You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
Tao L, Ren X, Zhai W and Chen Z: Progress and prospects of non-canonical NF-κB signaling pathway in the regulation of liver diseases. Molecules. 27:42752022. View Article : Google Scholar | |
|
Hofmann J, Hackl V, Esser H, Meszaros AT, Fodor M, Öfner D, Troppmair J, Schneeberger S and Hautz T: Cell-Based regeneration and treatment of liver diseases. Int J Mol Sci. 22:102762021. View Article : Google Scholar : PubMed/NCBI | |
|
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM, et al: A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 73:202–209. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Inoue Y, Qin B, Poti J, Sokol R and Gordon-Larsen P: Epidemiology of obesity in Adults: Latest trends. Curr Obes Rep. 7:276–288. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Papatheodoridi M and Cholongitas E: Diagnosis of non-alcoholic fatty liver disease (NAFLD): Current concepts. Curr Pharm Des. 24:4574–4586. 2018. View Article : Google Scholar | |
|
Dongiovanni P, Paolini E, Corsini A, Sirtori CR and Ruscica M: Nonalcoholic fatty liver disease or metabolic dysfunction-associated fatty liver disease diagnoses and cardiovascular diseases: From epidemiology to drug approaches. Eur J Clin Invest. 51:e135192021. View Article : Google Scholar : PubMed/NCBI | |
|
Lazarus JV, Palayew A, Carrieri P, Ekstedt M, Marchesini G, Novak K, Ratziu V, Romero-Gómez M, Tacke F, Zelber-Sagi S, et al: European 'NAFLD Preparedness Index'-Is Europe ready to meet the challenge of fatty liver disease? JHEP Rep. 3:1002342021. View Article : Google Scholar | |
|
Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A and Nader F: The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 71:793–801. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mantovani A, Scorletti E, Mosca A, Alisi A, Byrne CD and Targher G: Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 111s:1541702020. View Article : Google Scholar : PubMed/NCBI | |
|
Ballestri S, Zona S, Targher G, Romagnoli D, Baldelli E, Nascimbeni F, Roverato A, Guaraldi G and Lonardo A: Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. J Gastroenterol Hepatol. 31:936–944. 2016. View Article : Google Scholar | |
|
Lonardo A, Nascimbeni F, Mantovani A and Targher G: Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J Hepatol. 68:335–352. 2018. View Article : Google Scholar | |
|
Targher G, Lonardo A and Byrne CD: Nonalcoholic fatty liver disease and chronic vascular complications of diabetes mellitus. Nat Rev Endocrinol. 14:99–114. 2018. View Article : Google Scholar | |
|
Powell EE, Wong VW and Rinella M: Non-alcoholic fatty liver disease. Lancet. 397:2212–2224. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Woo Baidal JA and Lavine JE: The intersection of nonalcoholic fatty liver disease and obesity. Sci Transl Med. 8:323rv12016. View Article : Google Scholar : PubMed/NCBI | |
|
Velazquez AM, Bentanachs R, Sala-Vila A, Lazaro I, Rodríguez-Morató J, Sánchez RM, Alegret M, Roglans N and Laguna JC: ChREBP-driven DNL and PNPLA3 expression induced by liquid fructose are essential in the production of fatty liver and hypertriglyceridemia in a high-fat diet-fed rat model. Mol Nutr Food Res. 66:e21011152022. View Article : Google Scholar : PubMed/NCBI | |
|
Mato JM, Alonso C, Noureddin M and Lu SC: Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease. World J Gastroenterol. 25:3009–3020. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Petroni ML, Brodosi L, Bugianesi E and Marchesini G: Management of non-alcoholic fatty liver disease. BMJ. 372:m47472021. View Article : Google Scholar : PubMed/NCBI | |
|
European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO): EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol. 64:1388–1402. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Koopman KE, Caan MW, Nederveen AJ, Pels A, Ackermans MT, Fliers E, la Fleur SE and Serlie MJ: Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: A randomized controlled trial. Hepatology. 60:545–553. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, Friedman SL, Diago M and Romero-Gomez M: Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 149:367–378 e5; quiz e14-5. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, Macías-Cervantes MH, Markowicz Bastos DH, Medrano A, Menini T, et al: Dietary advanced glycation end products and their role in health and disease. Adv Nutr. 6:461–473. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez-Moreno J, Quintana-Navarro GM, Delgado-Lista J, Garcia-Rios A, Alcala-Diaz JF, Gomez-Delgado F, Camargo A, Perez-Martinez P, Tinahones FJ, Striker GE, et al: Mediterranean diet supplemented with coenzyme Q10 modulates the postprandial metabolism of advanced glycation end products in elderly men and women. J Gerontol A Biol Sci Med Sci. 73:340–346. 2018. | |
|
Asadipooya K, Lankarani KB, Raj R and Kalantarhormozi M: RAGE is a potential cause of onset and progression of nonalcoholic fatty liver disease. Int J Endocrinol. 2019:21513022019. View Article : Google Scholar : PubMed/NCBI | |
|
Helsley RN, Moreau F, Gupta MK, Radulescu A, DeBosch B and Softic S: Tissue-Specific fructose metabolism in obesity and diabetes. Curr Diab Rep. 20:642020. View Article : Google Scholar : PubMed/NCBI | |
|
Romero-Gomez M, Zelber-Sagi S and Trenell M: Treatment of NAFLD with diet, physical activity and exercise. J Hepatol. 67:829–846. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shim P, Choi D and Park Y: Association of blood fatty acid composition and dietary pattern with the risk of non-alcoholic fatty liver disease in patients who underwent cholecystectomy. Ann Nutr Metab. 70:303–311. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Moreira RJ, Castro É, Oliveira TE, Belchior T, Peixoto AS, Chaves-Filho AB, Moreno MF, Lima JD, Yoshinaga M, Miyamoto S, et al: Lipoatrophy-Associated insulin resistance and hepatic steatosis are attenuated by intake of diet rich in omega 3 fatty acids. Mol Nutr Food Res. 64:e19008332020. View Article : Google Scholar : PubMed/NCBI | |
|
Musazadeh V, Dehghan P, Saleh-Ghadimi S and Abbasalizad Farhangi M: Omega 3-rich Camelina sativa oil in the context of a weight loss program improves glucose homeostasis, inflammation and oxidative stress in patients with NAFLD: A randomised placebo-controlled clinical trial. Int J Clin Pract. 75:e147442021. View Article : Google Scholar : PubMed/NCBI | |
|
Tosti V, Bertozzi B and Fontana L: Health benefits of the mediterranean diet: Metabolic and molecular mechanisms. J Gerontol A Biol Sci Med Sci. 73:318–326. 2018. View Article : Google Scholar | |
|
Alonso-Domínguez R, García-Ortiz L, Patino-Alonso MC, Sánchez-Aguadero N and Gómez-Marcos MA: Recio-Rodríguez JI: Effectiveness of a multifactorial intervention in increasing adherence to the mediterranean diet among patients with diabetes mellitus type 2: A Controlled and Randomized Study (EMID Study). Nutrients. 11:1622019. View Article : Google Scholar | |
|
Mohammadi S, Lotfi K, Mirzaei S, Asadi A, Akhlaghi M and Saneei P: Adherence to mediterranean diet and its association with metabolic health status in overweight and obese adolescents. Int J Clin Pract. 2022:99252672022. View Article : Google Scholar : PubMed/NCBI | |
|
Torres-Collado L, García-de la Hera M, Lopes C, Compañ-Gabucio LM, Oncina-Cánovas A, Notario-Barandiaran L, González-Palacios S and Vioque J: Olive oil consumption and all-cause, cardiovascular and cancer mortality in an adult mediterranean population in Spain. Front Nutr. 9:9979752022. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-González M, Martín-Calvo N, Bretos-Azcona T, Carlos S and Delgado-Rodríguez M: Mediterranean diet and cardiovascular prevention: why analytical observational designs do support causality and not only associations. Int J Environ Res Public Health. 19:136532022. View Article : Google Scholar : PubMed/NCBI | |
|
Zelber-Sagi S, Salomone F and Mlynarsky L: The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: Evidence and plausible mechanisms. Liver Int. 37:936–949. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XL, Wang TY, Targher G, Byrne CD and Zheng MH: Lifestyle interventions for non-obese patients both with, and at risk, of non-alcoholic fatty liver disease. Diabetes Metab J. 46:391–401. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hinrichs H, Faerber A, Young M, Ballentine SJ and Thompson MD: Maternal exercise protects male offspring from maternal diet-programmed nonalcoholic fatty liver disease progression. Endocrinology. 164:bqad0102023. View Article : Google Scholar : PubMed/NCBI | |
|
Hashida R, Kawaguchi T, Bekki M, Omoto M, Matsuse H, Nago T, Takano Y, Ueno T, Koga H, George J, et al: Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J Hepatol. 66:142–152. 2017. View Article : Google Scholar | |
|
Zhang HJ, Pan LL, Ma ZM, Chen Z, Huang ZF, Sun Q, Lu Y, Han CK, Lin MZ, Li XJ, et al: Long-term effect of exercise on improving fatty liver and cardiovascular risk factors in obese adults: A 1-year follow-up study. Diabetes Obes Metab. 19:284–289. 2017. View Article : Google Scholar | |
|
Wong VW, Wong GL, Chan RS, Shu SS, Cheung BH, Li LS, Chim AM, Chan CK, Leung JK, Chu WC, et al: Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J Hepatol. 69:1349–1356. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kasper P, Breuer S, Hoffmann T, Vohlen C, Janoschek R, Schmitz L, Appel S, Fink G, Hünseler C, Quaas A, et al: Maternal exercise mediates hepatic metabolic programming via activation of AMPK-PGC1α axis in the offspring of obese mothers. Cells. 10:12472021. View Article : Google Scholar | |
|
Battista F, Ermolao A, van Baak MA, Beaulieu K, Blundell JE, Busetto L, Carraça EV, Encantado J, Dicker D, Farpour-Lambert N, et al: Effect of exercise on cardiometabolic health of adults with overweight or obesity: Focus on blood pressure, insulin resistance, and intrahepatic fat-A systematic review and meta-analysis. Obes Rev. 22(Suppl 4): e132692021. View Article : Google Scholar : PubMed/NCBI | |
|
Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM and Sanyal AJ: The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the study of liver diseases. Hepatology. 67:328–357. 2018. View Article : Google Scholar | |
|
Nguyen NT and Varela JE: Bariatric surgery for obesity and metabolic disorders: state of the art. Nat Rev Gastroenterol Hepatol. 14:160–169. 2017. View Article : Google Scholar | |
|
Cabré N, Luciano-Mateo F, Fernández-Arroyo S, Baiges-Gayà G, Hernández-Aguilera A, Fibla M, Fernández-Julià R, París M, Sabench F, Castillo DD, et al: Laparoscopic sleeve gastrectomy reverses non-alcoholic fatty liver disease modulating oxidative stress and inflammation. Metabolism. 99:81–89. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nobili V, Carpino G, De Peppo F, Caccamo R, Mosca A, Romito I, Overi D, Franchitto A, Onori P, Alisi A and Gaudio E: Laparoscopic sleeve gastrectomy improves nonalcoholic fatty liver disease-related liver damage in adolescents by reshaping cellular interactions and hepatic adipocytokine production. J Pediatr. 194:100–108.e3. 2018. View Article : Google Scholar | |
|
Pan Q, Qin T, Gao Y, Li S, Li D, Peng M, Zhai H and Xu G: Hepatic mTOR-AKT2-Insig2 signaling pathway contributes to the improvement of hepatic steatosis after Roux-en-Y Gastric Bypass in mice. Biochim Biophys Acta Mol Basis Dis. 1865:525–534. 2019. View Article : Google Scholar | |
|
Caiazzo R, Lassailly G, Leteurtre E, Baud G, Verkindt H, Raverdy V, Buob D, Pigeyre M, Mathurin P and Pattou F: Roux-en-Y gastric bypass versus adjustable gastric banding to reduce nonalcoholic fatty liver disease: A 5-year controlled longitudinal study. Ann Surg. 260:893–898; discussion 898-9. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Feng W, Yin T, Chu X, Shan X, Jiang C, Wang Y, Qian Y, Zhu D, Sun X and Bi Y: Metabolic effects and safety of Roux-en-Y gastric bypass surgery vs. conventional medication in obese Chinese patients with type 2 diabetes. Diabetes Metab Res Rev. 35:e31382019. View Article : Google Scholar : PubMed/NCBI | |
|
Malo FC, Marion A, Rioux A, Lebel S, Hould F, Julien F, Marceau S, Lescelleur O, Lafortune A, Bouvet-Bouchard L and Biertho L: Long alimentary limb duodenal switch (LADS): An exploratory randomized trial, results at 2 years. Obes Surg. 30:5047–5058. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Russo MF, Lembo E, Mari A, Angelini G, Verrastro O, Nanni G, Pompili M, Raffaelli M, Vecchio FM, Bornstein SR and Mingrone G: Insulin resistance is central to long-term reversal of histologic nonalcoholic steatohepatitis after metabolic surgery. J Clin Endocrinol Metab. 106:750–761. 2021. View Article : Google Scholar | |
|
Giannini EG, Coppo C, Romana C, Camerini GB, De Cian F, Scopinaro N and Papadia FS: Long-term follow-up study of liver-related outcome after bilio-pancreatic diversion in patients with initial, significant liver damage. Dig Dis Sci. 63:1946–1951. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hassanian M, Al-Mulhim A, Al-Sabhan A, Al-Amro S, Bamehriz F, Abdo A, Al Khalidi H and Aldoheyan TA: The effect of bariatric surgeries on nonalcoholic fatty liver disease. Saudi J Gastroenterol. 20:270–278. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Aldoheyan T, Hassanain M, Al-Mulhim A, Al-Sabhan A, Al-Amro S, Bamehriz F and Al-Khalidi H: The effects of bariatric surgeries on nonalcoholic fatty liver disease. Surg Endosc. 31:1142–1147. 2017. View Article : Google Scholar | |
|
Karlsson C, Wallenius K, Walentinsson A, Greasley PJ, Miliotis T, Hammar M, Iaconelli A, Tapani S, Raffaelli M, Mingrone G and Carlsson B: Identification of proteins associated with the early restoration of insulin sensitivity after biliopancreatic diversion. J Clin Endocrinol Metab. 105:e4157–e4168. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yu HH, Hsieh MC, Wu SY, Sy ED and Shan YS: Effects of duodenal-jejunal bypass surgery in ameliorating nonalcoholic steatohepatitis in diet-induced obese rats. Diabetes Metab Syndr Obes. 12:149–159. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Talavera-Urquijo E, Beisani M, Balibrea JM and Alverdy JC: Is bariatric surgery resolving NAFLD via microbiota-mediated bile acid ratio reversal? A comprehensive review. Surg Obes Relat Dis. 16:1361–1369. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Zheng J, Zhang S, Wang B, Wu C and Guo X: Advances in the involvement of gut microbiota in pathophysiology of NAFLD. Front Med (Lausanne). 7:3612020. View Article : Google Scholar : PubMed/NCBI | |
|
Yao Z, Song S, Li X, Wang W, Ren P, Wang H, Xie Y and Li Z: Corn peptides ameliorate nonalcoholic fatty liver disease by suppressing endoplasmic reticulum stress via the AMPKα/Sirt1 pathway in vivo and in vitro. Journal of Functional Foods. 93:1050632022. View Article : Google Scholar | |
|
Santos-Sanchez G, Cruz-Chamorro I, Alvarez-Rios AI, Fernández-Santos JM, Vázquez-Román MV, Rodríguez-Ortiz B, Álvarez-Sánchez N, Álvarez-López AI, Millán-Linares MDC, Millán F, et al: Lupinus angustifolius protein hydrolysates reduce abdominal adiposity and ameliorate metabolic associated fatty liver disease (MAFLD) in Western Diet Fed-ApoE(-/-) Mice. Antioxidants (Basel). 10:12222021. View Article : Google Scholar : PubMed/NCBI | |
|
Dumeus S, Shibu MA, Lin WT, Wang MF, Lai CH, Shen CY, Lin YM, Viswanadha VP, Kuo WW and Huang CY: Bioactive peptide improves diet-induced hepatic fat deposition and hepatocyte proinflammatory response in SAMP8 ageing mice. Cell Physiol Biochem. 48:1942–1952. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong D, Xie Z, Huang B, Zhu S, Wang G, Zhou H, Lin S, Lin Z and Yang B: Ganoderma lucidum polysaccharide peptide alleviates hepatoteatosis via modulating bile acid metabolism dependent on FXR-SHP/FGF. Cell Physiol Biochem. 49:1163–1179. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ye J, Tian X, Wang Q, Zheng J, Yang Y, Xu B, Zhang S, Yuan F and Yang Z: Monkfish peptides mitigate high fat diet-induced hepatic steatosis in mice. Mar Drugs. 20:3122022. View Article : Google Scholar : PubMed/NCBI | |
|
Pittala S, Krelin Y, Kuperman Y and Shoshan-Barmatz V: A Mitochondrial VDAC1-Based peptide greatly suppresses steatosis and NASH-Associated pathologies in a mouse model. Mol Ther. 27:1848–1862. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chiang WD, Shibu MA, Lee KI, Wu JP, Tsai FJ, Pan LF, Huang CY and Lin WT: Lipolysis-stimulating peptide-VHVV ameliorates high fat diet induced hepatocyte apoptosis and fibrosis. J Func Foods. 11:482–492. 2014. View Article : Google Scholar | |
|
Moreira GV, Azevedo FF, Ribeiro LM, Santos A, Guadagnini D, Gama P, Liberti EA, Saad M and Carvalho C: Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. J Nutr Biochem. 62:143–154. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fang Y, Ji L, Zhu C, Xiao Y, Zhang J, Lu J, Yin J and Wei L: Liraglutide alleviates hepatic steatosis by activating the TFEB-Regulated autophagy-lysosomal pathway. Front Cell Dev Biol. 8:6025742020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang M, Ma X, Xuan X, Deng H, Chen Q and Yuan L: Liraglutide attenuates non-alcoholic fatty liver disease in mice by regulating the local renin-angiotensin system. Front Pharmacol. 11:4322020. View Article : Google Scholar : PubMed/NCBI | |
|
Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, Hazlehurst JM, Guo K, Abouda G; LEAN trial team; et al: Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet. 387:679–690. 2016. View Article : Google Scholar | |
|
Kuchay MS, Krishan S, Mishra SK, Choudhary NS, Singh MK, Wasir JS, Kaur P, Gill HK, Bano T, Farooqui KJ and Mithal A: Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: Randomised controlled trial (D-LIFT trial). Diabetologia. 63:2434–2445. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Newsome PN, Buchholtz K, Cusi K, Linder M, Okanoue T, Ratziu V, Sanyal AJ, Sejling AS and Harrison SA; NN9931-4296 Investigators: A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 384:1113–1124. 2021. View Article : Google Scholar | |
|
Flint A, Andersen G, Hockings P, Johansson L, Morsing A, Sundby Palle M, Vogl T, Loomba R and Plum-Mörschel L: Randomised clinical trial: Semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non-alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment Pharmacol Ther. 54:1150–1161. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Newsome P, Francque S, Harrison S, Ratziu V, Van Gaal L, Calanna S, Hansen M, Linder M and Sanyal A: Effect of semaglutide on liver enzymes and markers of inflammation in subjects with type 2 diabetes and/or obesity. Aliment Pharmacol Ther. 50:193–203. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jin L, Sun Y, Li Y, Zhang H, Yu W, Li Y, Xin Y, Alsareii SA, Wang Q and Zhang D: A synthetic peptide AWRK6 ameliorates metabolic associated fatty liver disease: Involvement of lipid and glucose homeostasis. Peptides. 143:1705972021. View Article : Google Scholar : PubMed/NCBI | |
|
van Dalem J, Driessen JHM, Burden AM, Stehouwer CDA, Klungel OH, de Vries F and Brouwers MCGJ: Thiazolidinediones and glucagon-like peptide-1 receptor agonists and the risk of nonalcoholic fatty liver disease: A cohort study. Hepatology. 74:2467–2477. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao JV, Yeung WF, Chan YH, Vackova D, Leung JYY, Ip DKM, Zhao J, Ho WK, Tse HF and Schooling CM: Effect of berberine on cardiovascular disease risk factors: A mechanistic randomized controlled trial. Nutrients. 13:25502021. View Article : Google Scholar : PubMed/NCBI | |
|
Majidzadeh H, Araj-Khodaei M, Ghaffari M, Torbati M, Ezzati Nazhad Dolatabadi J and Hamblin MR: Nano-based delivery systems for berberine: A modern anti-cancer herbal medicine. Colloids Surf B Biointerfaces. 194:1111882020. View Article : Google Scholar : PubMed/NCBI | |
|
Koperska A, Wesolek A, Moszak M and Szulinska M: Berberine in non-alcoholic fatty liver disease-A review. Nutrients. 14:34592022. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Wang C, Hao S, Song H and Yang L: The therapeutic effect of berberine in the treatment of nonalcoholic fatty liver disease: A meta-analysis. Evid Based Complement Alternat Med. 2016:35939512016. View Article : Google Scholar : PubMed/NCBI | |
|
Guo T, Woo SL, Guo X, Li H, Zheng J, Botchlett R, Liu M, Pei Y, Xu H, Cai Y, et al: Berberine ameliorates hepatic steatosis and suppresses liver and adipose tissue inflammation in mice with diet-induced obesity. Sci Rep. 6:226122016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Bian H, Wang L, Sun X, Xu X, Yan H, Xia M, Chang X, Lu Y, Li Y, et al: Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic Biol Med. 141:192–204. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Vivoli E, Cappon A, Milani S, Piombanti B, Provenzano A, Novo E, Masi A, Navari N, Narducci R, Mannaioni G, et al: NLRP3 inflammasome as a target of berberine in experimental murine liver injury: Interference with P2X7 signalling. Clin Sci (Lond). 130:1793–1806. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Y, Yuan X, Zhang F, Han Y, Chang X, Xu X, Li Y and Gao X: Berberine ameliorates fatty acid-induced oxidative stress in human hepatoma cells. Sci Rep. 7:113402017. View Article : Google Scholar : PubMed/NCBI | |
|
Li D, Zheng J, Hu Y, Hou H, Hao S, Liu N and Wang Y: Amelioration of intestinal barrier dysfunction by berberine in the treatment of nonalcoholic fatty liver disease in rats. Pharmacogn Mag. 13:677–682. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Zhao Y, Xu J, Xue Z, Zhang M, Pang X, Zhang X and Zhao L: Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep. 5:144052015. View Article : Google Scholar : PubMed/NCBI | |
|
Cui HX, Hu YN, Li JW and Yuan K: Hypoglycemic mechanism of the berberine organic acid salt under the synergistic effect of intestinal flora and oxidative stress. Oxid Med Cell Longev. 2018:89303742018. View Article : Google Scholar | |
|
Li G, Zhou F, Chen Y, Zhang W and Wang N: Kukoamine A attenuates insulin resistance and fatty liver through downregulation of Srebp-1c. Biomed Pharmacother. 89:536–543. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma L, Lone NA, Knott RM, Hassan A and Abdullah T: Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. Food Chem Toxicol. 121:283–296. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liang L, Ye S, Jiang R, Zhou X, Zhou J and Meng S: Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling. Int Immunopharmacol. 104:1083062022. View Article : Google Scholar : PubMed/NCBI | |
|
Cai L, Liu S, Sun L, Wang Y, Ji H and Li J: Application of tea polyphenols in combination with 6-gingerol on shrimp paste of during storage: Biogenic amines formation and quality determination. Front Microbiol. 6:9812015. View Article : Google Scholar : PubMed/NCBI | |
|
Panahi Y, Hossein i MS, Khalili N, Naimi E, Simental-Mendía LE, Majeed M and Sahebkar A: Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed Pharmacother. 82:578–582. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Panahi Y, Hosseini MS, Khalili N, Naimi E, Majeed M and Sahebkar A: Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin Nutr. 34:1101–1108. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE and Sahebkar A: Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: A Randomized controlled trial. Drug Res (Stuttg). 67:244–251. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A and Sahebkar A: Treatment of non-alcoholic fatty liver disease with curcumin: A Randomized placebo-controlled trial. Phytother Res. 30:1540–1548. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mokgalaboni K, Ntamo Y, Ziqubu K, Nyambuya TM, Nkambule BB, Mazibuko-Mbeje SE, Gabuza KB, Chellan N, Tiano L and Dludla PV: Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: Updating the status of clinical evidence. Food Funct. 12:12235–12249. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mahmoudi A, Butler AE, Majeed M, Banach M and Sahebkar A: Investigation of the effect of curcumin on protein targets in NAFLD using bioinformatic analysis. Nutrients. 14:13312022. View Article : Google Scholar : PubMed/NCBI | |
|
Korsholm AS, Kjær TN, Ornstrup MJ and Pedersen SB: Comprehensive metabolomic analysis in blood, urine, fat, and muscle in men with metabolic Syndrome: A Randomized, placebo-controlled clinical trial on the effects of resveratrol after four months' treatment. Int J Mol Sci. 18:5542017. View Article : Google Scholar : PubMed/NCBI | |
|
Méndez-del Villar M, González-Ortiz M, Martínez-Abundis E, Pérez-Rubio KG and Lizárraga-Valdez R: Effect of resveratrol administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Metab Syndr Relat Disord. 12:497–501. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Faghihzadeh F, Adibi P and Hekmatdoost A: The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: A randomised, double-blind, placebo-controlled study. Br J Nutr. 114:796–803. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng C, Li Z, Zhao X, Liao C, Quan J, Bode AM, Cao Y and Luo X: Natural alkaloid and polyphenol compounds targeting lipid metabolism: Treatment implications in metabolic diseases. Eur J Pharmacol. 870:1729222020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Zhao X, Ran L, Wan J, Wang X, Qin Y, Shu F, Gao Y, Yuan L, Zhang Q and Mi M: Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig Liver Dis. 47:226–232. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tejada S, Capó X, Mascaró CM, Monserrat-Mesquida M, Quetglas-Llabrés MM, Pons A, Tur JA and Sureda A: Hepatoprotective effects of resveratrol in non-alcoholic fatty live disease. Curr Pharm Des. 27:2558–2570. 2021. View Article : Google Scholar | |
|
Hosseini H, Teimouri M, Shabani M, Koushki M, Babaei Khorzoughi R, Namvarjah F, Izadi P and Meshkani R: Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the Nrf2 signaling pathway. Int J Biochem Cell Biol. 119:1056672020. View Article : Google Scholar | |
|
Ebrahimpour S, Zakeri M and Esmaeili A: Crosstalk between obesity, diabetes, and alzheimer's disease: Introducing quercetin as an effective triple herbal medicine. Ageing Res Rev. 62:1010952020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang H, Yang T, Heng C, Zhou Y, Jiang Z, Qian X, Du L, Mao S, Yin X and Lu Q: Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother Res. 33:3140–3152. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Porras D, Nistal E, Martínez-Flórez S, Pisonero-Vaquero S, Olcoz JL, Jover R, González-Gallego J, García-Mediavilla MV and Sánchez-Campos S: Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med. 102:188–202. 2017. View Article : Google Scholar | |
|
Zhu X, Xiong T, Liu P, Guo X, Xiao L, Zhou F, Tang Y and Yao P: Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway. Food Chem Toxicol. 114:52–60. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Liu J, Mei G, Chen H, Peng S, Zhao Y, Yao P and Tang Y: Quercetin and non-alcoholic fatty liver disease: A review based on experimental data and bioinformatic analysis. Food Chem Toxicol. 154:1123142021. View Article : Google Scholar : PubMed/NCBI | |
|
Saha S, Sadhukhan P and Sil PC: Mangiferin: A xanthonoid with multipotent anti-inflammatory potential. BioFactors. 42:459–474. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gold-Smith F, Fernandez A and Bishop K: Mangiferin and cancer: Mechanisms of action. Nutrients. 8:3962016. View Article : Google Scholar : PubMed/NCBI | |
|
Yong Z, Ruiqi W, Hongji Y, Ning M, Chenzuo J, Yu Z, Zhixuan X, Qiang L, Qibing L, Weiying L and Xiaopo Z: Mangiferin Ameliorates HFD-Induced NAFLD through Regulation of the AMPK and NLRP3 inflammasome signal pathways. J Immunol Res. 2021:40845662021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Liu Q, Liu L, Hu YY and Feng Q: Potential biological effects of (−)-epigallocatechin-3-gallate on the treatment of nonalcoholic fatty liver disease. Mol Nutr Food Res. 62:17004832018. View Article : Google Scholar | |
|
Chen Q and Wang T, Li J, Wang S, Qiu F, Yu H, Zhang Y and Wang T: Effects of natural products on fructose-induced nonalcoholic fatty liver disease (NAFLD). Nutrients. 9:962017. View Article : Google Scholar : PubMed/NCBI | |
|
Abenavoli L, Izzo AA, Milic N, Cicala C, Santini A and Capasso R: Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res. 32:2202–2213. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Marin V, Gazzin S, Gambaro SE, Dal Ben M, Calligaris S, Anese M, Raseni A, Avellini C, Giraudi PJ, Tiribelli C and Rosso N: Effects of oral administration of silymarin in a juvenile murine model of non-alcoholic steatohepatitis. Nutrients. 9:10062017. View Article : Google Scholar : PubMed/NCBI | |
|
Ni X and Wang H: Silymarin attenuated hepatic steatosis through regulation of lipid metabolism and oxidative stress in a mouse model of nonalcoholic fatty liver disease (NAFLD). Am J Transl Res. 8:1073–1081. 2016.PubMed/NCBI | |
|
Gu M, Zhao P, Huang J, Zhao Y, Wang Y, Li Y, Li Y, Fan S, Ma YM, Tong Q, et al: Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor. Front Pharmacol. 7:3452016. View Article : Google Scholar : PubMed/NCBI | |
|
Wah Kheong C, Nik Mustapha NR and Mahadeva S: A Randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 15:1940–1949.e8. 2017. View Article : Google Scholar | |
|
Curcio A, Romano A, Cuozzo S, Nicola AD, Grassi O, Schiaroli D, Nocera GF and Pironti M: Silymarin in combination with vitamin C, vitamin E, coenzyme Q10 and selenomethionine to improve liver enzymes and blood lipid profile in NAFLD patients. Medicina (Kaunas). 56:5442020. View Article : Google Scholar : PubMed/NCBI | |
|
Ou Q, Weng Y, Wang S, Zhao Y, Zhang F, Zhou J and Wu X: Silybin alleviates hepatic steatosis and fibrosis in NASH mice by inhibiting oxidative stress and involvement with the Nf-κB pathway. Dig Dis Sci. 63:3398–3408. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui CX, Deng JN, Yan L, Liu YY, Fan JY, Mu HN, Sun HY, Wang YH and Han JY: Silibinin Capsules improves high fat diet-induced nonalcoholic fatty liver disease in hamsters through modifying hepatic de novo lipogenesis and fatty acid oxidation. J Ethnopharmacol. 208:24–35. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Xu W, Zhai T, You J and Chen Y: Silibinin ameliorates hepatic lipid accumulation and oxidative stress in mice with non-alcoholic steatohepatitis by regulating CFLAR-JNK pathway. Acta Pharm Sin B. 9:745–757. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cassard AM and Ciocan D: Microbiota, a key player in alcoholic liver disease. Clin Mol Hepatol. 24:100–107. 2018. View Article : Google Scholar : | |
|
Fujinaga Y, Kawaratani H, Kaya D, Tsuji Y, Ozutsumi T, Furukawa M, Kitagawa K, Sato S, Nishimura N, Sawada Y, et al: effective combination therapy of angiotensin-II receptor blocker and rifaximin for hepatic fibrosis in rat model of nonalcoholic steatohepatitis. Int J Mol Sci. 21:55892020. View Article : Google Scholar : PubMed/NCBI | |
|
Jian J, Nie MT, Xiang B, Qian H, Yin C, Zhang X, Zhang M, Zhu X and Xie WF: Rifaximin ameliorates non-alcoholic steatohepatitis in mice through regulating gut microbiome-related bile acids. Front Pharmacol. 13:8411322022. View Article : Google Scholar : PubMed/NCBI | |
|
Gangarapu V, Ince AT, Baysal B, Kayar Y, Kılıç U, Gök Ö, Uysal Ö and Şenturk H: Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 27:840–845. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Abdel-Razik A, Mousa N, Shabana W, Refaey M, Elzehery R, Elhelaly R, Zalata K, Abdelsalam M, Eldeeb AA, Awad M, et al: Rifaximin in nonalcoholic fatty liver disease: Hit multiple targets with a single shot. Eur J Gastroenterol Hepatol. 30:1237–1246. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sumida Y and Yoneda M: Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 53:362–376. 2018. View Article : Google Scholar : | |
|
Rotman Y and Sanyal AJ: Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 66:180–190. 2017. View Article : Google Scholar | |
|
Brandt A, Jin CJ, Nolte K, Sellmann C, Engstler AJ and Bergheim I: Short-Term intake of a fructose-, fat- and cholesterol-rich diet causes hepatic steatosis in mice: Effect of antibiotic treatment. Nutrients. 9:10132017. View Article : Google Scholar : PubMed/NCBI | |
|
Suk KT and Kim DJ: Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 13:193–204. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liao CC, Ou TT, Huang HP and Wang CJ: The inhibition of oleic acid induced hepatic lipogenesis and the promotion of lipolysis by caffeic acid via up-regulation of AMP-activated kinase. J Sci Food Agric. 94:1154–1162. 2014. View Article : Google Scholar | |
|
Pardo V, González-Rodríguez Á, Muntané J, Kozma SC and Valverde ÁM: Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection. Food Chem Toxicol. 80:298–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Reyes-Quiroz ME, Alba G, Saenz J, Santa-María C, Geniz I, Jiménez J, Ramírez R, Martín-Nieto J, Pintado E and Sobrino F: Oleic acid modulates mRNA expression of liver X receptor (LXR) and its target genes ABCA1 and SREBP1c in human neutrophils. Eur J Nutr. 53:1707–1717. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gu LY, Qiu LW, Chen XF, Lü L and Mei ZC: Oleic acid-induced hepatic steatosis is coupled with downregulation of aquaporin 3 and upregulation of aquaporin 9 via activation of p38 signaling. Horm Metab Res. 47:259–264. 2015. | |
|
Miyake T, Furukawa S, Matsuura B, Yoshida O, Miyazaki M, Shiomi A, Kanzaki S, Nakaguchi H, Sunago K, Nakamura Y, et al: Plasma fatty acid composition is associated with histological findings of nonalcoholic steatohepatitis. Biomedicines. 10:25402022. View Article : Google Scholar : PubMed/NCBI | |
|
Rodrigues PO, Martins SV, Lopes PA, Ramos C, Miguéis S, Alfaia CM, Pinto RM, Rolo EA, Bispo P, Batista I, et al: Influence of feeding graded levels of canned sardines on the inflammatory markers and tissue fatty acid composition of Wistar rats. Br J Nutr. 112:309–319. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Tapia G, Valenzuela R, Espinosa A, Romanque P, Dossi C, Gonzalez-Mañán D, Videla LA and D'Espessailles A: N-3 long-chain PUFA supplementation prevents high fat diet induced mouse liver steatosis and inflammation in relation to PPAR-α upregulation and NF-κB DNA binding abrogation. Mol Nutr Food Res. 58:1333–1341. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Ma LJ, Yang Y, Xiao Z and Wan JB: n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: A critical review. Crit Rev Food Sci Nutr. 59(sup1): S116–S129. 2019. View Article : Google Scholar | |
|
Smid V, Dvorak K, Sedivy P, Kosek V, Leníček M, Dezortová M, Hajšlová J, Hájek M, Vítek L, Bechyňská K and Brůha R: Effect of Omega-3 polyunsaturated fatty acids on lipid metabolism in patients with metabolic Syndrome and NAFLD. Hepatol Commun. 6:1336–1349. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J and Moustaid-Moussa N: Omega-3 fatty acids in obesity and metabolic syndrome: A mechanistic update. J Nutr Biochem. 58:1–16. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pacifico L, Giansanti S, Gallozzi A and Chiesa C: Long chain omega-3 polyunsaturated fatty acids in pediatric metabolic syndrome. Mini Rev Med Chem. 14:791–804. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Jeyapal S, Kona SR, Mullapudi SV, Putcha UK, Gurumurthy P and Ibrahim A: Substitution of linoleic acid with alpha-linolenic acid or long chain n-3 polyunsaturated fatty acid prevents Western diet induced nonalcoholic steatohepatitis. Sci Rep. 8:109532018. View Article : Google Scholar | |
|
Da Silva HE, Arendt BM, Noureldin SA, Therapondos G, Guindi M and Allard JP: A cross-sectional study assessing dietary intake and physical activity in Canadian patients with nonalcoholic fatty liver disease vs healthy controls. J Acad Nutr Diet. 114:1181–1194. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Silva Figueiredo P, Inada AC, Ribeiro Fernandes M, Granja Arakaki D, Freitas KC, Avellaneda Guimarães RC, Aragão do Nascimento V and Aiko Hiane P: An overview of novel dietary supplements and food ingredients in patients with metabolic Syndrome and non-alcoholic fatty liver disease. Molecules. 23:8772018. View Article : Google Scholar : PubMed/NCBI | |
|
Glen J, Floros L, Day C and Pryke R; Guideline Development Group: Non-alcoholic fatty liver disease (NAFLD): Summary of NICE guidance. BMJ. 354:i44282016. View Article : Google Scholar : PubMed/NCBI | |
|
Presa N, Clugston RD, Lingrell S, Kelly SE, Merrill AH Jr, Jana S, Kassiri Z, Gómez-Muñoz A, Vance DE, Jacobs RL and van der Veen JN: Vitamin E alleviates non-alcoholic fatty liver disease in phosphatidylethanolamine N-methyltransferase deficient mice. Biochim Biophys Acta Mol Basis Dis. 1865:14–25. 2019. View Article : Google Scholar | |
|
Amanullah I, Khan YH, Anwar I, Gulzar A, Mallhi TH and Raja AA: Effect of vitamin E in non-alcoholic fatty liver disease: A systematic review and meta-analysis of randomised controlled trials. Postgrad Med J. 95:601–611. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sebastiani G, Saeed S, Lebouche B, de Pokomandy A, Szabo J, Haraoui LP, Routy JP, Wong P, Deschenes M, Ghali P, et al: Vitamin E is an effective treatment for nonalcoholic steatohepatitis in HIV mono-infected patients. AIDS. 34:237–244. 2020. View Article : Google Scholar | |
|
Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A, et al: Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 362:1675–1685. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
He W, Xu Y, Ren X, Xiang D, Lei K, Zhang C and Liu D: Vitamin E ameliorates lipid metabolism in mice with nonalcoholic fatty liver disease via Nrf2/CES1 signaling pathway. Dig Dis Sci. 64:3182–3191. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Klaebel JH, Rakipovski G, Andersen B, Lykkesfeldt J and Tveden-Nyborg P: Dietary intervention accelerates NASH resolution depending on inflammatory status with minor additive effects on hepatic injury by vitamin E supplementation. Antioxidants (Basel). 9:8082020. View Article : Google Scholar : PubMed/NCBI | |
|
Farrag SM, Hamzawy MA, El-Yamany MF, Saad MA and Nassar NN: Atorvastatin in nano-particulate formulation abates muscle and liver affliction when coalesced with coenzyme Q10 and/or vitamin E in hyperlipidemic rats. Life Sci. 203:129–140. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Klaebel JH, Skjodt M, Skat-Rordam J, Rakipovski G, Ipsen DH, Schou-Pedersen AMV, Lykkesfeldt J and Tveden-Nyborg P: Atorvastatin and vitamin E accelerates NASH resolution by dietary intervention in a preclinical guinea pig model. Nutrients. 11:28342019. View Article : Google Scholar : PubMed/NCBI | |
|
Xin J, Jiang X, Ben S, Yuan Q, Su L, Zhang Z, Christiani DC, Du M and Wang M: Association between circulating vitamin E and ten common cancers: Evidence from large-scale Mendelian randomization analysis and a longitudinal cohort study. BMC Med. 20:1682022. View Article : Google Scholar : PubMed/NCBI | |
|
Brunner KT, Henneberg CJ, Wilechansky RM and Long MT: Nonalcoholic fatty liver disease and obesity treatment. Curr Obes Rep. 8:220–228. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Muscogiuri G, Mitri J, Mathieu C, Badenhoop K, Tamer G, Orio F, Mezza T, Vieth R, Colao A and Pittas A: Mechanisms in endocrinology: Vitamin D as a potential contributor in endocrine health and disease. Eur J Endocrinol. 171:R101–R110. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bea JW, Jurutka PW, Hibler EA, Lance P, Martínez ME, Roe DJ, Sardo Molmenti CL, Thompson PA and Jacobs ET: Concentrations of the vitamin D metabolite 1,25(OH)2D and odds of metabolic syndrome and its components. Metabolism. 64:447–459. 2015. View Article : Google Scholar : | |
|
Wang Q, Shi X, Wang J, Zhang J and Xu C: Low serum vitamin D concentrations are associated with obese but not lean NAFLD: A cross-sectional study. Nutr J. 20:302021. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Y, Luo M, Pan L, Chen Y, Guo S, Luo D, Zhu L, Liu Y, Pan L, Xu S, et al: Vitamin D signaling maintains intestinal innate immunity and gut microbiota: potential intervention for metabolic syndrome and NAFLD. Am J Physiol Gastrointest Liver Physiol. 318:G542–G553. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Barchetta I, Cimini FA and Cavallo MG: Vitamin D and metabolic dysfunction-associated fatty liver disease (MAFLD): An update. Nutrients. 12:33022020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu XJ, Wang BW, Zhang C, Xia MZ, Chen YH, Hu CQ, Wang H, Chen X and Xu DX: Vitamin d deficiency attenuates high-fat diet-induced hyperinsulinemia and hepatic lipid accumulation in male mice. Endocrinology. 156:2103–2113. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang M, Xu W, Zhang H, Qian W, Li X and Cheng X: Active vitamin D supplementation alleviates initiation and progression of nonalcoholic fatty liver disease by repressing the p53 pathway. Life Sci. 241:1170862020. View Article : Google Scholar | |
|
Sharifi N, Amani R, Hajiani E and Cheraghian B: Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease? A randomized clinical trial. Endocrine. 47:70–80. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Eliades M and Spyrou E: Vitamin D: A new player in non-alcoholic fatty liver disease? World J Gastroenterol. 21:1718–1727. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Xie ZQ, Li HX, Tan WL, Yang L, Ma XW, Li WX, Wang QB, Shang CZ and Chen YJ: Association of serum vitamin C With NAFLD and MAFLD among adults in the United States. Front Nutr. 8:7953912022. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Li X, Yang H, Wu P, Wang S, Cao D, Guo X, Xu Z, Gao J, Zhang W and Luo X: Effects of oral vitamin C supplementation on liver health and associated parameters in patients with non-alcoholic fatty liver disease: A Randomized clinical trial. Front Nutr. 8:7456092021. View Article : Google Scholar : PubMed/NCBI | |
|
Gu X and Luo X, Wang Y, He Z, Li X, Wu K, Zhang Y, Yang Y, Ji J and Luo X: Ascorbic acid attenuates cell stress by activating the fibroblast growth factor 21/fibroblast growth factor receptor 2/adiponectin pathway in HepG2 cells. Mol Med Rep. 20:2450–2458. 2019.PubMed/NCBI | |
|
Woodhouse CA, Patel VC, Singanayagam A and Shawcross DL: Review article: the gut microbiome as a therapeutic target in the pathogenesis and treatment of chronic liver disease. Aliment Pharmacol Ther. 47:192–202. 2018. View Article : Google Scholar | |
|
Arai N, Miura K, Aizawa K, Sekiya M, Nagayama M, Sakamoto H, Maeda H, Morimoto N, Iwamoto S and Yamamoto H: Probiotics suppress nonalcoholic steatohepatitis and carcinogenesis progression in hepatocyte-specific PTEN knockout mice. Sci Rep. 12:162062022. View Article : Google Scholar : PubMed/NCBI | |
|
Xue L, He J, Gao N, Lu X, Li M, Wu X, Liu Z, Jin Y, Liu J, Xu J and Geng Y: Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 7:451762017. View Article : Google Scholar : PubMed/NCBI | |
|
Alisi A, Bedogni G, Baviera G, Giorgio V, Porro E, Paris C, Giammaria P, Reali L, Anania F and Nobili V: Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 39:1276–1285. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Famouri F, Shariat Z, Hashemipour M, Keikha M and Kelishadi R: Effects of probiotics on nonalcoholic fatty liver disease in obese children and adolescents. J Pediatr Gastroenterol Nutr. 64:413–417. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Saez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J and Gil A: Effects of probiotics and synbiotics on obesity, insulin resistance Syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trials. Int J Mol Sci. 17:9282016. View Article : Google Scholar : PubMed/NCBI | |
|
Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R and Hekmatdoost A: Synbiotic supplementation in nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr. 99:535–542. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Mofidi F, Poustchi H, Yari Z, Nourinayyer B, Merat S, Sharafkhah M, Malekzadeh R and Hekmatdoost A: Synbiotic supplementation in lean patients with non-alcoholic fatty liver disease: A pilot, randomised, double-blind, placebo-controlled, clinical trial. Br J Nutr. 117:662–668. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Khalesi S, Johnson DW, Campbell K, Williams S, Fenning A, Saluja S and Irwin C: Effect of probiotics and synbiotics consumption on serum concentrations of liver function test enzymes: A systematic review and meta-analysis. Eur J Nutr. 57:2037–2053. 2018. View Article : Google Scholar | |
|
Gutiérrez-Grijalva EP, Antunes-Ricardo M, Acosta-Estrada BA, Gutiérrez-Uribe JA and Basilio Heredia J: Cellular antioxidant activity and in vitro inhibition of α-glucosidase, α-amylase and pancreatic lipase of oregano polyphenols under simulated gastrointestinal digestion. Food Res Int. 116:676–686. 2019. View Article : Google Scholar | |
|
Pasavei AG, Mohebbati R, Boroumand N, Ghorbani A, Hosseini A, Jamshidi ST and Soukhtanloo M: Anti-Hypolipidemic and anti-oxidative effects of hydroalcoholic extract of origanum majorana on the hepatosteatosis induced with high-fat diet in rats. Malays J Med Sci. 27:57–69. 2020.PubMed/NCBI | |
|
Sharifi-Rad J, Quispe C, Turgumbayeva A, Mertdinç Z, Tütüncü S, Aydar EF, Özçelik B, Anna SW, Mariola S, Koziróg A, et al: Santalum Genus: phytochemical constituents, biological activities and health promoting-effects. Z Naturforsch C J Biosci. 78:9–25. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fernández-Martínez E, Lira-Islas IG, Cariño-Cortés R, Soria-Jasso LE, Pérez-Hernández E and Pérez-Hernández N: Dietary chia seeds (Salvia hispanica) improve acute dyslipidemia and steatohepatitis in rats. J Food Biochem. 43:e129862019. View Article : Google Scholar : PubMed/NCBI | |
|
Medina-Urrutia A, Lopez-Uribe AR, El Hafidi M, González-Salazar MDC, Posadas-Sánchez R, Jorge-Galarza E, Del Valle-Mondragón L and Juárez-Rojas JG: Chia (Salvia hispanica)-supplemented diet ameliorates non-alcoholic fatty liver disease and its metabolic abnormalities in humans. Lipids Health Dis. 19:962020. View Article : Google Scholar : PubMed/NCBI | |
|
Diab F, Zbeeb H, Baldini F, Portincasa P, Khalil M and Vergani L: The potential of lamiaceae herbs for mitigation of overweight, obesity, and fatty liver: Studies and perspectives. Molecules. 27:50432022. View Article : Google Scholar : PubMed/NCBI | |
|
Khalil M, Khalifeh H, Baldini F, Salis A, Damonte G, Daher A, Voci A and Vergani L: Antisteatotic and antioxidant activities of Thymbra spicata L. extracts in hepatic and endothelial cells as in vitro models of non-alcoholic fatty liver disease. J Ethnopharmacol. 239:1119192019. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Q, Zhang W, Wu Z, Tian X, Xiang J, Li L, Li Z, Peng X, Wei S, Ma X and Zhao Y: Baicalin and the liver-gut system: Pharmacological bases explaining its therapeutic effects. Pharmacol Res. 165:1054442021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zhang H, Deng X, Zhang Y and Xu K: Baicalin protects AML-12 cells from lipotoxicity via the suppression of ER stress and TXNIP/NLRP3 inflammasome activation. Chem Biol Interact. 278:189–196. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, Zhang R, Wang M, Chen Y, Chen Z, Ke X, Zuo L and Wang J: Baicalein prevents fructose-induced hepatic steatosis in rats: in the regulation of fatty acid de novo synthesis, fatty acid elongation and fatty acid oxidation. Front Pharmacol. 13:9173292022. View Article : Google Scholar : PubMed/NCBI | |
|
Beltran Romero LM, Vallejo-Vaz AJ and Muniz Grijalvo O: Cerebrovascular disease and statins. Front Cardiovasc Med. 8:7787402021. View Article : Google Scholar : PubMed/NCBI | |
|
Pastori D, Pani A, Di Rocco A, Menichelli D, Gazzaniga G, Farcomeni A, D'Erasmo L, Angelico F, Del Ben M and Baratta F: Statin liver safety in non-alcoholic fatty liver disease: A systematic review and metanalysis. Br J Clin Pharmacol. 88:441–451. 2022. View Article : Google Scholar | |
|
Lee JI, Lee HW, Lee KS, Lee HS and Park JY: Effects of statin use on the development and progression of nonalcoholic fatty liver disease: A nationwide nested case-control study. Am J Gastroenterol. 116:116–124. 2021. View Article : Google Scholar | |
|
Sfikas G, Psallas M, Koumaras C, Imprialos K, Perdikakis E, Doumas M, Giouleme O, Karagiannis A and Athyros VG: Prevalence, diagnosis, and treatment with 3 different statins of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis in military personnel. do genetics play a role? Curr Vasc Pharmacol. 19:572–581. 2021. View Article : Google Scholar | |
|
Yarahmadi S, Farahmandian N, Fadaei R, Koushki M, Bahreini E, Karima S, Barzin Tond S, Rezaei A, Nourbakhsh M and Fallah S: Therapeutic potential of resveratrol and atorvastatin following high-fat diet uptake-induced nonalcoholic fatty liver disease by targeting genes involved in cholesterol metabolism and miR33. DNA Cell Biol. 42:82–90. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Husain NE, Hassan AT, Elmadhoun WM and Ahmed MH: Evaluating the safety of Liptruzet (ezetimibe and atorvastatin): What are the potential benefits beyond low-density lipoprotein cholesterol-lowering effect? Expert Opin Drug Saf. 14:1445–1455. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kostapanos MS, Rizos CV and Elisaf MS: Benefit-risk assessment of rosuvastatin in the treatment of atherosclerosis and related diseases. Drug Saf. 37:481–500. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Cho Y, Rhee H, Kim YE, Lee M, Lee BW, Kang ES, Cha BS, Choi JY and Lee YH: Ezetimibe combination therapy with statin for non-alcoholic fatty liver disease: An open-label randomized controlled trial (ESSENTIAL study). BMC Med. 20:932022. View Article : Google Scholar : PubMed/NCBI | |
|
Seo SH, Lee DH, Lee YS, Cho KJ, Park HJ, Lee HW, Kim BK, Park JY, Kim DY, Ahn SH, et al: Co-administration of ursodeoxycholic acid with rosuvastatin/ezetimibe in a non-alcoholic fatty liver disease model. Gastroenterol Rep (Oxf). 10:goac0372022. View Article : Google Scholar : PubMed/NCBI | |
|
Pereira ENGDS, Araujo BP, Rodrigues KL, Silvares RR, Martins CSM, Flores EEI, Fernandes-Santos C and Daliry A: Simvastatin improves microcirculatory function in nonalcoholic fatty liver disease and downregulates oxidative and ALE-RAGE stress. Nutrients. 14:7162022. View Article : Google Scholar : PubMed/NCBI | |
|
Brault M, Ray J, Gomez YH, Mantzoros CS and Daskalopoulou SS: Statin treatment and new-onset diabetes: A review of proposed mechanisms. Metabolism. 63:735–745. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ortiz-Lopez N, Fuenzalida C, Dufeu MS, Pinto-León A, Escobar A, Poniachik J, Roblero JP, Valenzuela-Pérez L and Beltrán CJ: The immune response as a therapeutic target in non-alcoholic fatty liver disease. Front Immunol. 13:9548692022. View Article : Google Scholar : PubMed/NCBI | |
|
Du WW, Liu F, Shan SW, Ma XC, Gupta S, Jin T, Spaner D, Krylov SN, Zhang Y, Ling W and Yang BB: Inhibition of dexamethasone-induced fatty liver development by reducing miR-17-5p levels. Mol Ther. 23:1222–1233. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Barbosa-da-Silva S, Souza-Mello V, Magliano DC, Marinho Tde S, Aguila MB and Mandarim-de-Lacerda CA: Singular effects of PPAR agonists on nonalcoholic fatty liver disease of diet-induced obese mice. Life Sci. 127:73–81. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang N, Lu Y, Shen X, Bao Y, Cheng J, Chen L, Li B and Zhang Q: Fenofibrate treatment attenuated chronic endoplasmic reticulum stress in the liver of nonalcoholic fatty liver disease mice. Pharmacology. 95:173–180. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yaghoubi M, Jafari S, Sajedi B, Gohari S, Akbarieh S, Heydari AH and Jameshoorani M: Comparison of fenofibrate and pioglitazone effects on patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol. 29:1385–1388. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liss KH and Finck BN: PPARs and nonalcoholic fatty liver disease. Biochimie. 136:65–74. 2017. View Article : Google Scholar : | |
|
Peters JM, Gonzalez FJ and Müller R: Establishing the Role of PPARβ/δ in Carcinogenesis. Trends Endocrinol Metab. 26:595–607. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sahebkar A, Chew GT and Watts GF: New peroxisome proliferator-activated receptor agonists: Potential treatments for atherogenic dyslipidemia and non-alcoholic fatty liver disease. Expert Opin Pharmacother. 15:493–503. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Silva-Veiga FM, Rachid TL, de Oliveira L, Graus-Nunes F, Mandarim-de-Lacerda CA and Souza-Mello V: GW0742 (PPAR-beta agonist) attenuates hepatic endoplasmic reticulum stress by improving hepatic energy metabolism in high-fat diet fed mice. Mol Cell Endocrinol. 474:227–237. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, Romero-Gomez M, Boursier J, Abdelmalek M, Caldwell S, et al: Elafibranor, an agonist of the peroxisome proliferator-activated Receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 150:1147–1159.e5. 2016. View Article : Google Scholar | |
|
Choudhary NS, Kumar N and Duseja A: Peroxisome proliferator-activated receptors and their agonists in nonalcoholic fatty liver disease. J Clin Exp Hepatol. 9:731–739. 2019. View Article : Google Scholar : | |
|
van der Veen JN, Lingrell S, Gao X, Quiroga AD, Takawale A, Armstrong EA, Yager JY, Kassiri Z, Lehner R, Vance DE and Jacobs RL: Pioglitazone attenuates hepatic inflammation and fibrosis in phosphatidylethanolamine N-methyltransferase-deficient mice. Am J Physiol Gastrointest Liver Physiol. 310:G526–G538. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cusi K, Orsak B, Bril F, Lomonaco R, Hecht J, Ortiz-Lopez C, Tio F, Hardies J, Darland C, Musi N, et al: Long-Term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: A Randomized trial. Ann Intern Med. 165:305–315. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Jain MR, Giri SR, Bhoi B, Trivedi C, Rath A, Rathod R, Ranvir R, Kadam S, Patel H, Swain P, et al: Dual PPARα/ү agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 38:1084–1094. 2018. View Article : Google Scholar | |
|
Gawrieh S, Noureddin M, Loo N, Mohseni R, Awasty V, Cusi K, Kowdley KV, Lai M, Schiff E, Parmar D, et al: Saroglitazar, a PPAR-α/γ Agonist, for Treatment of NAFLD: A Randomized controlled double-blind phase 2 trial. Hepatology. 74:1809–1824. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Boubia B, Poupardin O, Barth M, Binet J, Peralba P, Mounier L, Jacquier E, Gauthier E, Lepais V, Chatar M, et al: Design, synthesis, and evaluation of a novel series of indole sulfonamide peroxisome proliferator activated receptor (PPAR) α/γ/δ triple activators: Discovery of lanifibranor, a new antifibrotic clinical candidate. J Med Chem. 61:2246–2265. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wettstein G, Luccarini JM, Poekes L, Faye P, Kupkowski F, Adarbes V, Defrêne E, Estivalet C, Gawronski X, Jantzen I, et al: The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol Commun. 1:524–537. 2017. View Article : Google Scholar | |
|
Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T, Heymann F, Kalthoff S, Lefebvre E, Eulberg D, et al: Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 64:1667–1682. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lefebvre E, Moyle G, Reshef R, Richman LP, Thompson M, Hong F, Chou HL, Hashiguchi T, Plato C, Poulin D, et al: Antifibrotic effects of the dual CCR2/CCR5 antagonist cenicriviroc in animal models of liver and kidney fibrosis. PLoS One. 11:e01581562016. View Article : Google Scholar : PubMed/NCBI | |
|
Friedman SL, Ratziu V, Harrison SA, Abdelmalek MF, Aithal GP, Caballeria J, Francque S, Farrell G, Kowdley KV, Craxi A, et al: A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology. 67:1754–1767. 2018. View Article : Google Scholar | |
|
Ratziu V, Sanyal A, Harrison SA, Wong VW, Francque S, Goodman Z, Aithal GP, Kowdley KV, Seyedkazemi S, Fischer L, et al: Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: Final analysis of the phase 2b CENTAUR Study. Hepatology. 72:892–905. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tacke F: Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis. Expert Opin Investig Drugs. 27:301–311. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Abenavoli L, Falalyeyeva T, Boccuto L, Tsyryuk O and Kobyliak N: Obeticholic Acid: A new Era in the treatment of nonalcoholic fatty liver disease. Pharmaceuticals (Basel). 11:1042018. View Article : Google Scholar : PubMed/NCBI | |
|
Younossi ZM, Stepanova M, Nader F, Loomba R, Anstee QM, Ratziu V, Harrison S, Sanyal AJ, Schattenberg JM, Barritt AS, et al: Obeticholic acid impact on quality of life in patients with nonalcoholic steatohepatitis: REGENERATE 18-Month interim analysis. Clin Gastroenterol Hepatol. 20:2050–2058.e12. 2022. View Article : Google Scholar | |
|
Loomba R, Neuschwander-Tetri BA, Sanyal A, Chalasani N, Diehl AM, Terrault N, Kowdley K, Dasarathy S, Kleiner D, Behling C, et al: Multicenter validation of association between decline in MRI-PDFF and histologic response in NASH. Hepatology. 72:1219–1229. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, et al: Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): A multicentre, randomised, placebo-controlled trial. Lancet. 385:956–965. 2015. View Article : Google Scholar : | |
|
Hernandez ED, Zheng L, Kim Y, Fang B, Liu B, Valdez RA, Dietrich WF, Rucker PV, Chianelli D, Schmeits J, et al: Tropifexor-Mediated abrogation of steatohepatitis and fibrosis is associated with the antioxidative gene expression profile in rodents. Hepatol Commun. 3:1085–1097. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rau M and Geier A: An update on drug development for the treatment of nonalcoholic fatty liver disease - from ongoing clinical trials to future therapy. Expert Rev Clin Pharmacol. 14:333–340. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fiorucci S, Biagioli M, Sepe V, Zampella A and Distrutti E: Bile acid modulators for the treatment of nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs. 29:623–632. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C and Yang J: Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther. 7:2872022. View Article : Google Scholar : PubMed/NCBI | |
|
Leong PK and Ko KM: Schisandrin B: A double-edged sword in nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2016:61716582016. View Article : Google Scholar : PubMed/NCBI | |
|
Parker HM, Johnson NA, Burdon CA, Cohn JS, O'Connor HT and George J: Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Hepatol. 56:944–951. 2012. View Article : Google Scholar | |
|
Li H, Liu NN, Li JR, Dong B, Wang MX, Tan JL, Wang XK, Jiang J, Lei L, Li HY, et al: Combined use of bicyclol and berberine alleviates mouse nonalcoholic fatty liver disease. Front Pharmacol. 13:8438722022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan Z, Chen Y, Duan Y, Li L, Mew K, Hu P, Ren H and Peng M: Identification of key genes, pathways and potential therapeutic agents for liver fibrosis using an integrated bioinformatics analysis. PeerJ. 7:e66452019. View Article : Google Scholar : PubMed/NCBI | |
|
Rey E, Melendez-Rodriguez F, Maranon P, Gil-Valle M, Carrasco AG, Torres-Capelli M, Chávez S, Del Pozo-Maroto E, Rodríguez de Cía J, Aragonés J, et al: Hypoxia-inducible factor 2α drives hepatosteatosis through the fatty acid translocase CD36. Liver Int. 40:2553–2567. 2020. View Article : Google Scholar : PubMed/NCBI |