|
1
|
Kalaivani K and Ramachandran P: Time
trends in prevalence of anaemia in pregnancy. Indian J Med Res.
147:2682018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Belwal E, Pandey S and Sarkar S: Anemia
prevalence in india over two decades: Evidence from National Family
Health Survey (NFHS). Int J Sci Healthcare Res. 6:335–340. 2021.
View Article : Google Scholar
|
|
3
|
Baradhi KM and Badireddy M: Chronic
Anemia. StatPearls. StatPearls Publishing; Treasure Island, FL:
2024
|
|
4
|
Anemia of Inflammation or Chronic
Disease-NIDDK. (n.d.). https://rarediseases.org/.
|
|
5
|
Moreno Chulilla JA, Romero Colás MS and
Gutiérrez Martín M: Classification of anemia for
gastroenterologists. World J Gastroenterol. 15:4627–4637. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Abusharib AB: Morphological patterns of
anaemia among pregnant women from Sudan. Afr J Lab Med. 8:7432019.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sheikh Z: Anemia. Available from:
https://www.webmd.com/a-to-z-guides/understanding-anemia-basics.
|
|
8
|
Dongerdiye R, Sampagar A, Devendra R,
Warang P and Kedar P: Rare hereditary nonspherocytic hemolytic
anemia caused by a novel homozygous mutation, c.301C>A, (Q101K),
in the AK1 gene in an Indian family. BMC Med Genomics. 14:1912021.
View Article : Google Scholar
|
|
9
|
Mohandas N: Inherited hemolytic anemia: A
possessive Beginner's guide. Hematol Am Soc Hematol Educ Program.
2018:377–381. 2018. View Article : Google Scholar
|
|
10
|
Baldwin C, Pandey J and Olarewaju O:
Hemolytic Anemia. StatPearls. StatPearls Publishing; Treasure
Island, FL: 2024
|
|
11
|
Tanabe P, Spratling R, Smith D, Grissom P
and Hulihan M: CE: Understanding the complications of sickle cell
disease. Am J Nurs. 119:26–35. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bajwa H and Basit H: Thalassemia.
StatPearls. StatPearls Publishing; Treasure Island, FL: 2024
|
|
13
|
Huang TL, Zhang TY, Song CY, Lin YB, Sang
BH, Lei QL, Lv Y, Yang CH, Li N, Tian X, et al: Gene mutation
spectrum of thalassemia among children in yunnan province. Front
Pediatr. 8:1592020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Young NS: Aplastic Anemia. N Engl J Med.
379:1643–1656. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Engidaye G, Melku M and Enawgaw B: Diamond
blackfan Anemia: Genetics, pathogenesis, diagnosis and treatment.
EJIFCC. 30:67–81. 2019.PubMed/NCBI
|
|
16
|
van Dooijeweert B, Kia SK, Dahl N,
Fenneteau O, Leguit R, Nieuwenhuis E, van Solinge W, van Wijk R, Da
Costa L and Bartels M: GATA-1 defects in diamond-blackfan Anemia:
Phenotypic characterization points to a specific subset of disease.
Genes (Basel). 13:4472022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bhandari J, Thada PK, Killeen RB and
Puckett Y: Fanconi Anemia. StatPearls. StatPearls Publishing;
Treasure Island, FL: 2024
|
|
18
|
Fouquet C, Le Rouzic MA, Leblanc T,
Fouyssac F, Leverger G, Hessissen L, Marlin S, Bourrat E, Fahd M,
Raffoux E, et al: Genotype/phenotype correlations of
childhood-onset congenital sideroblastic anaemia in a European
cohort. Br J Haematol. 187:530–542. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Nzelu D, Shangaris P, Story L, Smith F,
Piyasena C, Alamelu J, Elmakky A, Pelidis M, Mayhew R and Sankaran
S: X-linked sideroblastic anaemia in a female fetus: A case report
and a literature review. BMC Med Genomics. 14:2962021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ovesen L and Boeing H; EFCOSUM Group: The
use of biomarkers in multicentric studies with particular
consideration of iodine, sodium, iron, folate and vitamin D. Eur J
Clin Nutr. 56(Suppl 2): S12–S17. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu T, Zhong S, Liu L, Liu S, Li X, Zhou T
and Zhang J: Vitamin D deficiency and the risk of anemia: A
meta-analysis of observational studies. Ren Fail. 37:929–934. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Patel NM, Gutiérrez OM, Andress DL, Coyne
DW, Levin A and Wolf M: Vitamin D deficiency and anemia in early
chronic kidney disease. Kidney Int. 77:715–720. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Arabi SM, Ranjbar G, Bahrami LS, Vafa M
and Norouzy A: The effect of vitamin D supplementation on
hemoglobin concentration: A systematic review and meta-analysis.
Nutr J. 19:112020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Nur-Eke R and Özen M: The relationship
between vitamin D levels and iron deficiency and anemia in adults
applied for periodic medical examination. Clin Lab. Jun 1–2020.Epub
ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Thomas CE, Guillet R, Queenan RA, Cooper
EM, Kent TR, Pressman EK, Vermeylen FM, Roberson MS and O'Brien KO:
Vitamin D status is inversely associated with anemia and serum
erythropoietin during pregnancy. Am J Clin Nutr. 102:1088–1095.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lee JA, Hwang JS, Hwang IT, Kim DH, Seo JH
and Lim JS: Low Vitamin D levels are associated with both iron
deficiency and anemia in children and adolescents. Pediatr Hematol
Oncol. 32:99–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chowdhury R, Taneja S, Bhandari N, Strand
TA and Bhan MK: Vitamin D deficiency and mild to moderate anemia in
young North Indian children: A secondary data analysis. Nutrition.
57:63–68. 2019. View Article : Google Scholar
|
|
28
|
Uwaezuoke S: Vitamin D deficiency and
anemia risk in children: A review of emerging evidence. Pediatric
Health Med Ther. 8:47–55. 2017. View Article : Google Scholar
|
|
29
|
Yassin FA, Said NM and Tarek D:
Association between Vitamin D receptor gene polymorphisms and
anemic patients. Biochemistry Lett. 13:1–10. 2017. View Article : Google Scholar
|
|
30
|
Ochogwu OL, Salawu L, Owojuyigbe TO and
Adedeji TA: Vitamin D deficiency and its association with anemia
and blood transfusion requirements in Nigerian adults with sickle
cell anemia. Plasmatology. 15:2021. View Article : Google Scholar
|
|
31
|
Yu W, Ge M, Lu S, Shi J, Feng S, Li X,
Zhang J, Wang M, Huang J, Shao Y, et al: Decreased expression of
vitamin D receptor may contribute to the hyperimmune status of
patients with acquired aplastic anemia. Eur J Haematol. 96:507–516.
2016. View Article : Google Scholar
|
|
32
|
Napolitano LM: Vitamin D supplementation
and hemoglobin: Dosing matters in prevention/treatment of Anemia.
Nutr J. 20:232021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Athanassiou L, Mavragani CP and
Koutsilieris M: The immunomodulatory properties of Vitamin D.
Mediterr J Rheumatol. 33:7–13. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Rak K and Bronkowska M: Immunomodulatory
effect of Vitamin D and its potential role in the prevention and
treatment of type 1 diabetes Mellitus-A narrative review.
Molecules. 24:532018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fathi ZH, Mohammad JA, Younus ZM and
Mahmood SM: Hepcidin as a potential biomarker for the diagnosis of
Anemia. Turk J Pharm Sci. 19:603–609. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Michalak SS, Olewicz-Gawlik A,
Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E and Gil L: Autoimmune
hemolytic anemia: Current knowledge and perspectives. Immun Ageing.
17:382020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Saah E, Fadaei P, Gurkan UA and Sheehan V:
Sickle cell disease pathophysiology and related molecular and
biophysical biomarkers. Hematol Oncol Clin North Am. 36:1077–1095.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kalpatthi R and Novelli EM: Measuring
success: Utility of biomarkers in sickle cell disease clinical
trials and care. Hematology Am Soc Hematol Educ Program.
2018:482–492. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Silva-Junior AL, Garcia NP, Cardoso EC,
Dias S, Tarragô AM, Fraiji NA, Gomes MS, Amaral LR,
Teixeira-Carvalho A, Martins-Filho OA, et al: Immunological
hallmarks of inflammatory status in Vaso-Occlusive crisis of sickle
cell Anemia patients. Front Immunol. 12:5599252021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Vlachou M, Kamperidis V, Giannakoulas G,
Karamitsos T, Vlachaki E and Karvounis H: Biochemical and imaging
markers in patients with thalassaemia. Hellenic J Cardiol. 62:4–12.
2021. View Article : Google Scholar
|
|
41
|
Botta A, Forest A, Daneault C, Pantopoulos
K, Tantiworawit A, Phrommintikul A, Chattipakorn S, Chattipakorn N,
Des Rosiers C, Sweeney G, et al: Identification of circulating
Endocan-1 and ether phospholipids as biomarkers for complications
in thalassemia patients. Metabolites. 11:702021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Li N, An P, Wang J, Zhang T, Qing X, Wu B,
Sun L, Ding X, Niu L, Xie Z, et al: Plasma proteome profiling
combined with clinical and genetic features reveals the
pathophysiological characteristics of β-thalassemia. iScience.
25:1040912022. View Article : Google Scholar
|
|
43
|
Caprari P, Profumo E, Massimi S, Buttari
B, Riganò R, Regine V, Gabbianelli M, Rossi S, Risoluti R,
Materazzi S, et al: Hemorheological profiles and chronic
inflammation markers in transfusion-dependent and
non-transfusion-dependent thalassemia. Front Mol Biosci.
9:11088962023. View Article : Google Scholar
|
|
44
|
Kelkka T, Tyster M, Lundgren S, Feng X,
Kerr C, Hosokawa K, Huuhtanen J, Keränen M, Patel B, Kawakami T, et
al: Anti-COX-2 autoantibody is a novel biomarker of immune aplastic
anemia. Leukemia. 36:2317–2327. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu Q, Dong H, Li Y, Shen Y, Hong Y, Chen
Y, Liu S, Wu X, Liu W, Hu H, et al: Apolipoprotein-a is a potential
prognosis biomarker for severe aplastic Anemia patients treated
with ATG-based immunosuppressive therapy: A Single-center
retrospective study. Blood. 140(Suppl 1): S11043–S11044. 2022.
View Article : Google Scholar
|
|
46
|
Adhikari S, Nayek K, Bandyopadhyay A and
Mandal P: Implication of therapeutic outcomes associated with
molecular characterization of paediatric aplastic anaemia. Biochem
Biophys Rep. 25:1008992021.PubMed/NCBI
|
|
47
|
Gurnari C, Pagliuca S, Prata PH, Galimard
JE, Catto LFB, Larcher L, Sebert M, Allain V, Patel BJ, Durmaz A,
et al: Clinical and molecular determinants of clonal evolution in
aplastic anemia and paroxysmal nocturnal hemoglobinuria. J Clin
Oncol. 41:132–142. 2023. View Article : Google Scholar :
|
|
48
|
Da Costa L, O'Donohue MF, van Dooijeweert
B, Albrecht K, Unal S, Ramenghi U, Leblanc T, Dianzani I, Tamary H,
Bartels M, et al: Molecular approaches to diagnose Diamond-Blackfan
Anemia: The EuroDBA experience. Eur J Med Genet. 61:664–673. 2018.
View Article : Google Scholar
|
|
49
|
Khan A, Ali A, Junaid M, Liu C, Kaushik
AC, Cho WCS and Wei DQ: Identification of novel drug targets for
Diamond-Blackfan Anemia based on RPS19 gene mutation using
protein-protein interaction network. BMC Syst Biol. 12(Suppl 4):
S392018. View Article : Google Scholar
|
|
50
|
Sieff C: Diamond-Blackfan Anemia.
GeneReviews®; Seattle, WA: 2023
|
|
51
|
Moreno OM, Paredes AC, Suarez-Obando F and
Rojas A: An update on Fanconi anemia: Clinical, cytogenetic and
molecular approaches (Review). Biomed Rep. 15:742021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Miele E, Mastronuzzi A, Po A, Carai A,
Alfano V, Serra A, Colafati GS, Strocchio L, Antonelli M,
Buttarelli FR, et al: Characterization of medulloblastoma in
Fanconi Anemia: A novel mutation in the BRCA2 gene and SHH
molecular subgroup. Biomark Res. 3:132015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hoving V, Nijssen LE, Donker AE, Roelofs
R, Schols SEM and Swinkels DW: Erythropoiesis-Hepcidin-Iron axis in
patients with X-linked sideroblastic anaemia: An explorative
biomarker study. Br J Haematol. 202:1216–1219. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wishart DS, Bartok B, Oler E, Liang KYH,
Budinski Z, Berjanskii M, Guo A, Cao X and Wilson M: MarkerDB: An
online database of molecular biomarkers. Nucleic Acids Res.
49:D1259–D1267. 2021. View Article : Google Scholar :
|
|
55
|
Hindmarsh JT, Oliveras L and Greenway DC:
Biochemical differentiation of the porphyrias. Clin Biochem.
32:609–619. 1999. View Article : Google Scholar
|
|
56
|
Zuijderhoudt FM, Koehorst SG, Kluitenberg
WE and Dorresteijn-de Bok J: On accuracy and precision of a HPLC
method for measurement of urine porphyrin concentrations. Clin Chem
Lab Med. 38:227–230. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
van der Dijs FP, Schnog JJ, Brouwer DA,
Velvis HJ, van den Berg GA, Bakker AJ, Duits AJ, Muskiet FD and
Muskiet FA: Elevated homocysteine levels indicate suboptimal folate
status in pediatric sickle cell patients. Am J Hematol. 59:192–198.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Nelson MC, Zemel BS, Kawchak DA, Barden
EM, Frongillo EA Jr, Coburn SP, Ohene-Frempong K and Stallings VA:
Vitamin B6 status of children with sickle cell disease. J Pediatr
Hematol Oncol. 24:463–469. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
De Luca C, Filosa A, Grandinetti M, Maggio
F, Lamba M and Passi S: Blood antioxidant status and urinary levels
of catecholamine metabolites in β-thalassemia. Free Radic Res.
30:453–462. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Iranpour R, Akbar MR and Haghshenas I:
Glucose-6-phosphate dehydrogenase deficiency in neonates. Indian J
Pediatr. 70:855–857. 2003. View Article : Google Scholar
|
|
61
|
Kwon JM, Cho Y, Jeon KH, Cho S, Kim KH,
Baek SD, Jeung S, Park J and Oh BH: A deep learning algorithm to
detect anaemia with ECGs: A retrospective, multicentre study.
Lancet Digit Health. 2:e358–e367. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Rustam F, Ashraf I, Jabbar S, Tutusaus K,
Mazas C, Barrera AEP and de la Torre Diez I: Prediction of
[Formula: See text]-Thalassemia carriers using complete blood count
features. Sci Rep. 12:199992022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Farooq M and Ali Younas H: Beta
thalassemia carriers detection empowered federated Learning. 2023,
Available from: https://doi.org/10.48550/arXiv.2306.01818.
|
|
64
|
Saputra DCE, Sunat K and Ratnaningsih T: A
new artificial intelligence approach using extreme learning machine
as the potentially effective model to predict and analyze the
diagnosis of Anemia. Healthcare (Basel). 11:6972023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xiang P, Wu X, Zeng Z, Lin Z, Guo Y, Ma X,
Lin J and Wang W: Quantitative analysis of pelvic bone marrow fat
using an MRI-based machine learning method for distinguishing
aplastic anaemia from myelodysplastic syndromes. Clin Radiol.
78:e463–e468. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chang L, Yan M, Zhang J, Binghang L, Guo
Y, Wan Y, Yi M, Lan Y, Cai Y, Feng J, et al: Long-term outcome
prediction after immunosuppressive therapy for severe aplastic
Anemia in childhood by machine learning methods. SSRN Electronic J.
2020, Available from: https://ssrn.com/abstract=3582734 or http://dx.doi.org/10.2139/ssrn.3582734.
|
|
67
|
Uçucu S, Karabıyık T and AzikF M: Machine
learning models can predict the presence of variants in hemoglobin:
Artificial neural network-based recognition of human hemoglobin
variants by HPLC. Turkish J Biochemistry. 485–411. 2023.
|
|
68
|
Mo D, Zheng Q, Xiao B and Li L: Predicting
thalassemia using deep neural network based on red blood cell
indices. Clin Chim Acta. 543:1173292023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang M, Dong C, Gao Y, Li J, Han M and
Wang L: A deep learning model for the automatic recognition of
aplastic Anemia, myelodysplastic syndromes, and acute myeloid
leukemia based on bone marrow smear. Front Oncol. 12:8449782022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Appiahene P, Asare JW, Donkoh ET, Dimauro
G and Maglietta R: Detection of iron deficiency Anemia by medical
images: A comparative study of machine learning algorithms. BioData
Min. 16:22023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang A, Lou J, Pan Z, Luo J, Zhang X,
Zhang H, Li J, Wang L, Cui X, Ji B and Chen L: Prediction of Anemia
using facial images and deep learning technology in the emergency
department. Front Public Health. 10:9643852022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Aparna V, Sarath TV and Ramachandran KI:
Simulation model for anemia detection using RBC counting algorithms
and Watershed transform. In: 2017 International Conference on
Intelligent Computing Instrumentation and Control Technologies
(ICICICT); IEEE; pp. 284–291. 2017
|
|
73
|
De S and Chakraborty B: Case-based
reasoning (CBR)-based Anemia Severity Detection System (ASDS) using
machine learning algorithm. Advanced Machine Learning Technologies
and Applications. 621–632. 2021. View Article : Google Scholar
|
|
74
|
Mitani A, Huang A, Venugopalan S, Corrado
GS, Peng L, Webster DR, Hammel N, Liu Y and Varadarajan AV:
Detection of anaemia from retinal fundus images via deep learning.
Nat Biomed Eng. 4:18–27. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Amruth A, Ramanan R, Rhea P, Vishal S and
Saravanan S: Big Data Application in Cancer Classification by
Analysis of RNA-seq Gene Expression. In: 2023 3rd International
Conference on Intelligent Technologies (CONIT); IEEE; pp. 1–6.
2023
|
|
76
|
Manoharan S and Iyyappan OR: A hybrid
protocol for finding novel gene targets for various diseases using
microarray expression data analysis and text mining. Methods Mol
Biol. 2496:41–70. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Iyyappan OR and Manoharan S: Finding gene
associations by text mining and annotating it with gene ontology.
Methods Mol Biol. 2496:71–90. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Perveen G, Alturise F, Alkhalifah T and
Daanial Khan Y: Hemolytic-Pred: A machine learning-based predictor
for hemolytic proteins using position and composition-based
features. Digit Health. 9:205520762311807392023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mansour-Hendili L, Aissat A, Badaoui B,
Sakka M, Gameiro C, Ortonne V, Wagner-Ballon O, Pissard S, Picard
V, Ghazal K, et al: Exome sequencing for diagnosis of congenital
hemolytic anemia. Orphanet J Rare Dis. 15:1802020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fermo E, Vercellati C, Marcello AP, Keskin
EY, Perrotta S, Zaninoni A, Brancaleoni V, Zanella A, Giannotta JA,
Barcellini W and Bianchi P: Targeted next generation sequencing and
diagnosis of congenital hemolytic anemias: A three years experience
monocentric study. Front Physiol. 12:6845692021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jamwal M, Aggarwal A, Palodhi A, Sharma P,
Bansal D, Trehan A, Malhotra P, Maitra A and Das R: Next-generation
sequencing-based diagnosis of unexplained inherited hemolytic
anemias reveals wide genetic and phenotypic heterogeneity. J Mol
Diagn. 22:579–590. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Pagliuca S, Gurnari C, Hercus C, Hergalant
S, Nadarajah N, Wahida A, Terkawi L, Mori M, Zhou W, Visconte V, et
al: Molecular landscape of immune pressure and escape in aplastic
anemia. Leukemia. 37:202–211. 2023. View Article : Google Scholar :
|
|
83
|
Hou H, Li D, Yao YH, Lu J, Sun YN, Hu YX,
Wu SY, Chu XR, Xiao PF, Xu GQ and Hu SY: Proteomic analysis for
identifying the differences in molecular profiling between fanconi
anaemia and aplastic anaemia. Am J Transl Res. 11:6522–6533.
2019.PubMed/NCBI
|
|
84
|
Mehta S, Medicherla KM, Gulati S, Sharma
N, Gupta S, Parveen R, Mishra AK and Suravajhala P: Whole Exome
Sequencing of Aplastic Anemia Patients Specific to India Reveals
Unique Mutations. 2021, Available at SSRN: https://ssrn.com/abstract=4001799 or http://dx.doi.org/10.2139/ssrn.4001799.
|
|
85
|
Wang B, Wang C, Wan Y, Gao J, Ma Y, Zhang
Y, Tong J, Zhang Y, Liu J, Chang L, et al: Decoding the
pathogenesis of Diamond-Blackfan anemia using single-cell RNA-seq.
Cell Discov. 8:412022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Bartels M and Bierings M: How I manage
children with Diamond-Blackfan anaemia. Br J Haematol. 184:123–133.
2019. View Article : Google Scholar
|
|
87
|
Judy J, Wang X, Seifuddin F, Tumburu L,
Pirooznia M and Thein SL: RNA Seq profiles and bioinformatics
validation in a large sample of sickle cell disease patients.
Blood. 136(Suppl 1): S13–S14. 2020. View Article : Google Scholar
|
|
88
|
Ben Hamda C, Sangeda R, Mwita L, Meintjes
A, Nkya S, Panji S, Mulder N, Guizani-Tabbane L, Benkahla A, Makani
J, et al: A common molecular signature of patients with sickle cell
disease revealed by microarray meta-analysis and a genome-wide
association study. PLoS One. 13:e01994612018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Mwita LA, Mawalla WF, Mtiiye FR, Kandonga
D, Kent J, Makani J and Sangeda RZ: Infrastructure for
bioinformatics applications in Tanzania: Lessons from the sickle
cell programme. PLoS Comput Biol. 19:e10108482023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kalaigar SS, Rajashekar RB, Nataraj SM,
Vishwanath P and Prashant A: Bioinformatic tools for the
identification of MicroRNAs regulating the transcription factors in
patients with β-thalassemia. Bioinform Biol Insights.
16:117793222211155362022. View Article : Google Scholar
|
|
91
|
Chowdhury A and Sruthi VS: A
bioinformatics approach for the treatment of thalassemia using
molecular docking. Biological Forum An Int J. 13:332–338. 2021.
|
|
92
|
Hameed AR, Fakhri Ali S, N Almanaa T,
Aljasir MA, Alruwetei AM, Sanami S, Ayaz H, Ali I, Ahmad F and
Ahmad S: Exploring the hub genes and potential drugs involved in
Fanconi anemia using microarray datasets and bioinformatics
analysis. J Biomol Struct Dyn. Dec 27–2023.Epub ahead of print.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Reyes P, García-de Teresa B, Juárez U,
Pérez-Villatoro F, Fiesco-Roa MO, Rodríguez A, Molina B,
Villarreal-Molina MT, Meléndez-Zajgla J, Carnevale A, et al:
Fanconi Anemia patients from an indigenous community in Mexico
Carry a new founder pathogenic variant in FANCG. Int J Mol Sci.
23:23342022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Fang R, Zhang J, Yang H, Shi J, Zeng H,
Zhu X, Wei D, Yuan P, Cheng T and Zhang Y: Highly efficient gene
editing and single cell analysis of hematopoietic stem/progenitor
cells from X-linked sideroblastic anemia patients. Signal Transduct
Target Ther. 6:2482021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
An W, Zhang J, Chang L, Zhang Y, Wan Y,
Ren Y, Niu D, Wu J, Zhu X and Guo Y: Mutation analysis of Chinese
sporadic congenital sideroblastic anemia by targeted capture
sequencing. J Hematol Oncol. 8:552015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hosokawa K, Kajigaya S, Keyvanfar K, Qiao
W, Xie Y, Townsley DM, Feng X and Young NS: T cell transcriptomes
from paroxysmal nocturnal hemoglobinuria patients reveal novel
signaling pathways. J Immunol. 199:477–488. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zoumbos NC, Gascón P, Djeu JY, Trost SR
and Young NS: Circulating activated suppressor T lymphocytes in
aplastic anemia. N Engl J Med. 312:257–265. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Deng XZ, Du M, Peng J, Long JX, Zheng CJ,
Tan Y, Li LJ, Chen HY, Qing C, Pang YY, et al: Associations between
the HLA-A/B/DRB1 polymorphisms and aplastic anemia: Evidence from
17 case-control studies. Hematology. 23:154–162. 2018. View Article : Google Scholar
|
|
99
|
Bo L, Mei-Ying L, Yang Z, Shan-Mi W and
Xiao-Hong Z: Aplastic anemia associated with pregnancy: Maternal
and fetal complications. J Matern Fetal Neonatal Med. 29:1120–1124.
2016. View Article : Google Scholar
|
|
100
|
Kordasti S, Costantini B, Seidl T, Perez
Abellan P, Martinez Llordella M, McLornan D, Diggins KE,
Kulasekararaj A, Benfatto C, Feng X, et al: Deep phenotyping of
Tregs identifies an immune signature for idiopathic aplastic anemia
and predicts response to treatment. Blood. 128:1193–1205. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lee NCJ, Patel B, Etra A, Bat T, Ibrahim
IF, Vusirikala M, Chen M, Rosado F, Jaso JM, Young NS and Chen W:
SARS-CoV-2 infection associated with aplastic anemia and pure red
cell aplasia. Blood Adv. 6:3840–3843. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ahamed M, Akhtar MJ, Verma S, Kumar A and
Siddiqui MK: Environmental lead exposure as a risk for childhood
aplastic anemia. Biosci Trends. 5:38–43. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Adhikari S and Mandal P: Integrated
analysis of global gene and microRNA expression profiling
associated with aplastic anaemia. Life Sci. 228:47–52. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Putkowski S: The national organization for
rare disorders (NORD). NASN School Nurse. 25:38–41. 2010.
View Article : Google Scholar
|
|
105
|
Sinha S, Chatterjee SS, Biswas M, Nag A,
Banerjee D, De R and Sengupta A: SWI/SNF subunit expression
heterogeneity in human aplastic anemia stem/progenitors. Exp
Hematol. 62:39–44.e2. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Khanna-Gupta A, Sarvepalli S, Majumder S,
Karunakaran C, Manoharan M, Prabhu S, Bafna V, Murugan S, Bose C,
Gupta R, et al: Mutations in the telomerase complex and expression
levels of the TERT gene determine severity and outcome of disease
in aplastic anemia patients. Blood. 128:1502. 2016. View Article : Google Scholar
|
|
107
|
Medinger M, Drexler B, Lengerke C and
Passweg J: Pathogenesis of acquired aplastic anemia and the role of
the bone marrow microenvironment. Front Oncol. 8:5872018.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Stelzer G, Rosen N, Plaschkes I, Zimmerman
S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et
al: The GeneCards Suite: From gene data mining to disease genome
sequence analyses. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33.
2016.PubMed/NCBI
|
|
109
|
Johns Hopkins University and Baltimore M:
McKusick-Nathans Institute of Genetic Medicine OMIM®
-Online Mendelian Inheritance in Man. World Wide Web. URL:
https://omim.org/.
|
|
110
|
Yamaguchi H, Calado RT, Ly H, Kajigaya S,
Baerlocher GM, Chanock SJ, Lansdorp PM and Young NS: Mutations in
TERT, the gene for telomerase reverse transcriptase, in aplastic
anemia. N Engl J Med. 352:1413–1424. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Adhikari S and Mandal P: Novel role of AGT
gene in aplastic anaemia among paediatric patients based on gene
expression profiling. bioRxiv: May 29, 2020 (Epub ahead of print).
View Article : Google Scholar
|
|
112
|
Zhou Y, Zhang L, Song S, Xu L, Yan Y, Wu
H, Tong X and Yan H: Elevated GAS2L3 expression correlates with
poor prognosis in patients with Glioma: A study based on
bioinformatics and immunohistochemical analysis. Front Genet.
12:6492702021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Darb-Esfahani S, Kronenwett R, von
Minckwitz G, Denkert C, Gehrmann M, Rody A, Budczies J, Brase JC,
Mehta MK, Bojar H, et al: Thymosin beta 15A (TMSB15A) is a
predictor of chemotherapy response in triple-negative breast
cancer. Br J Cancer. 107:1892–1900. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Shukla S, Tripathi AK, Verma SP, Yadav DK,
Tripathi RK, Maurya S and Awasthi N: Association of
Interleukin-1β-31C/T, -511T/C and -3954C/T single nucleotide
polymorphism and their blood plasma level in acquired aplastic
anemia. Indian J Hematol Blood Transfus. 37:210–219. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Cotoraci C, Ciceu A, Sasu A and Hermenean
A: Natural antioxidants in anemia treatment. Int J Mol Sci.
22:18832021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Babushok DV, Li Y, Roth JJ, Perdigones N,
Cockroft JD, Biegel JA, Mason PJ and Bessler M: Common polymorphic
deletion of glutathione S-transferase theta predisposes to acquired
aplastic anemia: Independent cohort and meta-analysis of 609
patients. Am J Hematol. 88:862–867. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Li J and Bledsoe JR: Inherited bone marrow
failure syndromes and germline predisposition to myeloid neoplasia:
A practical approach for the pathologist. Semin Diagn Pathol.
40:429–442. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Chatterjee R and Law S: Epigenetic and
microenvironmental alterations in bone marrow associated with ROS
in experimental aplastic anemia. Eur J Cell Biol. 97:32–43. 2018.
View Article : Google Scholar
|
|
119
|
Ighodaro OM and Akinloye OA: First line
defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and
glutathione peroxidase (GPX): Their fundamental role in the entire
antioxidant defence grid. Alexandria J Med. 54:287–293. 2018.
View Article : Google Scholar
|
|
120
|
Wang S, Song R, Wang Z, Jing Z, Wang S and
Ma J: S100A8/A9 in inflammation. Front Immunol. 9:12982018.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Giudice V, Wu Z, Kajigaya S, Fernandez
Ibanez MDP, Rios O, Cheung F, Ito S and Young NS: Circulating
S100A8 and S100A9 protein levels in plasma of patients with
acquired aplastic anemia and myelodysplastic syndromes. Cytokine.
113:462–465. 2019. View Article : Google Scholar :
|
|
122
|
Lundgren S, Keränen MAI, Kankainen M,
Huuhtanen J, Walldin G, Kerr CM, Clemente M, Ebeling F, Rajala H,
Brück O, et al: Somatic mutations in lymphocytes in patients with
immune-mediated aplastic anemia. Leukemia. 35:1365–1379. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yu Z, Chen C, Xiao Y, Chen X, Guo L, Tan
G, Huang G, Luo W, Zhou M, Li Y, et al: Abnormal miR-214/A20
expression might play a role in T cell activation in patients with
aplastic anemia. Blood Sci. 2:100–105. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ganapathi KA, Townsley DM, Hsu AP, Arthur
DC, Zerbe CS, Cuellar-Rodriguez J, Hickstein DD, Rosenzweig SD,
Braylan RC, Young NS, et al: GATA2 deficiency-associated bone
marrow disorder differs from idiopathic aplastic anemia. Blood.
125:56–70. 2015. View Article : Google Scholar :
|
|
125
|
You X, Yang Q, Yan K, Wang SR, Huang RR,
Wang SQ, Gao CY, Li L and Lian ZX: Multi-Omics profiling identifies
pathways associated with CD8+ T-Cell activation in severe aplastic
anemia. Front Genet. 12:7909902022. View Article : Google Scholar :
|
|
126
|
Zaimoku Y, Patel BA, Kajigaya S, Feng X,
Alemu L, Quinones Raffo D, Groarke EM and Young NS: Deficit of
circulating CD19+ CD24hi CD38hi regulatory B cells in severe
aplastic anaemia. Br J Haematol. 190:610–617. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Fattizzo B, Giannotta JA and Barcellini W:
Mesenchymal stem cells in aplastic anemia and myelodysplastic
syndromes: The 'Seed and Soil' Crosstalk. Int J Mol Sci.
21:54382020. View Article : Google Scholar
|
|
128
|
Wang XA, Li JP, Wu KH, Yang SF and Chao
YH: Mesenchymal stem cells in acquired aplastic anemia: The
spectrum from basic to clinical utility. Int J Mol Sci.
24:44642023. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Broglie L, Margolis D and Medin JA: Yin
and Yang of mesenchymal stem cells and aplastic anemia. World J
Stem Cells. 9:219–226. 2017. View Article : Google Scholar
|
|
130
|
Wu D, Wen X, Liu W, Hu H, Ye B and Zhou Y:
Comparison of the effects of deferasirox, deferoxamine, and
combination of deferasirox and deferoxamine on an aplastic anemia
mouse model complicated with iron overload. Drug Des Devel Ther.
12:1081–1091. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Lan Y, Liu F, Chang L, Liu L, Zhang Y, Yi
M, Cai Y, Feng J, Han Z, Han Z and Zhu X: Combination of umbilical
cord mesenchymal stem cells and standard immunosuppressive regimen
for pediatric patients with severe aplastic anemia. BMC Pediatr.
21:1022021. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Atere AD, Oseni BSA, Agbona TO, Idomeh FA,
Akinbo DB and Osadolor HB: Free radicals inhibit the haematopoietic
elements and antioxidant agents of rats exposed to pyrethroids
insecticides. J Exp Res. 7:66–74. 2019.
|
|
133
|
Babushok DV: When does a PNH clone have
clinical significance? Hematology Am Soc Hematol Educ Program.
2021:143–152. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Cecchi N, Giannotta JA, Barcellini W and
Fattizzo B: A case of severe aplastic anaemia after SARS-CoV-2
vaccination. Br J Haematol. 196:1334–1336. 2022. View Article : Google Scholar
|
|
135
|
Ahmed P, Chaudhry QUN, Satti TM, Mahmood
SK, Ghafoor T, Shahbaz N, Khan MA, Satti HS, Akram Z, Iftikhar R,
et al: Epidemiology of aplastic anemia: A study of 1324 cases.
Hematology. 25:48–54. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Contejean A, Resche-Rigon M, Tamburini J,
Alcantara M, Jardin F, Lengliné E, Adès L, Bouscary D, Marçais A,
Lebon D, et al: Aplastic anemia in the elderly: A nationwide survey
on behalf of the french reference center for aplastic anemia.
Haematologica. 104:256–262. 2019. View Article : Google Scholar :
|
|
137
|
Durrani J and Maciejewski JP: Idiopathic
aplastic anemia vs hypocellular myelodysplastic syndrome.
Hematology. 2019:97–104. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Barrett J, Saunthararajah Y and Molldrem
J: Myelodysplastic syndrome and aplastic anemia: Distinct entities
or diseases linked by a common pathophysiology? Semin Hematol.
37:15–29. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Sun L and Babushok DV: Secondary
myelodysplastic syndrome and leukemia in acquired aplastic anemia
and paroxysmal nocturnal hemoglobinuria. Blood. 136:36–49. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Ogawa S: Clonal hematopoiesis in acquired
aplastic anemia. Blood. 128:337–347. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Revy P and Touzot F: The immunologic
complications and genetic origins of telomere disorders.
Encyclopedia of Immunobiology. Elsevier; pp. 451–457. 2016,
View Article : Google Scholar
|
|
142
|
Barcellini W, Fattizzo B and Cortelezzi A:
Autoimmune hemolytic anemia, autoimmune neutropenia and aplastic
anemia in the elderly. Eur J Intern Med. 58:77–83. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Townsley DM, Dumitriu B and Young NS: Bone
marrow failure and the telomeropathies. Blood. 124:2775–2783. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Chen CY, Chen TT, Hsieh CY, Lien MY, Yeh
SP and Chen CC: Case reports of management of aplastic anemia after
COVID-19 vaccination: A single institute experience in Taiwan. Int
J Hematol. 117:149–152. 2023. View Article : Google Scholar
|
|
145
|
Kmira Z, Sabrine K, Monia G, Imen A, Dorra
C, Rania B, Neila F, Walid B, Monia Z, Yosra BY, et al: A case of
acquired aplastic Anemia after severe Hepatitis-probably induced by
the Pfizer/BioNTech vaccine: A case report and review of
literature. Vaccines (Basel). 11:12282023. View Article : Google Scholar
|
|
146
|
Sridhara S, Nair R and Stanek M: Severe
aplastic Anemia after receiving SARS-CoV-2 moderna mRNA
vaccination. J Hematol. 11:34–39. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Tabata S, Hosoi H, Murata S, Takeda S,
Mushino T and Sonoki T: Severe aplastic anemia after COVID-19 mRNA
vaccination: Causality or coincidence? J Autoimmun. 126:1027822022.
View Article : Google Scholar
|
|
148
|
Park AK, Waheed A, Forst DA and Al-Samkari
H: Characterization and prognosis of temozolomide-induced aplastic
anemia in patients with central nervous system malignancies. Neuro
Oncol. 24:964–973. 2022. View Article : Google Scholar :
|
|
149
|
Ata F, Akkam Veettil SF, Gaber M, Omar NE,
Madani A, Mah Afifi H, Aldardouri MM, Amer A, Kohla S and Zar Gul
AR: Fatal temozolomide induced aplastic anemia in a female with
Glioblastoma multiforme : A case report and literature review. Clin
Case Rep. 9:1641–1646. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Younan RG, Raad RA, Sawan BY and Said R:
Aplastic anemia secondary to dual cancer immunotherapies a
physician nightmare: Case report and literature review. Allergy
Asthma Clin Immunol. 17:1122021. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Hou JW and Wang TR: Differentiation of
Fanconi anemia from aplastic anemia by chromosomal breakage test.
Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 38:121–126.
1997.PubMed/NCBI
|
|
152
|
Green AM and Kupfer GM: Fanconi Anemia.
Hematol Oncol Clin North Am. 23:193–214. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Ayas M, Siddiqui K, Al-Jefri A, Al-Ahmari
A, Ghemlas I, Al-Saedi H, Al-Anazi A, Khan S, El-Solh H and
Al-Seraihi A: Does mixed chimerism after allogeneic hematopoietic
cell transplantation in pediatric patients with fanconi anemia
impact on outcome? Transplant Cell Ther. 27:257.e1–257.e6. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Cincinnati Children's: Fanconi Anemia.
https://www.cincinnatichildrens.org/health/f/fanconi-anemia.
Accessed December 22, 2022
|
|
155
|
Zhao XC, Zhao L, Sun XY, Xu ZS, Ju B, Meng
FJ and Zhao HG: Excellent response of severe aplastic anemia to
treatment of gut inflammation: A case report and review of the
literature. World J Clin Cases. 8:425–435. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Zhao XC, Xue CJ, Song H, Gao BH, Han FS
and Xiao SX: Bowel inflammatory presentations on computed
tomography in adult patients with severe aplastic anemia during
flared inflammatory episodes. World J Clin Cases. 11:576–597. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Shao Y, Qi W, Zhang X, Ran N, Liu C, Fu R
and Shao Z: Plasma metabolomic and intestinal microbial analyses of
patients with severe aplastic anemia. Front Cell Dev Biol.
9:6698872021. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Taderegew MM, Gebremariam T, Tareke AA and
Woldeamanuel GG: Anemia and its associated factors among type 2
diabetes mellitus patients attending debre berhan referral
hospital, North-East Ethiopia: A Cross-Sectional study. J Blood
Med. 11:47–58. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Bohlius J, Bohlke K, Castelli R,
Djulbegovic B, Lustberg MB, Martino M, Mountzios G, Peswani N,
Porter L, Tanaka TN, et al: Management of Cancer-associated anemia
with erythropoiesis-stimulating agents: ASCO/ASH clinical practice
guideline update. J Clin Oncol. 37:1336–1351. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Boennelykke A, Jensen H, Falborg AZ,
Granfeldt Østgård LS, Hansen AT, Christensen KS and Vedsted P:
Diagnostic workup of cancer in patients with new-onset anaemia: A
Danish cohort study in general practice. Scand J Prim Health Care.
39:391–402. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
van Vliet NA, Kamphuis AEP, den Elzen WPJ,
Blauw GJ, Gussekloo J, Noordam R and van Heemst D: Thyroid function
and risk of anemia: A Multivariable-adjusted and mendelian
randomization analysis in the UK Biobank. J Clin Endocrinol Metab.
107:e643–e652. 2022. View Article : Google Scholar :
|