|
1
|
Laug D, Glasgow SM and Deneen B: A glial
blueprint for gliomagenesis. Nat Rev Neurosci. 19:393–403. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wang J, Leavenworth JW, Hjelmeland AB,
Smith R, Patel N, Borg B, Si Y and King PH: Deletion of the RNA
regulator HuR in tumor-associated microglia and macrophages
stimulates anti-tumor immunity and attenuates glioma growth. Glia.
67:2424–2439. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Jiang Y, Marinescu VD, Xie Y, Jarvius M,
Maturi NP, Haglund C, Olofsson S, Lindberg N, Olofsson T,
Leijonmarck C, et al: Glioblastoma cell malignancy and drug
sensitivity are affected by the cell of origin. Cell Rep.
18:977–990. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ostrom QT, Gittleman H, Liao P,
Vecchione-Koval T, Wolinsky Y, Kruchko C and Barnholtz-Sloan JS:
CBTRUS statistical report: Primary brain and other central nervous
system tumors diagnosed in the United States in 2010-2014. Neuro
Oncol. 19(Suppl 5): V1–V88. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Uddin MS, Mamun AA, Alghamdi BS, Tewari D,
Jeandet P, Sarwar MS and Ashraf GM: Epigenetics of glioblastoma
multiforme: From molecular mechanisms to therapeutic approaches.
Semin Cancer Biol. 83:100–120. 2022. View Article : Google Scholar
|
|
6
|
Claus EB, Walsh KM, Wiencke JK, Molinaro
AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R and
Wrensch M: Survival and low-grade glioma: The emergence of genetic
information. Neurosurg Focus. 38:E62015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hambardzumyan D, Gutmann DH and Kettenmann
H: The role of microglia and macrophages in glioma maintenance and
progression. Nat Neurosci. 19:20–27. 2016. View Article : Google Scholar :
|
|
8
|
Mantovani A, Sozzani S, Locati M, Allavena
P and Sica A: Macrophage polarization: Tumor-associated macrophages
as a paradigm for polarized M2 mononuclear phagocytes. Trends
Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mantovani A, Sica A, Sozzani S, Allavena
P, Vecchi A and Locati M: The chemokine system in diverse forms of
macrophage activation and polarization. Trends Immunol. 25:677–686.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N,
Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic
reprogramming and immune response. Mol Cancer. 20:282021.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yang K, Wang X, Song C, He Z, Wang R, Xu
Y, Jiang G, Wan Y, Mei J and Mao W: The role of lipid metabolic
reprogramming in tumor microenvironment. Theranostics.
13:1774–1808. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Fernandez LP, Gomez de Cedron M and
Ramirez de Molina A: Alterations of lipid metabolism in cancer:
Implications in prognosis and treatment. Front Oncol.
10:5774202020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen JQ and Russo J: Dysregulation of
glucose transport, glycolysis, TCA cycle and glutaminolysis by
oncogenes and tumor suppressors in cancer cells. Biochim Biophys
Acta. 1826:370–384. 2012.PubMed/NCBI
|
|
15
|
Xiang Y and Miao H: Lipid metabolism in
tumor-associated macrophages. Adv Exp Med Biol. 1316:87–101. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Vander Heiden MG and DeBerardinis RJ:
Understanding the intersections between metabolism and cancer
biology. Cell. 168:657–669. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Venneti S and Thompson CB: Metabolic
reprogramming in brain tumors. Annu Rev Pathol. 12:515–545. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bi J, Chowdhry S, Wu S, Zhang W, Masui K
and Mischel PS: Altered cellular metabolism in gliomas-an emerging
landscape of actionable co-dependency targets. Nat Rev Cancer.
20:57–70. 2020. View Article : Google Scholar
|
|
19
|
Pavlova NN and Thompson CB: The emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Belanger M, Allaman I and Magistretti PJ:
Brain energy metabolism: Focus on astrocyte-neuron metabolic
cooperation. Cell Metab. 14:724–738. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Magistretti PJ and Allaman I: A cellular
perspective on brain energy metabolism and functional imaging.
Neuron. 86:883–901. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zielke HR, Zielke CL and Baab PJ: Direct
measurement of oxidative metabolism in the living brain by
microdialysis: A review. J Neurochem. 109(Suppl 1): S24–S29. 2009.
View Article : Google Scholar
|
|
23
|
Kaur B, Khwaja FW, Severson EA, Matheny
SL, Brat DJ and Van Meir EG: Hypoxia and the
hypoxia-inducible-factor pathway in glioma growth and angiogenesis.
Neuro Oncol. 7:134–153. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kayama T, Yoshimoto T, Fujimoto S and
Sakurai Y: Intratumoral oxygen pressure in malignant brain tumor. J
Neurosurg. 74:55–59. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kucharzewska P, Christianson HC and
Belting M: Global profiling of metabolic adaptation to hypoxic
stress in human glioblastoma cells. PLoS One. 10:e01167402015.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li Z, Bao S, Wu Q, Wang H, Eyler C,
Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, et al:
Hypoxia-Inducible factors regulate tumorigenic capacity of glioma
stem cells. Cancer Cell. 15:501–513. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ricard C, Tchoghandjian A, Luche H, Grenot
P, Figarella-Branger D, Rougon G, Malissen M and Debarbieux F:
Phenotypic dynamics of microglial and monocyte-derived cells in
glioblastoma-bearing mice. Sci Rep. 6:263812016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
del Rio-Hortega P: The third element of
the nerve centers. Bulletin of the Spanish Society of Biology.
9:69–129. 1919.In Spanish.
|
|
29
|
Simard AR and Rivest S: Bone marrow stem
cells have the ability to populate the entire central nervous
system into fully differentiated parenchymal microglia. FASEB J.
18:998–1000. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Priller J, Flugel A, Wehner T, Boentert M,
Haas CA, Prinz M, Fernández-Klett F, Prass K, Bechmann I, de Boer
BA, et al: Targeting gene-modified hematopoietic cells to the
central nervous system: Use of green fluorescent protein uncovers
microglial engraftment. Nat Med. 7:1356–1361. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Flugel A, Bradl M, Kreutzberg GW and
Graeber MB: Transformation of donor-derived bone marrow precursors
into host microglia during autoimmune CNS inflammation and during
the retrograde response to axotomy. J Neurosci Res. 66:74–82. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hickey WF and Kimura H: Perivascular
microglial cells of the CNS are bone marrow-derived and present
antigen in vivo. Science. 239:290–292. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Massengale M, Wagers AJ, Vogel H and
Weissman IL: Hematopoietic cells maintain hematopoietic fates upon
entering the brain. J Exp Med. 201:1579–1589. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
De Leo A, Ugolini A and Veglia F: Myeloid
cells in glioblastoma microenvironment. Cells. 10:182020.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ajami B, Bennett JL, Krieger C, McNagny KM
and Rossi FM: Infiltrating monocytes trigger EAE progression, but
do not contribute to the resident microglia pool. Nat Neurosci.
14:1142–1249. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen Z, Feng X, Herting CJ, Garcia VA, Nie
K, Pong WW, Rasmussen R, Dwivedi B, Seby S, Wolf SA, et al:
Cellular and molecular identity of tumor-associated macrophages in
glioblastoma. Cancer Res. 77:2266–2278. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Landry AP, Balas M, Alli S, Spears J and
Zador Z: Distinct regional ontogeny and activation of tumor
associated macrophages in human glioblastoma. Sci Rep.
10:195422020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xu C, Xiao M, Li X, Xin L, Song J, Zhan Q,
Wang C, Zhang Q, Yuan X, Tan Y and Fang C: Origin, activation, and
targeted therapy of glioma-associated macrophages. Front Immunol.
13:9749962022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bowman RL, Klemm F, Akkari L, Pyonteck SM,
Sevenich L, Quail DF, Dhara S, Simpson K, Gardner EE,
Iacobuzio-Donahue CA, et al: Macrophage ontogeny underlies
differences in tumor-specific education in brain malignancies. Cell
Rep. 17:2445–2459. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bennett ML, Bennett FC, Liddelow SA, Ajami
B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A,
Tucker A, et al: New tools for studying microglia in the mouse and
human CNS. Proc Natl Acad Sci USA. 113:E1738–E1746. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Müller S, Kohanbash G, Liu SJ, Alvarado B,
Carrera D, Bhaduri A, Watchmaker PB, Yagnik G, Di Lullo E,
Malatesta M, et al: Single-cell profiling of human gliomas reveals
macrophage ontogeny as a basis for regional differences in
macrophage activation in the tumor microenvironment. Genome Biol.
18:2342017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Szulzewsky F, Pelz A, Feng X, Synowitz M,
Markovic D, Langmann T, Holtman I R, Wang X, Eggen BJ, Boddeke HW,
et al: Glioma-Associated microglia/macrophages display an
expression profile different from M1 and M2 polarization and highly
express Gpnmb and Spp1. PLoS One. 10:e01166442015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pyonteck SM, Akkari L, Schuhmacher AJ,
Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT,
Teijeiro V, et al: CSF-1R inhibition alters macrophage polarization
and blocks glioma progression. Nat Med. 19:1264–1272. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lisi L, Laudati E, Navarra P and Dello
Russo C: The mTOR kinase inhibitors polarize glioma-activated
microglia to express a M1 phenotype. J Neuroinflammation.
11:1252014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Qin T, Wang C, Chen X, Duan C, Zhang X,
Zhang J, Chai H, Tang T, Chen H, Yue J, et al: Dopamine induces
growth inhibition and vascular normalization through reprogramming
M2-polarized macrophages in rat C6 glioma. Toxicol Appl Pharmacol.
286:112–123. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xu S, Wei J, Wang F, Kong LY, Ling XY,
Nduom E, Gabrusiewicz K, Doucette T, Yang Y, Yaghi NK, et al:
Effect of miR-142-3p on the M2 macrophage and therapeutic efficacy
against murine glioblastoma. J Natl Cancer Inst. 106:dju1622014.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang Q, Zhang J, Fang S, Wang J, Han X,
Liu F and Jin G: P4HA1 down-regulation inhibits glioma invasiveness
by promoting M1 microglia polarization. Onco Targets Ther.
14:1771–1782. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Rao G, Latha K, Ott M, Sabbagh A,
Marisetty A, Ling X, Zamler D, Doucette TA, Yang Y, Kong LY, et al:
Anti-PD-1 Induces M1 polarization in the glioma microenvironment
and exerts therapeutic efficacy in the absence of CD8 Cytotoxic T
cells. Clin Cancer Res. 26:4699–4712. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Feng X, Szulzewsky F, Yerevanian A, Chen
Z, Heinzmann D, Rasmussen RD, Alvarez-Garcia V, Kim Y, Wang B,
Tamagno I, et al: Loss of CX3CR1 increases accumulation of
inflammatory monocytes and promotes gliomagenesis. Oncotarget.
6:15077–15094. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhou C, Li T, Dong Q, Liang H and Xu L:
SARM suppresses glioma progression in GL261 glioma cells and
regulates microglial polarization. Cell Biol Int. 46:1927–1936.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wei J, Gabrusiewicz K and Heimberger A:
The controversial role of microglia in malignant gliomas. Clin Dev
Immunol. 2013:2852462013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gutmann DH and Kettenmann H:
Microglia/Brain macrophages as central drivers of brain tumor
pathobiology. Neuron. 104:442–449. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zeppellini A, Galimberti S, Leone BE,
Pacifico C, Riva F, Cicchiello F, Capici S, Maggioni C, Sala L and
Cazzaniga ME: Comparison of tumor microenvironment in primary and
paired metastatic ER+/HER2-breast cancers: Results of a pilot
study. BMC Cancer. 21:2602021. View Article : Google Scholar
|
|
54
|
Lailler C, Louandre C, Morisse MC,
Lhossein T, Godin C, Lottin M, Constans JM, Chauffert B, Galmiche A
and Saidak Z: ERK1/2 signaling regulates the immune
microenvironment and macrophage recruitment in glioblastoma. Biosci
Rep. 39:BSR201914332019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
De Boeck A, Ahn BY, D'Mello C, Lun X,
Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, et
al: Glioma-derived IL-33 orchestrates an inflammatory brain tumor
microenvironment that accelerates glioma progression. Nat Commun.
11:49972020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Greten FR and Grivennikov SI: Inflammation
and cancer: Triggers, mechanisms, and consequences. Immunity.
51:27–41. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang Q, Wang J, Yao X, Wu S, Tian W, Gan
C, Wan X, You C, Hu F, Zhang S, et al: Programmed Cell Death 10
Mediated CXCL2-CXCR2 signaling in regulating tumor-associated
microglia/macrophages recruitment in glioblastoma. Front Immunol.
12:6370532021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Anagnostakis F and Piperi C: Targeting
options of tumor-associated macrophages (TAM) activity in gliomas.
Curr Neuropharmacol. 21:457–470. 2023. View Article : Google Scholar :
|
|
59
|
Sun L, Zhang H and Gao P: Metabolic
reprogramming and epigenetic modifications on the path to cancer.
Protein Cell. 13:877–919. 2022. View Article : Google Scholar :
|
|
60
|
Liu Y, Xu R, Gu H, Zhang E, Qu J, Cao W,
Huang X, Yan H, He J and Cai Z: Metabolic reprogramming in
macrophage responses. Biomark Res. 9:12021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang Y, Wang D, Yang L and Zhang Y:
Metabolic reprogramming in the immunosuppression of
tumor-associated macrophages. Chin Med J (Engl). 135:2405–2416.
2022.PubMed/NCBI
|
|
62
|
Muri J and Kopf M: Redox regulation of
immunometabolism. Nat Rev Immunol. 21:363–381. 2021. View Article : Google Scholar
|
|
63
|
Blouin CC, Pagé EL, Soucy GM and Richard
DE: Hypoxic gene activation by lipopolysaccharide in macrophages:
Implication of hypoxia-inducible factor 1alpha. Blood.
103:1124–1130. 2004. View Article : Google Scholar
|
|
64
|
Van den Bossche J, Baardman J, Otto NA,
van der Velden S, Neele AE, van den Berg SM, Luque-Martin R, Chen
HJ, Boshuizen MC, Ahmed M, et al: Mitochondrial dysfunction
prevents repolarization of inflammatory macrophages. Cell Rep.
17:684–696. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu S, Liu J, Ma Q, Cao L, Fattah RJ, Yu
Z, Bugge TH, Finkel T and Leppla SH: Solid tumor therapy by
selectively targeting stromal endothelial cells. Proc Natl Acad Sci
USA. 113:E4079–E4087. 2016.PubMed/NCBI
|
|
66
|
Su P, Wang Q, Bi E, Ma X, Liu L, Yang M,
Qian J and Yi Q: enhanced lipid accumulation and metabolism are
required for the differentiation and activation of tumor-associated
macrophages. Cancer Res. 80:1438–1450. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Luo Q, Zheng NS, Jiang L, Wang T, Zhang P,
Liu Y, Zheng P, Wang W, Xie G, Chen L, et al: Lipid accumulation in
macrophages confers protumorigenic polarization and immunity in
gastric cancer. Cancer Sci. 111:4000–4011. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huang SC, Everts B, Ivanova Y, O'Sullivan
D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY,
O'Neill CM, et al: Cell-intrinsic lysosomal lipolysis is essential
for alternative activation of macrophages. Nat Immunol. 15:846–855.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Teng Y, Xu L, Li W, Liu P, Tian L and Liu
M: Targeting reactive oxygen species and fat acid oxidation for the
modulation of tumor-associated macrophages: A narrative review.
Front Immunol. 14:12244432023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kumar S, Mittal S, Gupta P, Singh M,
Chaluvally-Raghavan P and Pradeep S: Metabolic reprogramming in
tumor-associated macrophages in the ovarian tumor microenvironment.
Cancers (Basel). 14:52242022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu S, Zhang H, Li Y, Zhang Y, Bian Y,
Zeng Y, Yao X, Wan J, Chen X, Li J, et al: S100A4 enhances protumor
macrophage polarization by control of PPAR-γ-dependent induction of
fatty acid oxidation. J Immunother Cancer. 9:e0025482021.
View Article : Google Scholar
|
|
72
|
Zhou D, Ji L and Chen Y: TSPO Modulates
IL-4-Induced Microglia/Macrophage M2 Polarization via PPAR-gamma
Pathway. J Mol Neurosci. 70:542–549. 2020. View Article : Google Scholar
|
|
73
|
Dubey S, Ghosh S, Goswami D, Ghatak D and
De R: Immunometabolic attributes and mitochondria-associated
signaling of Tumor-Associated Macrophages in tumor microenvironment
modulate cancer progression. Biochem Pharmacol. 208:1153692023.
View Article : Google Scholar
|
|
74
|
Puthenveetil A and Dubey S: Metabolic
reprograming of tumor-associated macrophages. Ann Transl Med.
8:10302020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Shapouri-Moghaddam A, Mohammadian S,
Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi
A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization,
and function in health and disease. J Cell Physiol. 233:6425–6440.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lee LY, Oldham WM, He H, Wang R, Mulhern
R, Handy DE and Loscalzo J: Interferon-ү impairs human coronary
artery endothelial glucose metabolism by tryptophan catabolism and
activates fatty acid oxidation. Circulation. 144:1612–1628. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Friedmann Angeli JP, Xavier da Silva TN
and Schilling B: CD8+ T cells PUF(A)ing the flames of
cancer ferroptotic cell death. Cancer Cell. 40:346–348. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yerrapragada MR and Mampallil D:
Interferon-γ detection in point of care diagnostics: Short review.
Talanta. 245:1234282022. View Article : Google Scholar
|
|
79
|
Lin CY, Chen WL, Huang YC, Lim CL and Yang
CH: Gum Arabic in combination with IFN-γ promotes the M1
polarization in macrophage. Int J Biol Macromol. 209:506–512. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Abdi K, Laky K, Abshari M, Hill EM, Lantz
L, Singh NJ and Long EO: Dendritic cells Trigger IFN-γ secretion by
NK cells independent of IL-12 and IL-18. Eur J Immunol.
52:1431–1440. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhao X, Peng T, Cao X, Hou Y, Li R, Han T,
Fan Z, Zhao M, Chang Y, Chen H, et al: In vivo G-CSF treatment
activates the GR-SOCS1 axis to suppress IFN-y secretion by natural
killer cells. Cell Rep. 40:1113422022. View Article : Google Scholar
|
|
82
|
Chawla A: Control of Macrophage Activation
and Function by PPARs. Circ Res. 106:1559–1569. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Christofides A, Konstantinidou E, Jani C
and Boussiotis VA: The role of peroxisome proliferator-activated
receptors (PPAR) in immune responses. Metabolism. 114:1543382021.
View Article : Google Scholar
|
|
84
|
Qiao X, Hu Z, Xiong F, Yang Y, Peng C,
Wang D and Li X: Lipid metabolism reprogramming in tumor-associated
macrophages and implications for therapy. Lipids Health Dis.
22:452023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Schumann T, Adhikary T, Wortmann A,
Finkernagel F, Lieber S, Schnitzer E, Legrand N, Schober Y, Nockher
WA, Toth PM, et al: Deregulation of PPARβ/δ target genes in
tumor-associated macrophages by fatty acid ligands in the ovarian
cancer microenvironment. Oncotarget. 6:13416–13433. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fernandez-Marcos PJ and Serrano M: Sirt4:
The glutamine gatekeeper. Cancer Cell. 23:427–428. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li Z, Li H, Zhao ZB, Zhu W, Feng PP, Zhu
XW and Gong JP: SIRT4 silencing in tumor-associated macrophages
promotes HCC development via PPARδ signalling-mediated alternative
activation of macrophages. J Exp Clin Cancer Res. 38:4692019.
View Article : Google Scholar
|
|
88
|
Mojsilovic SS, Mojsilovic S, Villar VH and
Santibanez JF: The metabolic features of tumor-associated
macrophages: Opportunities for immunotherapy? Anal Cell Pathol
(Amst). 2021:55230552021.PubMed/NCBI
|
|
89
|
Wu L, Zhang X, Zheng L, Zhao H, Yan G,
Zhang Q, Zhou Y, Lei J, Zhang J, Wang J, et al: RIPK3 orchestrates
fatty acid metabolism in tumor-associated macrophages and
hepatocarcinogenesis. Cancer Immunol Res. 8:710–721. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Niu Z, Shi Q, Zhang W, Shu Y, Yang N, Chen
B, Wang Q, Zhao X, Chen J, Cheng N, et al: Caspase-1 cleaves PPARγ
for potentiating the pro-tumor action of TAMs. Nat Commun.
8:7662017. View Article : Google Scholar
|
|
91
|
McKillop LH, Girardi CA and Thompson KJ:
Role of fatty acid binding proteins (FABPs) in cancer development
and progression. Cell Signal. 62:1093362019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang Y, Sun Y, Rao E, Yan F, Li Q, Zhang
Y, Silverstein KA, Liu S, Sauter E, Cleary MP and Li B: Fatty
Acid-Binding Protein E-FABP restricts tumor growth by promoting
IFN-β responses in tumor-associated macrophages. Cancer Res.
74:2986–2998. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Furuhashi M and Hotamisligil GS: Fatty
acid-binding proteins: role in metabolic diseases and potential as
drug targets. Nat Rev Drug Discov. 7:489–503. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hao J, Yan F, Zhang Y, Triplett A, Zhang
Y, Schultz DA, Sun Y, Zeng J, Silverstein KAT, Zheng Q, et al:
Expression of adipocyte/macrophage fatty acid-binding protein in
tumor-associated macrophages promotes breast cancer progression.
Cancer Res. 78:2343–2355. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wang J and Li Y: CD36 tango in cancer:
Signaling pathways and functions. Theranostics. 9:4893–4908. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Nath A and Chan C: Genetic alterations in
fatty acid transport and metabolism genes are associated with
metastatic progression and poor prognosis of human cancers. Sci
Rep. 6:186692016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Harizi H, Corcuff JB and Gualde N:
Arachidonic-acid-derived eicosanoids: Roles in biology and
immunopathology. Trends Mol Med. 14:461–469. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Qin Q, Ji H, Li D, Zhang H, Zhang Z and
Zhang Q: Tumor-associated macrophages increase COX-2 expression
promoting endocrine resistance in breast cancer via the
PI3K/Akt/mTOR pathway. Neoplasma. 68:938–946. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Rabold K, Netea MG, Adema GJ and
Netea-Maier RT: Cellular metabolism of tumor-associated
macrophages-functional impact and consequences. FEBS Lett.
591:3022–3041. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Olesch C, Sha W, Angioni C, Sha LK, Açaf
E, Patrignani P, Jakobsson PJ, Radeke HH, Grösch S, Geisslinger G,
et al: MPGES-1-derived PGE2 suppresses CD80 expression on
tumor-associated phagocytes to inhibit anti-tumor immune responses
in breast cancer. Oncotarget. 6:10284–10296. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kale S, Raja R, Thorat D, Soundararajan G,
Patil TV and Kundu GC: Osteopontin signaling upregulates
cyclooxygenase-2 expression in tumor-associated macrophages leading
to enhanced angiogenesis and melanoma growth via alpha9beta1
integrin. Oncogene. 33:2295–2306. 2014. View Article : Google Scholar
|
|
102
|
Nakanishi Y, Nakatsuji M, Seno H, Ishizu
S, Akitake-Kawano R, Kanda K, Ueo T, Komekado H, Kawada M, Minami M
and Chiba T: COX-2 inhibition alters the phenotype of
tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse
polyps. Carcinogenesis. 32:1333–1339. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Nosaka T, Baba T, Naito T, et al:
Leukotriene B 4 generated by alveolar macrophages drive
hepatocellular carcinoma lung metastasis. Hepatology. 66:85A.
2017.
|
|
104
|
Hall Z, Ament Z, Wilson CH, Burkhart DL,
Ashmore T, Koulman A, Littlewood T, Evan GI and Griffin JL: Myc
expression drives aberrant lipid metabolism in lung cancer. Cancer
Res. 76:4608–4618. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ringleb J, Strack E, Angioni C,
Geisslinger G, Steinhilber D, Weigert A and Brüne B: Apoptotic
cancer cells suppress 5-lipoxygenase in tumor-associated
macrophages. J Immunol. 200:857–868. 2018. View Article : Google Scholar
|
|
106
|
Cheng C, Geng F, Cheng X and Guo D: Lipid
metabolism reprogramming and its potential targets in cancer.
Cancer Commun (Lond). 38:272018.PubMed/NCBI
|
|
107
|
Ou J, Miao H, Ma Y, Guo F, Deng J, Wei X,
Zhou J, Xie G, Shi H, Xue B, et al: Loss of Abhd5 promotes
colorectal tumor development and progression by inducing aerobic
glycolysis and epithelial-mesenchymal transition. Cell Rep.
9:1798–1811. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yen CL, Nelson DW and Yen MI: Intestinal
triacylglycerol synthesis in fat absorption and systemic energy
metabolism. J Lipid Res. 56:489–501. 2015. View Article : Google Scholar :
|
|
109
|
Miao H, Ou J, Peng Y, Zhang X, Chen Y, Hao
L, Xie G, Wang Z, Pang X, Ruan Z, et al: Macrophage ABHD5 promotes
colorectal cancer growth by suppressing spermidine production by
SRM. Nat Commun. 7:117162016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Shang S, Ji X, Zhang L, Chen J, Li C, Shi
R, Xiang W, Kang X, Zhang D, Yang F, et al: Macrophage ABHD5
Suppresses NFκB-Dependent matrix metalloproteinase expression and
cancer metastasis. Cancer Res. 79:5513–5526. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Xiang W, Shi R, Kang X, Zhang X, Chen P,
Zhang L, Hou A, Wang R, Zhao Y, Zhao K, et al: Monoacylglycerol
lipase regulates cannabinoid receptor 2-dependent macrophage
activation and cancer progression. Nat Commun. 9:25742018.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
King RJ, Singh PK and Mehla K: The
cholesterol pathway: Impact on immunity and cancer. Trends Immunol.
43:78–92. 2022. View Article : Google Scholar :
|
|
113
|
van der Vorst EPC, Theodorou K, Wu Y,
Hoeksema MA, Goossens P, Bursill CA, Aliyev T, Huitema LFA, Tas SW,
Wolfs IMJ, et al: High-Density lipoproteins exert pro-inflammatory
effects on macrophages via passive cholesterol depletion and
PKC-NF-κB/STAT1-IRF1 signaling. Cell Metab. 25:197–207. 2017.
View Article : Google Scholar
|
|
114
|
Sag D, Cekic C, Wu R, Linden J and Hedrick
CC: The cholesterol transporter ABCG1 links cholesterol homeostasis
and tumour immunity. Nat Commun. 6:63542015. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang S, Yan W, Kong L, Zuo S, Wu J, Zhu C,
Huang H, He B, Dong J and Wei J: Oncolytic viruses engineered to
enforce cholesterol efflux restore tumor-associated macrophage
phagocytosis and anti-tumor immunity in glioblastoma. Nat Commun.
14:43672023. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Goossens P, Rodriguez-Vita J, Etzerodt A,
Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck
M, Auphan-Anezin N, et al: Membrane cholesterol efflux drives
tumor-associated macrophage reprogramming and tumor progression.
Cell Metab. 29:1376–1389.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Nelson ER, Wardell SE, Jasper JS, Park S,
Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V,
et al: 27-Hydroxycholesterol links hypercholesterolemia and breast
cancer pathophysiology. Science. 342:1094–1098. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Shi SZ, Lee EJ, Lin YJ, Chen L, Zheng HY,
He XQ, Peng JY, Noonepalle SK, Shull AY, Pei FC, et al: Recruitment
of monocytes and epigenetic silencing of intratumoral CYP7B1
primarily contribute to the accumulation of 27-hydroxycholesterol
in breast cancer. Am J Cancer Res. 9:2194–2208. 2019.PubMed/NCBI
|
|
119
|
Ohira H, Fujioka Y, Katagiri C, Mamoto R,
Aoyama-Ishikawa M, Amako K, Izumi Y, Nishiumi S, Yoshida M, Usami M
and Ikeda M: Butyrate attenuates inflammation and lipolysis
generated by the interaction of adipocytes and macrophages. J
Atheroscler Thromb. 20:425–442. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Yao Y, Cai X, Fei W, Ye Y, Zhao M and
Zheng C: The role of short-chain fatty acids in immunity,
inflammation and metabolism. Crit Rev Food Sci Nutr. 62:1–12. 2022.
View Article : Google Scholar
|
|
121
|
Masui R, Sasaki M, Funaki Y, Ogasawara N,
Mizuno M, Iida A, Izawa S, Kondo Y, Ito Y, Tamura Y, et al: G
protein-coupled receptor 43 moderates gut inflammation through
cytokine regulation from mononuclear cells. Inflamm Bowel Dis.
19:2848–2856. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Seljeset S and Siehler S:
Receptor-specific regulation of ERK1/2 activation by members of the
'free fatty acid receptor' family. J Recept Signal Transduct Res.
32:196–201. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Tan J, McKenzie C, Potamitis M, Thorburn
AN, Mackay CR and Macia L: The role of short-chain fatty acids in
health and disease. Adv Immunol. 121:91–119. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Schaub A, Fütterer A and Pfeffer K:
PUMA-G, an IFN-gamma-inducible gene in macrophages is a novel
member of the seven transmembrane spanning receptor superfamily.
Eur J Immunol. 31:3714–3725. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Singh N, Gurav A, Sivaprakasam S, Brady E,
Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, et
al: Activation of Gpr109a, receptor for niacin and the commensal
metabolite butyrate, suppresses colonic inflammation and
carcinogenesis. Immunity. 40:128–139. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Karunaratne TB, Okereke C, Seamon M,
Purohit S, Wakade C and Sharma A: Niacin and Butyrate:
Nutraceuticals targeting dysbiosis and intestinal permeability in
parkinson's disease. Nutrients. 13:282020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Bach Knudsen KE, Laerke HN, Hedemann MS,
Nielsen TS, Ingerslev AK, Gundelund Nielsen DS, Theil PK, Purup S,
Hald S, Schioldan AG, et al: Impact of diet-modulated butyrate
production on intestinal barrier function and inflammation.
Nutrients. 10:14992018. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Chai JT, Digby JE and Choudhury RP:
GPR109A and vascular inflammation. Curr Atheroscler Rep.
15:3252013. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Aoyama M, Kotani J and Usami M: Butyrate
and propionate induced activated or non-activated neutrophil
apoptosis via HDAC inhibitor activity but without activating
GPR-41/GPR-43 pathways. Nutrition. 26:653–661. 2010. View Article : Google Scholar
|
|
130
|
Chang PV, Hao L, Offermanns S and
Medzhitov R: The microbial metabolite butyrate regulates intestinal
macrophage function via histone deacetylase inhibition. Proc Natl
Acad Sci USA. 111:2247–2252. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Usami M, Kishimoto K, Ohata A, Miyoshi M,
Aoyama M, Fueda Y and Kotani J: Butyrate and trichostatin A
attenuate nuclear factor kappaB activation and tumor necrosis
factor α secretion and increase prostaglandin E2 secretion in human
peripheral blood mononuclear cells. Nutr Res. 28:321–328. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Hara T, Hirasawa A, Ichimura A, Kimura I
and Tsujimoto G: Free fatty acid receptors FFAR1 and GPR120 as
novel therapeutic targets for metabolic disorders. J Pharm Sci.
100:3594–3601. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Oh DY, Talukdar S, Bae EJ, Imamura T,
Morinaga H, Fan W, Li P, Lu WJ, Watkins SM and Olefsky JM: GPR120
is an omega-3 fatty acid receptor mediating potent
anti-inflammatory and insulin-sensitizing effects. Cell.
142:687–698. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Liang P, Henning SM, Guan J, Grogan T,
Elashoff D, Olefsky JM, Cohen P and Aronson WJ: Role of Host GPR120
in mediating dietary omega-3 fatty acid inhibition of prostate
cancer. J Natl Cancer Inst. 111:52–59. 2019. View Article : Google Scholar :
|
|
135
|
Liang P, Henning SM, Schokrpur S, Wu L,
Doan N, Said J, Grogan T, Elashoff D, Cohen P and Aronson WJ:
Effect of dietary omega-3 fatty acids on tumor-associated
macrophages and prostate cancer progression. Prostate.
76:1293–1302. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhu L, Zhao Q, Yang T, Ding W and Zhao Y:
Cellular metabolism and macrophage functional polarization. Int Rev
Immunol. 34:82–100. 2015. View Article : Google Scholar
|
|
137
|
Wu H, Han Y, Rodriguez Sillke Y, Deng H,
Siddiqui S, Treese C, Schmidt F, Friedrich M, Keye J, Wan J, et al:
Lipid droplet-dependent fatty acid metabolism controls the immune
suppressive phenotype of tumor-associated macrophages. EMBO Mol
Med. 11:e106982019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Ahluwalia M, Battiste J, Bockorny B,
Bullock A, Patel MR, Wen P, Shepard D, Vaickus L, Vincent M,
Vincent M, et al: Clinical efficacy and biomarker assessment of
VT1021, A CD36/CD47 dual-targeting agent, in recurrent
glioblastoma. Neuro-Oncology. 23:50. 2021. View Article : Google Scholar
|
|
139
|
Zhang Q, Wang H, Mao C, Sun M, Dominah G,
Chen L and Zhuang Z: Fatty acid oxidation contributes to IL-1β
secretion in M2 macrophages and promotes macrophage-mediated tumor
cell migration. Mol Immunol. 94:27–35. 2018. View Article : Google Scholar
|
|
140
|
Lang S, Tiwari S, Andratschke M, Loehr I,
Lauffer L, Bergmann C, Mack B, Lebeau A, Moosmann A, Whiteside TL
and Zeidler R: Immune restoration in head and neck cancer patients
after in vivo COX-2 inhibition. Cancer Immunol Immunother.
56:1645–1652. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Zheng X, Mansouri S, Krager A, Grimminger
F, Seeger W, Pullamsetti SS, Wheelock CE and Savai R: Metabolism in
tumour-associated macrophages: A quid pro quo with the tumour
microenvironment. Eur Respir Rev. 29:2001342020. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Eruslanov E, Daurkin I, Ortiz J, Vieweg J
and Kusmartsev S: Tumor-mediated induction of myeloid-derived
suppressor cells and M2-polarized macrophages by altering
intracellular PGE2 catabolism in myeloid cells. J Leukoc
Biol. 88:839–848. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Wen Z, Liu H, Li M, Li B, Gao W, Shao Q,
Fan B, Zhao F, Wang Q, Xie Q, et al: Increased metabolites of
5-lipoxygenase from hypoxic ovarian cancer cells promote
tumor-associated macrophage infiltration. Oncogene. 34:1241–1252.
2015. View Article : Google Scholar
|
|
144
|
Nosaka T, Baba T, Tanabe Y, Sasaki S,
Nishimura T, Imamura Y, Yurino H, Hashimoto S, Arita M, Nakamoto Y
and Mukaida N: Alveolar macrophages drive hepatocellular carcinoma
lung metastasis by generating leukotriene B4. J Immunol.
200:1839–1852. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Hoppstadter J, Dembek A, Horing M, Schymik
HS, Dahlem C, Sultan A, Wirth N, Al-Fityan S, Diesel B, Gasparoni
G, et al: Dysregulation of cholesterol homeostasis in human lung
cancer tissue and tumour-associated macrophages. Ebiomedicine.
72:1035782021. View Article : Google Scholar : PubMed/NCBI
|