|
1
|
Tsukita S, Furuse M and Itoh M:
Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol.
2:285–293. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Katoh M and Katoh M: CLDN23 gene,
frequently down-regulated in intestinal-type gastric cancer, is a
novel member of CLAUDIN gene family. Int J Mol Med. 11:683–689.
2003.PubMed/NCBI
|
|
3
|
Krause G, Winkler L, Mueller SL, Haseloff
RF, Piontek J and Blasig IE: Structure and function of claudins.
Biochim Biophys Acta. 1778:631–645. 2008. View Article : Google Scholar
|
|
4
|
Baltzegar DA, Reading BJ, Brune ES and
Borski RJ: Phylogenetic revision of the claudin gene family. Mar
Genomics. 11:17–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Günzel D, Stuiver M, Kausalya PJ, Haisch
L, Krug SM, Rosenthal R, Meij IC, Hunziker W, Fromm M and Müller D:
Claudin-10 exists in six alternatively spliced isoforms that
exhibit distinct localization and function. J Cell Sci.
122:1507–1517. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Niimi T, Nagashima K, Ward JM, Minoo P,
Zimonjic DB, Popescu NC and Kimura S: Claudin-18, a novel
downstream target gene for the T/EBP/NKX2.1 homeodomain
transcription factor, encodes lung- and stomach-specific isoforms
through alternative splicing. Mol Cell Biol. 21:7380–7390. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zihni C, Mills C, Matter K and Balda MS:
Tight junctions: From simple barriers to multifunctional molecular
gates. Nat Rev Mol Cell Biol. 17:564–580. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Vecchio AJ, Rathnayake SS and Stroud RM:
Structural basis for Clostridium perfringens enterotoxin targeting
of claudins at tight junctions in mammalian gut. Proc Natl Acad Sci
USA. 118:e20246511182021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Günzel D and Yu AS: Claudins and the
modulation of tight junction permeability. Physiol Rev. 93:525–569.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
France MM and Turner JR: The mucosal
barrier at a glance. J Cell Sci. 130:307–314. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Stamatovic SM, Johnson AM, Sladojevic N,
Keep RF and Andjelkovic AV: Endocytosis of tight junction proteins
and the regulation of degradation and recycling. Ann N Y Acad Sci.
1397:54–65. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Horowitz A, Chanez-Paredes SD, Haest X and
Turner JR: Paracellular permeability and tight junction regulation
in gut health and disease. Nat Rev Gastroenterol Hepatol.
20:417–432. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Meoli L and Günzel D: The role of claudins
in homeostasis. Nat Rev Nephrol. 19:587–603. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tanaka H, Yamamoto Y, Kashihara H,
Yamazaki Y, Tani K, Fujiyoshi Y, Mineta K, Takeuchi K, Tamura A and
Tsukita S: Claudin-21 has a paracellular channel role at tight
junctions. Mol Cell Biol. 36:954–964. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Raya-Sandino A, Lozada-Soto KM, Rajagopal
N, Garcia-Hernandez V, Luissint AC, Brazil JC, Cui G, Koval M,
Parkos CA, Nangia S and Nusrat A: Claudin-23 reshapes epithelial
tight junction architecture to regulate barrier function. Nat
Commun. 14:62142023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hadj-Rabia S, Baala L, Vabres P,
Hamel-Teillac D, Jacquemin E, Fabre M, Lyonnet S, De Prost Y,
Munnich A, Hadchouel M and Smahi A: Claudin-1 gene mutations in
neonatal sclerosing cholangitis associated with ichthyosis: A tight
junction disease. Gastroenterology. 127:1386–1390. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Askari M, Karamzadeh R, Ansari-Pour N,
Karimi-Jafari MH, Almadani N, Sadighi Gilani MA, Gourabi H, Vosough
Taghi Dizaj A, Mohseni Meybodi A, Sadeghi M, et al: Identification
of a missense variant in CLDN2 in obstructive azoospermia. J Hum
Genet. 64:1023–1032. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Klar J, Piontek J, Milatz S, Tariq M,
Jameel M, Breiderhoff T, Schuster J, Fatima A, Asif M, Sher M, et
al: Altered paracellular cation permeability due to a rare CLDN10B
variant causes anhidrosis and kidney damage. PLoS Genet.
13:e10068972017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sineni CJ, Yildirim-Baylan M, Guo S,
Camarena V, Wang G, Tokgoz-Yilmaz S, Duman D, Bademci G and Tekin
M: A truncating CLDN9 variant is associated with autosomal
recessive nonsyndromic hearing loss. Hum Genet. 138:1071–1075.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wilcox ER, Burton QL, Naz S, Riazuddin S,
Smith TN, Ploplis B, Belyatseva I, Ben-Yosef T, Liburd NA, Morell
RJ, et al: Mutations in the gene encoding tight junction claudin-14
cause autosomal recessive deafness DFNB29. Cell. 104:165–172. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Simon DB, Lu Y, Choate KA, Velazquez H,
Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G,
Rodriguez-Soriano J, et al: Paracellin-1, a renal tight junction
protein required for paracellular Mg2+ resorption. Science.
285:103–106. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Konrad M, Schaller A, Seelow D, Pandey AV,
Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C,
et al: Mutations in the tight-junction gene claudin 19 (CLDN19) are
associated with renal magnesium wasting, renal failure, and severe
ocular involvement. Am J Hum Genet. 79:949–957. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Riedhammer KM, Stockler S, Ploski R,
Wenzel M, Adis-Dutschmann B, Ahting U, Alhaddad B, Blaschek A,
Haack TB, Kopajtich R, et al: De novo stop-loss variants in CLDN11
cause hypomyelinating leukodystrophy. Brain. 144:411–419. 2021.
View Article : Google Scholar :
|
|
24
|
Cancer Genome Atlas Research Network:
Comprehensive molecular characterization of gastric adenocarcinoma.
Nature. 513:202–209. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nakayama I, Shinozaki E, Sakata S,
Yamamoto N, Fujisaki J, Muramatsu Y, Hirota T, Takeuchi K,
Takahashi S, Yamaguchi K and Noda T: Enrichment of CLDN18-ARHGAP
fusion gene in gastric cancers in young adults. Cancer Sci.
110:1352–1363. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Morin PJ: Claudin proteins in human
cancer: Promising new targets for diagnosis and therapy. Cancer
Res. 65:9603–9606. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sahin U, Koslowski M, Dhaene K, Usener D,
Brandenburg G, Seitz G, Huber C and Türeci O: Claudin-18 splice
variant 2 is a pan-cancer target suitable for therapeutic antibody
development. Clin Cancer Res. 14:7624–7634. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Turksen K and Troy TC: Junctions gone bad:
Claudins and loss of the barrier in cancer. Biochim Biophys Acta.
1816:73–79. 2011.PubMed/NCBI
|
|
29
|
Qu H, Jin Q and Quan C: CLDN6: From
traditional barrier function to emerging roles in cancers. Int J
Mol Sci. 22:134162021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Roehlen N, Muller M, Nehme Z, Crouchet E,
Jühling F, Del Zompo F, Cherradi S, Duong FHT, Almeida N, Saviano
A, et al: Treatment of HCC with claudin-1-specific antibodies
suppresses carcinogenic signaling and reprograms the tumor
microenvironment. J Hepatol. 78:343–355. 2023. View Article : Google Scholar
|
|
31
|
Katoh M and Katoh M: Precision medicine
for human cancers with Notch signaling dysregulation (Review). Int
J Mol Med. 45:279–297. 2020.PubMed/NCBI
|
|
32
|
Cao W, Xing H, Li Y, Tian W, Song Y, Jiang
Z and Yu J: Claudin18.2 is a novel molecular biomarker for
tumor-targeted immunotherapy. Biomark Res. 10:382022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Vonniessen B, Tabariès S and Siegel PM:
Antibody-mediated targeting of Claudins in cancer. Front Oncol.
14:13207662024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Nakayama I, Qi C, Chen Y, Nakamura Y, Shen
L and Shitara K: Claudin 18.2 as a novel therapeutic target. Nat
Rev Clin Oncol. 21:354–369. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Miwa N, Furuse M, Tsukita S, Niikawa N,
Nakamura Y and Furukawa Y: Involvement of claudin-1 in the
beta-catenin/Tcf signaling pathway and its frequent upregulation in
human colorectal cancers. Oncol Res. 12:469–476. 2001. View Article : Google Scholar
|
|
36
|
Katoh M: Multi-layered prevention and
treatment of chronic inflammation, organ fibrosis and cancer
associated with canonical WNT/β-catenin signaling activation
(Review). Int J Mol Med. 42:713–725. 2018.PubMed/NCBI
|
|
37
|
Zeisel MB, Dhawan P and Baumert TF: Tight
junction proteins in gastrointestinal and liver disease. Gut.
68:547–561. 2019. View Article : Google Scholar
|
|
38
|
Bhat AA, Syed N, Therachiyil L, Nisar S,
Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S,
Al-Naemi H, et al: Claudin-1, a double-edged sword in cancer. Int J
Mol Sci. 21:5692020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hana C, Thaw Dar NN, Galo Venegas M and
Vulfovich M: Claudins in cancer: A current and future therapeutic
target. Int J Mol Sci. 25:46342024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Toso A, Teixiera G, Zimmermann T,
Schmitter D, Meyer M, Muller M, Mailly L, Baumert T and Iacone R:
193P CLAUDIN-1 targeting antibodies in solid tumors: From ALE.C04
to CLAUDIN-1 oncology platform. Immunooncol Technol. 16(Suppl 1):
S1003052022. View Article : Google Scholar
|
|
41
|
Toso A, Teixeira G, Zimmermann T, Gill SG,
Schmitter D, Meyer M, Muller M, Mailly L, Baumert T, Manenti L and
Iacone R: Abstract LB284: CLAUDIN-1 targeting antibody ALE.C04
drives single activity and restores anti-PD1 efficacy in solid
tumors. Cancer Res. 83(Suppl 8): LB2842023. View Article : Google Scholar
|
|
42
|
Rosa K: FDA grantsfast track status to
ALE.C04 for recurrent or metastatic CLDN1+ HNSCC. OncLive. 2023,
https://www.onclive.com/view/fda-grants-fast-track-status-to-ale-c04-for-recurrent-or-metastatic-cldn1-hnscc.
|
|
43
|
Pelster M, Marron TU, Friend BD, Fan A,
Yang J and Spira AI: Phase 1 study of ASP1002, a bispecific
antibody targeting claudin 4 (CLDN4) and CD137, in patients with
locally advanced (LA) or metastatic solid tumors that express
CLDN4. J Clin Oncol. 42(Suppl 16): TPS26702024. View Article : Google Scholar
|
|
44
|
Ben-David U, Nudel N and Benvenisty N:
Immunologic and chemical targeting of the tight-junction protein
Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat
Commun. 4:19922013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Reinhard K, Rengstl B, Oehm P, Michel K,
Billmeier A, Hayduk N, Klein O, Kuna K, Ouchan Y, Wöll S, et al: An
RNA vaccine drives expansion and efficacy of claudin-CAR-T cells
against solid tumors. Science. 367:446–453. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kong FE, Li GM, Tang YQ, Xi SY, Loong JHC,
Li MM, Li HL, Cheng W, Zhu WJ, Mo JQ, et al: Targeting tumor
lineage plasticity in hepatocellular carcinoma using an anti-CLDN6
antibody-drug conjugate. Sci Transl Med. 13:eabb62822021.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang C, Guo C, Li Y, Liu K, Zhao Q and
Ouyang L: Identification of claudin-6 as a molecular biomarker in
pan-cancer through multiple omics integrative analysis. Front Cell
Dev Biol. 9:7266562021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Du H, Yang X, Fan J and Du X: Claudin 6:
Therapeutic prospects for tumours, and mechanisms of expression and
regulation (Review). Mol Med Rep. 24:6772021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Tsang N, Veillard N, Horsley E, Havenith
K, Janghra N, Zeitseva K, Oblette C, Kirby I, Hogg PW, Zammarchi F,
et al: Abstract 3122: Preclinical development of a novel
camptothecin-based antibody-drug conjugate targeting solid tumors
expressing Claudin-6. Cancer Res. 84(76 Suppl): S31222024.
View Article : Google Scholar
|
|
50
|
Türeci Ö, Kreuzberg M, Walter K, Wöll S,
Schmitt R, Mitnacht-Kraus R, Nakajo I, Yamada T and Sahin U:
Abstract 882: The anti-claudin 6 antibody, IMAB027, induces
antibody-dependent cellular and complement-dependent cytotoxicity
in claudin 6-expressing cancer cells. Cancer Res. 78(Suppl 13):
S8822018. View Article : Google Scholar
|
|
51
|
Sahin U, Jaeger D, Marme F, Mavratzas A,
Krauss J, De Greve J, Vergote I and Tureci O: First-in-human phase
I/II dose-escalation study of IMAB027 in patients with recurrent
advanced ovarian cancer (OVAR): Preliminary data of phase I part. J
Clin Oncol. 33(15 Suppl): S55372015. View Article : Google Scholar
|
|
52
|
Adra N, Vaughn DJ, Einhorn LH, Hanna NH,
Funt SA, Rosales M, Arozullah A and Feldman DR: A phase II study
assessing the safety and efficacy of ASP1650 in male patients with
relapsed refractory germ cell tumors. Invest New Drugs.
40:1087–1094. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
McDermott MSJ, O'Brien NA, Hoffstrom B,
Gong K, Lu M, Zhang J, Luo T, Liang M, Jia W, Hong JJ, et al:
Preclinical efficacy of the antibody-drug conjugate CLDN6-23-ADC
for the treatment of CLDN6-positive solid tumors. Clin Cancer Res.
29:2131–2143. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Konecny GE, Wahner Hendrickson AE,
Winterhoff B, Machado A, Chander C, Davenport S, Bilic S, Miller
LL, Chung A, Press MF, et al: 756P First-in-human phase I study of
a novel claudin 6 (CLDN6) targeted antibody drug conjugate (ADC)
TORL-1-23. Ann Oncol. 34(Suppl 2): S5172023. View Article : Google Scholar
|
|
55
|
Pham E, Henn A, Sable B, Wahl J, Conner K,
Matthes K, Gupta S, Yabut R, Aeffner F, Wilson KL, et al: Abstract
5202: AMG 794, a Claudin 6-targeted half-life extended (HLE)
bispecific T cell engager (BITE®) molecule for non-small
cell lung cancer and epithelial ovarian cancer. Cancer Res.
82(Suppl 12): S52022022. View Article : Google Scholar
|
|
56
|
Stadler CR, Ellinghaus U, Fischer L,
Bähr-Mahmud H, Rao M, Lindemann C, Chaturvedi A, Scharf C, Biermann
I, Hebich B, et al: Preclinical efficacy and pharmacokinetics of an
RNA-encoded T cell-engaging bispecific antibody targeting human
claudin 6. Sci Transl Med. 16:eadl27202024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Faber MS, Lee SH, Kim YK, Qi J, Avery KN,
Nguyen DHT, Rashid R, Eivazi A, Chu SY, Diaz JE, et al: Abstract
1860: Bispecific claudin-6 x CD3 antibodies in a 2 + 1 format
demonstrate selectivity and activity on human ovarian cancer cells.
Cancer Res. 81(Suppl 13): S18602021. View Article : Google Scholar
|
|
58
|
Kamikawa T, Kimura N, Ishii S, Muraoka M,
Taniguchi K, Uchikawa R, Yoshimoto M, Okuda-Miura M, Akai S, Kodama
T, et al: 1172 SAIL66, a next generation of T cell engager
targeting CLDN6, potentiates efficacy. J Immunother Cancer.
11(Suppl 1): S11722023.
|
|
59
|
Mackensen A, Haanen JBAG, Koenecke C,
Alsdorf W, Wagner-Drouet E, Borchmann P, Heudobler D, Ferstl B,
Klobuch S, Bokemeyer C, et al: CLDN6-specific CAR-T cells plus
amplifying RNA vaccine in relapsed or refractory solid tumors: The
phase 1 BNT211-01 trial. Nat Med. 29:2844–2853. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li J, Hu H, Lian H, Yang S, Liu M, He J,
Cao B, Chen D, Hu Y, Zhi C, et al: NK-92MI cells engineered with
anti-claudin-6 chimeric antigen receptors in immunotherapy for
ovarian cancer. Int J Biol Sci. 20:1578–1601. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Micke P, Mattsson JSM, Edlund K, Lohr M,
Jirström K, Berglund A, Botling J, Rahnenfuehrer J, Marincevic M,
Pontén F, et al: Aberrantly activated claudin 6 and 18.2 as
potential therapy targets in non-small-cell lung cancer. Int J
Cancer. 135:2206–2214. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Dottermusch M, Krüger S, Behrens HM,
Halske C and Röcken C: Expression of the potential therapeutic
target claudin-18.2 is frequently decreased in gastric cancer:
Results from a large Caucasian cohort study. Virchows Arch.
475:563–571. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen J, Xu Z, Hu C, Zhang S, Zi M, Yuan L
and Cheng X: Targeting CLDN18.2 in cancers of the gastrointestinal
tract: New drugs and new indications. Front Oncol. 13:11323192023.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lyu SI, Fretter C, Simon AG, Spielmann SM,
Damanakis AI, Zhao Y, Bruns CJ, Schmidt T, Popp FC, Waldschmidt D,
et al: Extent and clinical significance of the therapy-relevant
tight junction protein Claudin 18.2 in pancreatic ductal
adenocarcinoma-real-world evidence. Transl Oncol. 47:1020442024.
View Article : Google Scholar
|
|
65
|
Li J, Pan H, Liu T, Xu N, Zhang Y, Qin Y,
Shi J, Liao D, Shen L, Luo S, et al: A multicenter, phase 1 study
of AB011, a recombinant humanized anti-CLDN18.2 monoclonal
antibody, as monotherapy and combined with capecitabine and
oxaliplatin (CAPOX) in patients with advanced solid tumors. J Clin
Oncol. 41(Suppl 4): S3912023. View Article : Google Scholar
|
|
66
|
Zhang M, Gong J, Wang J, Shi J, Zhu H,
Wang Y, Chen Y, Wang F, Qu X, Yu J, et al: A phase I/II study of
ASKB589 [anti-claudin 18.2 (CLDN18.2) monoclonal antibody] in
patients with solid tumors. J Clin Oncol. 41(Suppl 4): S3972023.
View Article : Google Scholar
|
|
67
|
Peng Z, Shen L, He Y, Chen J,
Hickingbottom B and Lu J: A phase Ib/II study of ASKB589
[anti-Claudin 18.2 (CLDN18.2) monoclonal antibody] combined with
CAPOX and PD-1 inhibitor as first-line treatment for locally
advanced, relapsed and metastatic gastric/gastro-esophageal
junction (G/GEJ) adenocarcinoma. J Clin Oncol. 42(Suppl 3):
S3172024. View Article : Google Scholar
|
|
68
|
Jin Z, Zhang Y, Liu F, Zhang S, Gong J,
Zhang M, Liang X, Wang J, Li Y, Yang X, et al: FG-M108 plus
nab-paclitaxel and gemcitabine (AG) as first-line (1L) treatment
for patients with Claudin-18.2 (CLDN18.2) positive locally advanced
unresectable or metastatic pancreatic cancer (PC): Preliminary
results from the phase 1b study. J Clin Oncol. 42(Suppl 16):
S41422024. View Article : Google Scholar
|
|
69
|
Huang J, Zhang B, Wang Y, Wang F, Yu Z, Wu
S, Zheng Y, Cao Y, Xu J, Lan D, et al: Safety and preliminary
efficacy of MIL93 in patients with advanced solid tumors: The
monotherapy part of a phase 1 trial. J Clin Oncol. 41(Suppl 4):
S7982023. View Article : Google Scholar
|
|
70
|
Janjigian Y, Tolcher A, Mehta R, Cecchini
M, Van Tine B, Kundranda M, Olatunji A, Patel MR, Berlin J,
Rocha-Lima CMSP, et al: Abstract CT132: A Phase I/IIa clinical
trial (TranStar101) to evaluate the safety, tolerability and
pharmacokinetics of OSEMITAMAB administered as monotherapy or in
combination with nivolumab or standard of care in patients with
locally advanced or metastatic solid tumors. Cancer Res. 84(Suppl
7): CT1322024. View Article : Google Scholar
|
|
71
|
Zhang X, Guo Z, Zhang J, Guo W, Sun M, Xu
N, Qi C, Zhu X, Zhang L, Qian X, et al: First-line osemitamab
(TST001) plus nivolumab and capox for advanced g/GEJ cancer
(TranStar102): Results of cohort G from a phase I/IIa study. J Clin
Oncol. 42(Suppl 16): S40482024. View Article : Google Scholar
|
|
72
|
Sharma S, Starodub A, Xu N, Chaudhry A,
Sun M, Pelster M, Fu Y, Zhang X, Huang Z, Liu W and Hsu K:
Preliminary results of a phase 1/2, first-in-human, open-label,
dose escalation study of ZL-1211 (anti-Claudin 18.2 mAb) in
patients with unresectable or metastatic solid tumors. J Clin
Oncol. 41(Suppl 16): S25372023. View Article : Google Scholar
|
|
73
|
Türeci O, Sahin U, Schulze-Bergkamen H,
Zvirbule Z, Lordick F, Koeberle D, Thuss-Patience P, Ettrich T,
Arnold D, Bassermann F, et al: A multicentre, phase IIa study of
zolbetuximab as a single agent in patients with recurrent or
refractory advanced adenocarcinoma of the stomach or lower
oesophagus: The MONO study. Ann Oncol. 30:1487–1495. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shitara K, Lordick F, Bang YJ, Enzinger P,
Ilson D, Shah MA, Van Cutsem E, Xu RH, Aprile G, Xu J, et al:
Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive,
HER2-negative, untreated, locally advanced unresectable or
metastatic gastric or gastro-oesophageal junction adenocarcinoma
(SPOTLIGHT): A multicentre, randomised, double-blind, phase 3
trial. Lancet. 401:1655–1668. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Shah MA, Shitara K, Ajani JA, Bang YJ,
Enzinger P, Ilson D, Lordick F, Van Cutsem E, Gallego Plazas J,
Huang J, et al: Zolbetuximab plus CAPOX in CLDN18.2-positive
gastric or gastroesophageal junction adenocarcinoma: The
randomized, phase 3 GLOW trial. Nat Med. 29:2133–2141. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ra J: FDA denies approval for Astellas'
investigational gastric cancer drug. Pharmaceutical Technology.
2014, https://www.pharmaceutical-technology.com/news/fda-denies-approval-for-astellas-investigational-gastric-cancer-drug/.
|
|
77
|
Conroy R: FDA acknowledges zolbetuximab
BLA resubmission for CLDN18.2+ gastric cancer. CancerNetwork. 2024,
https://www.cancernetwork.com/view/fda-acknowledges-zolb-etuximab-bla-resubmission-for-cldn18-2-gastric-cancer/.
|
|
78
|
Bishnoi S, Cao D, Mendis SR, Coward J,
Zhao J, Xie H and Zheng L: An open-label, multicenter, phase I
study of ATG-022 in patients with advanced/metastatic solid tumors
(CLINCH). J Clin Oncol. 42(Suppl 16): S30322024. View Article : Google Scholar
|
|
79
|
Xu RH, Ruan DY, Zhang DS, Liu FR, Luo SX,
Zhuang ZX, Wang ZN, Liu FN, Zhang YQ, Yang JW, et al: A phase 1
trial of claudin 18.2-specific antibody-drug conjugate CMG901 in
patients with advanced gastric/gastroesophageal junction cancer. J
Clin Oncol. 41(Suppl 36): S4344202023. View Article : Google Scholar
|
|
80
|
Raufi AG, Goyal L, Smyth E, Szekeres P,
Petrone M, Hobson R, Thress K, Origuchi M, Nehra J, Brown JS, et
al: CLARITY-PanTumor01: A phase 2 trial of the claudin
18.2-specific antibody-drug conjugate AZD0901 (CMG901) in patients
with CLDN18.2-expressing advanced solid tumors. J Clin Oncol.
42(Suppl 16): TPS31632024. View Article : Google Scholar
|
|
81
|
Wang Y, Gong J, Lin R, Zhao S, Wang J,
Wang Q, Zhang Y, Su D, Zhang J, Dong Q, et al: First-in-human dose
escalation and expansion study of SYSA1801, an antibody-drug
conjugate targeting claudin 18.2 in patients with
resistant/refractory solid tumors. J Clin Oncol. 41(Suppl 16):
S30162023. View Article : Google Scholar
|
|
82
|
Yu X, Zhang J, Tazbirkova A, Yang J, Yue
J, Sun Y, Pan Y, Sun M, Qin Y, Shen L, et al: Safety and efficacy
of IBI343 (anti-claudin18.2 antibody-drug conjugate) in patients
with advanced pancreatic ductal adenocarcinoma or biliary tract
cancer: Preliminary results from a phase 1 study. J Clin Oncol.
42(Suppl 16): S30372024. View Article : Google Scholar
|
|
83
|
Huang W, Li Y, Liu Z, Rodon L, Correia S,
Li Y and Li R: Preclinical activity for TPX-4589 (LM-302), an
antibody-drug conjugate targeting tight junction protein CLDN18.2
in solid tumors. Eur J Cancer. 174(Suppl 1): S41–S42. 2022.
View Article : Google Scholar
|
|
84
|
Bai C, Xue J, Zheng Y, Sun M, Ying J, Zhou
F, Yu Y, Sun Y, Xing L, Zhang Y, et al: A phase 1/2 study of
LM-302, an anti-claudin 18.2 (CLDN18.2) antibody-drug conjugate in
patients with advanced gastric/gastroesophageal junction cancer. J
Clin Oncol. 42(Suppl 16): S30282024. View Article : Google Scholar
|
|
85
|
Spisek R: 2P SOT102, a novel
CLDN18.2-targeting antibody-drug conjugate for gastric and
pancreatic cancer with a wide range of the tumor target expression.
ESMO Open. 8(1 Suppl 2): S1011962023. View Article : Google Scholar
|
|
86
|
Rosa K: CMG901 elicits responses in
CLDN18.2-expressing gastric/GEJ cancer. OncLive. 2023, https://www.onclive.com/view/cmg901-elicits-responses-in-cldn18-2-expressing-gastric-gej-cancer/.
|
|
87
|
Wahner A: IBI343 receives FDA fast track
designation for advanced/metastatic PDAC. OncLive. 2024, https://www.onclive.com/view/ibi343-receives-fda-fast-track-designation-for-advanced-metastatic-pdac/.
|
|
88
|
Gaspar M, Natoli M, Castan L, Rahmy S,
Kelton C, Mulgrew K, Korade M, Huhn O, Rees DG, Sigurdardottir A,
et al: 1169 AZD5863: A specific, potent, affinity-optimized claudin
18.2 and CD3 binding T cell-engager that elicits low cytokine
release and is capable of bystander killing. J Immunother Cancer.
11(Suppl 1): S11692023.
|
|
89
|
Gao J, Wang Z, Jiang W, Zhang Y, Meng Z,
Niu Y, Sheng Z, Chen C, Liu X, Chen X, et al: CLDN18.2 and 4-1BB
bispecific antibody givastomig exerts antitumor activity through
CLDN18.2-expressing tumor-directed T-cell activation. J Immunother
Cancer. 11:e0067042023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xu Y, Fu J, Henderson M, Lee F, Jurcak N,
Henn A, Wahl J, Shao Y, Wang J, Lyman M, et al: CLDN18.2 BiTE
engages effector and regulatory T cells for antitumor immune
response in preclinical models of pancreatic cancer.
Gastroenterology. 165:1219–1232. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zheng L, Ruihong D, Jieer Y, Xu Q, Guo Z,
Hu C, Sun Y, Niu Z, Hao J, Zhang M, et al: Safety and preliminary
efficacy results of IBI389, an anti-CLDN18.2/CD3 bispecific
antibody, in patients with solid tumors and gastric or
gastro-esophageal tumors: A phase 1 dose escalation and expansion
study. J Clin Oncol. 42(Suppl 16): S25192024. View Article : Google Scholar
|
|
92
|
Wang J, Dong T, Gong X, Li D, Sun J, Luo Y
and Wu H: Safety and pharmacokinetic assessment of the FIC
CLDN18.2/4-1BB bispecific antibody in rhesus monkeys. Int J
Toxicol. 43:291–300. 2024. View Article : Google Scholar
|
|
93
|
Guo Y, Wu L, Li Y, Wen J, Xue J, Wang Z,
Li P, Zhao W, Liu J, Rao X, et al: First-in-human phase I/II safety
and preliminary efficacy of PM1032, a bispecific antibody targeting
CLDN18.2 and 4-1BB, in patients with advanced solid tumors. J Clin
Oncol. 42(Suppl 16): S26622024. View Article : Google Scholar
|
|
94
|
Overman MJ, Melhem R, Blum-Murphy MA,
Ramos C, Petrosyan L, Li J, Perer JK, Zou H, Wang M and Wright HM:
A phase I, first-in-human, open-label, dose escalation and
expansion study of PT886 in adult patients with advanced gastric,
gastroesophageal junction, and pancreatic adenocarcinomas. J Clin
Oncol. 41(Suppl 4): TPS7652023. View Article : Google Scholar
|
|
95
|
Yk W, Gong J, Sun Y, Zhang J, Ni S, Hou J,
Chen X, Wang Y, Yu Q, Qu X, et al: Interim results of a
first-in-human phase 1 study of Q-1802, a CLDN18.2/PD-L1 bsABs, in
patients with relapsed or refractory solid tumors. J Clin Oncol.
41(Suppl 4): S3822023. View Article : Google Scholar
|
|
96
|
Wang Y, Gong J, Sun Y, Yang S, Zhang M,
Cui J, Lv J, Su H, Wang J, Lu J, et al: 132P A phase I clinical
trial of QLS31905 in advanced solid tumors. Immunooncol Technol.
20(Suppl): S1006042023. View Article : Google Scholar
|
|
97
|
Klein C, Brinkmann U, Reichert JM and
Kontermann RE: The present and future of bispecific antibodies for
cancer therapy. Nat Rev Drug Discov. 23:301–319. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Goebeler ME, Stuhler G and Bargou R:
Bispecific and multispecific antibodies in oncology: Opportunities
and challenges. Nat Rev Clin Oncol. 21:539–560. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tucker N: FDA grants orphan drug
designation to TJ-CD4B for gastric cancer. Targeted Oncology. 2022,
https://www.targetedonc.com/view/fda-grants-orphan-drug-designation-to-tj-cd4b-for-gastric-cancer/.
|
|
100
|
Jiang H, Shi Z, Wang P, Wang C, Yang L, Du
G, Zhang H, Shi B, Jia J, Li Q, et al: Claudin18.2-specific
chimeric antigen receptor engineered T cells for the treatment of
gastric cancer. J Natl Cancer Inst. 111:409–418. 2019. View Article : Google Scholar
|
|
101
|
Qi C, Liu C, Gong J, Liu D, Wang X, Zhang
P, Qin Y, Ge S, Zhang M, Peng Z, et al: Claudin18.2-specific CAR T
cells in gastrointestinal cancers: phase 1 trial final results. Nat
Med. 30:2224–2234. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhen DB, Thota R, del Corral C, Geng D,
Yang T, Wang C, Amato G, Akram M, Miller DS, Bubuteishvili-Pacaud L
and Gibson M: A phase 1, open-label, dose escalation and expansion,
multicenter study of claudin 18.2-targeted chimeric antigen
receptor T-cells in patients with unresectable, locally advanced,
or metastatic gastric, gastroesophageal junction, esophageal, or
pancreatic adenocarcinoma. J Clin Oncol. 41(Suppl 4): TSP4802023.
View Article : Google Scholar
|
|
103
|
Luo T, Lu Z, Zheng R, Zhou J, Wang S, Hao
R and Sun M: Outstanding safety and efficacy data of IMC002, an
autologous CLDN18.2-targeting CAR-T, in CLDN18.2+ advanced solid
tumors. J Clin Oncol. 42(Suppl 16): e160122024. View Article : Google Scholar
|
|
104
|
Britton Z, Breen S, Carrasco R, Clark B,
Broggi MAS, Lapointe JM, Giraldo N, Rao Attili BMN, Hatke A,
Grigoriadou C, et al: 235 Preclinical evaluation and anti-tumor
activity of AZD6422, a CLDN18.2 targeting armored CAR-T for
gastric, esophageal and pancreatic cancers. J Immunother Cancer.
11(Suppl 1): A1–A1731. 2023.
|
|
105
|
Xu H, Li W, Lv H, Gu D, Wei X and Dai H:
Tandem CAR-T cells targeting CLDN18.2 and NKG2DL for treatment of
gastric cancer. J Clin Oncol. 40(Suppl 16): S40302022. View Article : Google Scholar
|
|
106
|
Paul S, Konig MF, Pardoll DM, Bettegowda
C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A and
Zhou S: Cancer therapy with antibodies. Nat Rev Cancer. 24:399–426.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Fu Z, Li S, Han S, Shi C and Zhang Y:
Antibody drug conjugate: the 'biological missile' for targeted
cancer therapy. Signal Transduct Target Ther. 7:932022. View Article : Google Scholar
|
|
108
|
Fuentes-Antrás J, Genta S, Vijenthira A
and Siu LL: Antibody-drug conjugates: In search of partners of
choice. Trends Cancer. 9:339–354. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kalinsky K, Diamond JR, Vahdat LT, Tolaney
SM, Juric D, O'Shaughnessy J, Moroose RL, Mayer IA, Abramson VG,
Goldenberg DM, et al: Sacituzumab govitecan in previously treated
hormone receptor-positive/HER2-negative metastatic breast cancer:
Final results from a phase I/II, single-arm, basket trial. Ann
Oncol. 31:1709–1718. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Rosenberg J, Sridhar SS, Zhang J, Smith D,
Ruether D, Flaig TW, Baranda J, Lang J, Plimack ER, Sangha R, et
al: EV-101: A phase I study of single-agent enfortumab vedotin in
patients with nectin-4-positive solid tumors, including metastatic
urothelial carcinoma. J Clin Oncol. 38:1041–1049. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Park K, Haura EB, Leighl NB, Mitchell P,
Shu CA, Girard N, Viteri S, Han JY, Kim SW, Lee CK, et al:
Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung
cancer progressing on platinum chemotherapy: Initial results from
the CHRYSALIS phase I study. J Clin Oncol. 39:3391–3402. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fayette J, Clatot F, Brana I, Saada E, van
Herpen CML, Mazard T, Perez CA, Tabernero J, Le Tourneau C,
Hollebecque A, et al: Petosemtamab (MCLA-158) with pembrolizumab as
first-line (1L) treatment of recurrent/metastatic (r/m) head and
neck squamous cell carcinoma (HNSCC): Phase 2 study. J Clin Oncol.
42(Suppl 16): S60142024. View Article : Google Scholar
|
|
113
|
Schram AM, Goto K, Kim DW, Martin-Romano
P, Ou SHI, O'Kane GM, O'Reilly EM, Umemoto K, Duruisseaux M,
Neuzillet C, et al: Efficacy and safety of zenocutuzumab, a HER2 x
HER3 bispecific antibody, across advanced NRG1 fusion (NRG1+)
cancers. J Clin Oncol. 40(Suppl 16): S1052022. View Article : Google Scholar
|
|
114
|
Kim MA, Lee HS, Lee HE, Jeon YK, Yang HK
and Kim WH: EGFR in gastric carcinomas: Prognostic significance of
protein overexpression and high gene copy number. Histopathology.
52:738–746. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Van Cutsem E, Bang YJ, Feng-Yi F, Xu JM,
Lee KW, Jiao SC, Chong JL, López-Sanchez RI, Price T, Gladkov O, et
al: HER2 screening data from ToGA: Targeting HER2 in gastric and
gastroesophageal junction cancer. Gastric Cancer. 18:476–484. 2015.
View Article : Google Scholar :
|
|
116
|
Ahn S, Lee J, Hong M, Kim ST, Park SH,
Choi MG, Lee JH, Sohn TS, Bae JM, Kim S, et al: FGFR2 in gastric
cancer: Protein overexpression predicts gene amplification and high
H-index predicts poor survival. Mod Pathol. 29:1095–1103. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Yashiro M, Kuroda K, Masuda G, Okuno T,
Miki Y, Yamamoto Y, Sera T, Sugimoto A, Kushiyama S, Nishimura S,
et al: Clinical difference between fibroblast growth factor
receptor 2 subclass, type IIIb and type IIIc, in gastric cancer.
Sci Rep. 11:46982021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK,
Lee BL, Bang YJ and Kim WH: MET in gastric carcinomas: Comparison
between protein expression and gene copy number and impact on
clinical outcome. Br J Cancer. 107:325–333. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Katoh M, Loriot Y, Brandi G, Tavolari S,
Wainberg ZA and Katoh M: FGFR-targeted therapeutics: Clinical
activity, mechanisms of resistance and new directions. Nat Rev Clin
Oncol. 21:312–329. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang H, Yang Z, Zhu X, Li J, Gao Y, Zhang
Y, Tong Z, Fu Q, Bao X, Li B, et al: Phase I trial of
hypoxia-responsive CEA CAR-T cell therapy in patients with heavily
pretreated solid tumor via intraperitoneal or intravenous
transfusion. J Clin Oncol. 42(Suppl 16): S35142024. View Article : Google Scholar
|
|
121
|
Feng K, Guo Y, Dai H, Wang Y, Li X, Jia H
and Han W: Chimeric antigen receptor-modified T cells for the
immunotherapy of patients with EGFR-expressing advanced
relapsed/refractory non-small cell lung cancer. Sci China Life Sci.
59:468–479. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Zhang Q, Fu Q, Cao W, Wang H, Xu X, Huang
J, Zou A, Zhu J, Wan H, Yao Y, et al: Phase I study of C-CAR031, a
GPC3-specific TGFβRIIDN armored autologous CAR-T, in patients with
advanced hepatocellular carcinoma (HCC). J Clin Oncol. 42(Suppl
16): S40192024. View Article : Google Scholar
|
|
123
|
Qi C, Liu C, Li J, Gong J, Wang X, Wang Z,
Lu X, He T, Ding Y, Wu F, et al: Phase I study of GUCY2C CAR-T
therapy IM96 in patients with metastatic colorectal cancer. J Clin
Oncol. 42(Suppl 16): S25182024. View Article : Google Scholar
|
|
124
|
Neelapu SS, Locke FL, Bartlett NL, Lekakis
LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T,
Lin Y, et al: Axicabtagene ciloleucel CAR T-cell therapy in
refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Martin T, Usmani SZ, Berdeja JG, Agha M,
Cohen AD, Hari P, Avigan D, Deol A, Htut M, Lesokhin A, et al:
Ciltacabtagene autoleucel, an anti-B-cell maturation antigen
chimeric antigen receptor T-cell therapy, for relapsed/refractory
multiple myeloma: CARTITUDE-1 2-year follow-up. J Clin Oncol.
41:1265–1274. 2023. View Article : Google Scholar
|
|
126
|
Majzner RG and Mackall CL: Tumor antigen
escape from CAR T-cell therapy. Cancer Discov. 8:1219–1226. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Shah NN and Fry TJ: Mechanisms of
resistance to CAR T cell therapy. Nat Rev Clin Oncol. 16:372–385.
2019.PubMed/NCBI
|
|
128
|
Larson RC and Maus MV: Recent advances and
discoveries in the mechanisms and functions of CAR T cells. Nat Rev
Cancer. 21:145–161. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Hou AJ, Chen LC and Chen YY: Navigating
CAR-T cells through the solid-tumour microenvironment. Nat Rev Drug
Discov. 20:531–550. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Tauriello DVF, Sancho E and Batlle E:
Overcoming TGFβ-mediated immune evasion in cancer. Nat Rev Cancer.
22:25–44. 2022. View Article : Google Scholar
|
|
131
|
Katoh M and Katoh M: WNT signaling and
cancer stemness. Essays Biochem. 66:319–331. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Gumber D and Wang LD: Improving CAR-T
immunotherapy: Overcoming the challenges of T cell exhaustion.
EBioMedicine. 77:1039412022. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Chan JD, Scheffler CM, Munoz I, Sek K, Lee
JN, Huang YK, Yap KM, Saw NYL, Li J, Chen AXY, et al: FOXO1
enhances CAR T cell stemness, metabolic fitness and efficacy.
Nature. 629:201–210. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Doan AE, Mueller KP, Chen AY, Rouin GT,
Chen Y, Daniel B, Lattin J, Markovska M, Mozarsky B, Arias-Umana J,
et al: FOXO1 is a master regulator of memory programming in CAR T
cells. Nature. 629:211–218. 2024. View Article : Google Scholar : PubMed/NCBI
|