Li G, Fan C, Li X, Fan Y, Wang X, Li M and Liu Y: Preparation and in vitro evaluation of tacrolimus-loaded ethosomes. Sci World J. 2012:8740532012. View Article : Google Scholar

114 

Li G, Fan Y, Fan C, Li X, Wang X, Li M and Liu Y: Tacrolimus-loaded ethosomes: physicochemical characterization and in vivo evaluation. Eur J Pharm Biopharm. 82:49–57. 2012. View Article : Google Scholar : PubMed/NCBI

115 

Lei W, Yu C, Lin H and Zhou X: Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J Pharm Sci. 8:336–345. 2013. View Article : Google Scholar

116 

Parkash V, Maan S, Chaudhary V, Jogpal V, Mittal G and Jain V: Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat. J Bioequiv Availab. 10:98–105. 2018. View Article : Google Scholar

117 

Ren J, Liu T, Bi B, Sohail S and Din FU: Development and evaluation of tacrolimus loaded nano-transferosomes for skin targeting and dermatitis treatment. J Pharm Sci. 113:471–485. 2024. View Article : Google Scholar

118 

Thapa RK, Baskaran R, Madheswaran T, Kim JO, Yong CS and Yoo BK: Preparation, characterization, and release study of tacrolimus-loaded liquid crystalline nanoparticles. J Disper Sci Technol. 34:72–77. 2013. View Article : Google Scholar

119 

Thapa RK and Yoo BK: Evaluation of the effect of tacrolimus-loaded liquid crystalline nanoparticles on psoriasis-like skin inflammation. J Dermatolog Treat. 25:22–25. 2014. View Article : Google Scholar

120 

Jain S, Addan R, Kushwah V, Harde H and Mahajan RR: Comparative assessment of efficacy and safety potential of multifarious lipid based Tacrolimus loaded nanoformulations. Int J Pharm. 562:96–104. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Singh KK and Pople P: Safer than safe: Lipid nanoparticulate encapsulation of tacrolimus with enhanced targeting and improved safety for atopic dermatitis. J Biomed Nanotechnol. 7:40–41. 2011. View Article : Google Scholar : PubMed/NCBI

122 

Pople PV and Singh KK: Targeting tacrolimus to deeper layers of skin with improved safety for treatment of atopic dermatitis-part II: In vivo assessment of dermatopharmacokinetics, biodistribution and efficacy. Int J Pharm. 434:70–79. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Pople PV and Singh KK: Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus. Eur J Pharm Biopharm. 79:82–94. 2011. View Article : Google Scholar : PubMed/NCBI

124 

Pople PV and Singh KK: Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, part II-In vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur J Pharm Biopharm. 84:72–83. 2013. View Article : Google Scholar

125 

Müller F, Hönzke S, Luthardt WO, Wong EL, Unbehauen M, Bauer J, Haag R, Hedtrich S, Rühl E and Rademann J: Rhamnolipids form drug-loaded nanoparticles for dermal drug delivery. Eur J Pharm Biopharm. 116:31–37. 2017. View Article : Google Scholar

126 

Goebel ASB, Neubert RHH and Wohlrab J: Dermal targeting of tacrolimus using colloidal carrier systems. Int J Pharm. 404:159–168. 2011. View Article : Google Scholar

127 

Lalan MS, Laddha NC, Lalani J, Imran MJ, Begum R and Misra A: Suppression of cytokine gene expression and improved therapeutic efficacy of microemulsion-based tacrolimus cream for atopic dermatitis. Drug Deliv Transl Res. 2:129–141. 2012. View Article : Google Scholar : PubMed/NCBI

128 

Savić V, Todosijević M, Ilić T, Lukić M, Mitsou E, Papadimitriou V, Avramiotis S, Marković B, Cekić N and Savić S: Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances. Int J Pharm. 529:491–505. 2017. View Article : Google Scholar

129 

Wang Y, Cao S, Yu K, Yang F, Yu X, Zhai Y, Wu C and Xu Y: Integrating tacrolimus into eutectic oil-based microemulsion for atopic dermatitis: Simultaneously enhancing percutaneous delivery and treatment efficacy with relieving side effects. Int J Nanomedicine. 14:5849–5863. 2019. View Article : Google Scholar : PubMed/NCBI

130 

Sahu S, Katiyar SS, Kushwah V and Jain S: Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine (Lond). 13:1985–1998. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Lapteva M, Mondon K, Möller M, Gurny R and Kalia YN: Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis. Mol Pharm. 11:2989–3001. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Yamamoto K, Klossek A, Fuchs K, Watts B, Raabe J, Flesch R, Rancan F, Pischon H, Radbruch M, Gruber AD, et al: Soft X-ray microscopy for probing of topical tacrolimus delivery via micelles. Eur J Pharm Biopharm. 139:68–75. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Gabriel D, Mugnier T, Courthion H, Kranidioti K, Karagianni N, Denis MC, Lapteva M, Kalia Y, Möller M and Gurny R: Improved topical delivery of tacrolimus: A novel composite hydrogel formulation for the treatment of psoriasis. J Control Release. 242:16–24. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Zabihi F, Graff P, Schumacher F, Kleuser B, Hedtrich S and Haag R: Synthesis of poly(lactide-co-glycerol) as a biodegradable and biocompatible polymer with high loading capacity for dermal drug delivery. Nanoscale. 10:16848–16856. 2018. View Article : Google Scholar : PubMed/NCBI

135 

Zhuo F, Abourehab MAS and Hussain Z: Hyaluronic acid decorated tacrolimus-loaded nanoparticles: Efficient approach to maximize dermal targeting and anti-dermatitis efficacy. Carbohydr Polym. 197:478–489. 2018. View Article : Google Scholar : PubMed/NCBI

136 

Pan W, Qin M, Zhang G, Long Y, Ruan W, Pan J, Wu Z, Wan T, Wu C and Xu Y: Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery. Int J Nanomedicine. 11:4037–4050. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Wan T, Pan W, Long Y, Yu K, Liu S, Ruan W, Pan J, Qin M, Wu C and Xu Y: Effects of nanoparticles with hydrotropic nicotinamide on tacrolimus: Permeability through psoriatic skin and antipsoriatic and antiproliferative activities. Int J Nanomedicine. 12:1485–1497. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Radbruch M, Pischon H, Du F, Haag R, Schumacher F, Kleuser B, Mundhenk L and Gruber AD: Biodegradable core-multishell nanocarrier: Topical tacrolimus delivery for treatment of dermatitis. J Control Release. 349:917–928. 2022. View Article : Google Scholar : PubMed/NCBI

139 

Unbehauen ML, Fleige E, Paulus F, Schemmer B, Mecking S, Moré S and Haag R: Biodegradable core-multishell nanocarriers: Influence of inner shell structure on the encapsulation behavior of dexamethasone and tacrolimus. Polymers (Basel). 9:3162017. View Article : Google Scholar

140 

Rancan F, Volkmann H, Giulbudagian M, Schumacher F, Stanko JI, Kleuser B, Blume-Peytavi U, Calderón M and Vogt A: Dermal delivery of the high-molecular-weight drug tacrolimus by means of polyglycerol-based nanogels. Pharmaceutics. 11:3942019. View Article : Google Scholar : PubMed/NCBI

141 

Limón D, Talló Domínguez K, Garduño-Ramírez ML, Andrade B, Calpena AC and Pérez-García L: Nanostructured supramolecular hydrogels: Towards the topical treatment of Psoriasis and other skin diseases. Colloids Surf B Biointerfaces. 181:657–670. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Parekh K, Hariharan K, Qu Z, Rewatkar P, Cao Y, Moniruzzaman M, Pandey P, Popat A and Mehta T: Tacrolimus encapsulated mesoporous silica nanoparticles embedded hydrogel for the treatment of atopic dermatitis. Int J Pharm. 608:1210792021. View Article : Google Scholar : PubMed/NCBI

143 

Wan T, Pan J, Long Y, Yu K, Wang Y, Pan W, Ruan W, Qin M, Wu C and Xu Y: Dual roles of TPGS based microemulsion for tacrolimus: Enhancing the percutaneous delivery and anti-psoriatic efficacy. Int J Pharm. 528:511–523. 2017. View Article : Google Scholar : PubMed/NCBI

144 

Shams G, Rad AN, Safdarian M, Rezaie A, Bavarsad N and Abbaspour M: Self-microemulsification-assisted incorporation of tacrolimus into hydrophilic nanofibers for facilitated treatment of 2,4-dinitrochlorobenzene induced atopic dermatitis like lesions. J Drug Deliv Sci Technol. 62:1023262021. View Article : Google Scholar

145 

Quartier J, Lapteva M, Boulaguiem Y, Guerrier S and Kalia YN: Polymeric micelle formulations for the cutaneous delivery of sirolimus: A new approach for the treatment of facial angiofibromas in tuberous sclerosis complex. Int J Pharm. 604:1207362021. View Article : Google Scholar : PubMed/NCBI

146 

Le Guyader G, Do B, Rietveld IB, Coric P, Bouaziz S, Guigner JM, Secretan PH, Andrieux K and Paul M: Mixed polymeric micelles for rapamycin skin delivery. Pharmaceutics. 14:5692022. View Article : Google Scholar : PubMed/NCBI

147 

Rajes K, Walker KA, Hadam S, Zabihi F, Rancan F, Vogt A and Haag R: Redox-responsive nanocarrier for controlled release of drugs in inflammatory skin diseases. Pharmaceutics. 13:372020. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sidiropoulou P, Katsarou M, Sifaki M, Papasavva M and Drakoulis N: Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review). Int J Mol Med 54: 85, 2024.
APA
Sidiropoulou, P., Katsarou, M., Sifaki, M., Papasavva, M., & Drakoulis, N. (2024). Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review). International Journal of Molecular Medicine, 54, 85. https://doi.org/10.3892/ijmm.2024.5409
MLA
Sidiropoulou, P., Katsarou, M., Sifaki, M., Papasavva, M., Drakoulis, N."Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review)". International Journal of Molecular Medicine 54.4 (2024): 85.
Chicago
Sidiropoulou, P., Katsarou, M., Sifaki, M., Papasavva, M., Drakoulis, N."Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review)". International Journal of Molecular Medicine 54, no. 4 (2024): 85. https://doi.org/10.3892/ijmm.2024.5409
Copy and paste a formatted citation
x
Spandidos Publications style
Sidiropoulou P, Katsarou M, Sifaki M, Papasavva M and Drakoulis N: Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review). Int J Mol Med 54: 85, 2024.
APA
Sidiropoulou, P., Katsarou, M., Sifaki, M., Papasavva, M., & Drakoulis, N. (2024). Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review). International Journal of Molecular Medicine, 54, 85. https://doi.org/10.3892/ijmm.2024.5409
MLA
Sidiropoulou, P., Katsarou, M., Sifaki, M., Papasavva, M., Drakoulis, N."Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review)". International Journal of Molecular Medicine 54.4 (2024): 85.
Chicago
Sidiropoulou, P., Katsarou, M., Sifaki, M., Papasavva, M., Drakoulis, N."Topical calcineurin and mammalian target of rapamycin inhibitors in inflammatory dermatoses: Current challenges and nanotechnology‑based prospects (Review)". International Journal of Molecular Medicine 54, no. 4 (2024): 85. https://doi.org/10.3892/ijmm.2024.5409
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team