Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2024 Volume 54 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 54 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review)

  • Authors:
    • Yixuan Ma
    • Yimin Huang
    • Feng Hu
    • Kai Shu
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China, Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
    Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 4.0].
  • Article Number: 102
    |
    Published online on: September 16, 2024
       https://doi.org/10.3892/ijmm.2024.5426
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gliomas are the most prevailing brain malignancy in both children and adults. Microglia, which are resident in the central nervous system (CNS), are distributed throughout the brain and serve an important role in the immunity of the CNS. Microglial cells exhibit varying phenotypic and metabolic properties during different stages of glioma development, making them a highly dynamic cell population. In particular, glioma‑associated microglia/macrophages (GAMs) can alter their metabolic characteristics and influence malignancies in response to the signals they receive. The significance of macrophage metabolic reprogramming in tumor growth is becoming increasingly acknowledged in recent years. However, to the best of our knowledge, there is currently a scarcity of data from investigations into the lipid metabolic profiles of microglia/macrophages in the glioma setting. Therefore, the present review aims to provide a thorough review of the role that lipid metabolism serves in tumor‑associated macrophages. In addition, it outlines potential targets for therapy based on lipid metabolism. The present review aims to serve as a reference source for future investigations into GAMs.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Laug D, Glasgow SM and Deneen B: A glial blueprint for gliomagenesis. Nat Rev Neurosci. 19:393–403. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Wang J, Leavenworth JW, Hjelmeland AB, Smith R, Patel N, Borg B, Si Y and King PH: Deletion of the RNA regulator HuR in tumor-associated microglia and macrophages stimulates anti-tumor immunity and attenuates glioma growth. Glia. 67:2424–2439. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Jiang Y, Marinescu VD, Xie Y, Jarvius M, Maturi NP, Haglund C, Olofsson S, Lindberg N, Olofsson T, Leijonmarck C, et al: Glioblastoma cell malignancy and drug sensitivity are affected by the cell of origin. Cell Rep. 18:977–990. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol. 19(Suppl 5): V1–V88. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Uddin MS, Mamun AA, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS and Ashraf GM: Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semin Cancer Biol. 83:100–120. 2022. View Article : Google Scholar

6 

Claus EB, Walsh KM, Wiencke JK, Molinaro AM, Wiemels JL, Schildkraut JM, Bondy ML, Berger M, Jenkins R and Wrensch M: Survival and low-grade glioma: The emergence of genetic information. Neurosurg Focus. 38:E62015. View Article : Google Scholar : PubMed/NCBI

7 

Hambardzumyan D, Gutmann DH and Kettenmann H: The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 19:20–27. 2016. View Article : Google Scholar :

8 

Mantovani A, Sozzani S, Locati M, Allavena P and Sica A: Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI

11 

Yang K, Wang X, Song C, He Z, Wang R, Xu Y, Jiang G, Wan Y, Mei J and Mao W: The role of lipid metabolic reprogramming in tumor microenvironment. Theranostics. 13:1774–1808. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Fernandez LP, Gomez de Cedron M and Ramirez de Molina A: Alterations of lipid metabolism in cancer: Implications in prognosis and treatment. Front Oncol. 10:5774202020. View Article : Google Scholar : PubMed/NCBI

14 

Chen JQ and Russo J: Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta. 1826:370–384. 2012.PubMed/NCBI

15 

Xiang Y and Miao H: Lipid metabolism in tumor-associated macrophages. Adv Exp Med Biol. 1316:87–101. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Vander Heiden MG and DeBerardinis RJ: Understanding the intersections between metabolism and cancer biology. Cell. 168:657–669. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Venneti S and Thompson CB: Metabolic reprogramming in brain tumors. Annu Rev Pathol. 12:515–545. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Bi J, Chowdhry S, Wu S, Zhang W, Masui K and Mischel PS: Altered cellular metabolism in gliomas-an emerging landscape of actionable co-dependency targets. Nat Rev Cancer. 20:57–70. 2020. View Article : Google Scholar

19 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Belanger M, Allaman I and Magistretti PJ: Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14:724–738. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Magistretti PJ and Allaman I: A cellular perspective on brain energy metabolism and functional imaging. Neuron. 86:883–901. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Zielke HR, Zielke CL and Baab PJ: Direct measurement of oxidative metabolism in the living brain by microdialysis: A review. J Neurochem. 109(Suppl 1): S24–S29. 2009. View Article : Google Scholar

23 

Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ and Van Meir EG: Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol. 7:134–153. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Kayama T, Yoshimoto T, Fujimoto S and Sakurai Y: Intratumoral oxygen pressure in malignant brain tumor. J Neurosurg. 74:55–59. 1991. View Article : Google Scholar : PubMed/NCBI

25 

Kucharzewska P, Christianson HC and Belting M: Global profiling of metabolic adaptation to hypoxic stress in human glioblastoma cells. PLoS One. 10:e01167402015. View Article : Google Scholar : PubMed/NCBI

26 

Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, et al: Hypoxia-Inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 15:501–513. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Ricard C, Tchoghandjian A, Luche H, Grenot P, Figarella-Branger D, Rougon G, Malissen M and Debarbieux F: Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice. Sci Rep. 6:263812016. View Article : Google Scholar : PubMed/NCBI

28 

del Rio-Hortega P: The third element of the nerve centers. Bulletin of the Spanish Society of Biology. 9:69–129. 1919.In Spanish.

29 

Simard AR and Rivest S: Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J. 18:998–1000. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernández-Klett F, Prass K, Bechmann I, de Boer BA, et al: Targeting gene-modified hematopoietic cells to the central nervous system: Use of green fluorescent protein uncovers microglial engraftment. Nat Med. 7:1356–1361. 2001. View Article : Google Scholar : PubMed/NCBI

31 

Flugel A, Bradl M, Kreutzberg GW and Graeber MB: Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res. 66:74–82. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Hickey WF and Kimura H: Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 239:290–292. 1988. View Article : Google Scholar : PubMed/NCBI

33 

Massengale M, Wagers AJ, Vogel H and Weissman IL: Hematopoietic cells maintain hematopoietic fates upon entering the brain. J Exp Med. 201:1579–1589. 2005. View Article : Google Scholar : PubMed/NCBI

34 

De Leo A, Ugolini A and Veglia F: Myeloid cells in glioblastoma microenvironment. Cells. 10:182020. View Article : Google Scholar : PubMed/NCBI

35 

Ajami B, Bennett JL, Krieger C, McNagny KM and Rossi FM: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 14:1142–1249. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW, Rasmussen R, Dwivedi B, Seby S, Wolf SA, et al: Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res. 77:2266–2278. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Landry AP, Balas M, Alli S, Spears J and Zador Z: Distinct regional ontogeny and activation of tumor associated macrophages in human glioblastoma. Sci Rep. 10:195422020. View Article : Google Scholar : PubMed/NCBI

38 

Xu C, Xiao M, Li X, Xin L, Song J, Zhan Q, Wang C, Zhang Q, Yuan X, Tan Y and Fang C: Origin, activation, and targeted therapy of glioma-associated macrophages. Front Immunol. 13:9749962022. View Article : Google Scholar : PubMed/NCBI

39 

Bowman RL, Klemm F, Akkari L, Pyonteck SM, Sevenich L, Quail DF, Dhara S, Simpson K, Gardner EE, Iacobuzio-Donahue CA, et al: Macrophage ontogeny underlies differences in tumor-specific education in brain malignancies. Cell Rep. 17:2445–2459. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ, Adil A, Tucker A, et al: New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA. 113:E1738–E1746. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Müller S, Kohanbash G, Liu SJ, Alvarado B, Carrera D, Bhaduri A, Watchmaker PB, Yagnik G, Di Lullo E, Malatesta M, et al: Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biol. 18:2342017. View Article : Google Scholar : PubMed/NCBI

42 

Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, Holtman I R, Wang X, Eggen BJ, Boddeke HW, et al: Glioma-Associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS One. 10:e01166442015. View Article : Google Scholar : PubMed/NCBI

43 

Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, et al: CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 19:1264–1272. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Lisi L, Laudati E, Navarra P and Dello Russo C: The mTOR kinase inhibitors polarize glioma-activated microglia to express a M1 phenotype. J Neuroinflammation. 11:1252014. View Article : Google Scholar : PubMed/NCBI

45 

Qin T, Wang C, Chen X, Duan C, Zhang X, Zhang J, Chai H, Tang T, Chen H, Yue J, et al: Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma. Toxicol Appl Pharmacol. 286:112–123. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Xu S, Wei J, Wang F, Kong LY, Ling XY, Nduom E, Gabrusiewicz K, Doucette T, Yang Y, Yaghi NK, et al: Effect of miR-142-3p on the M2 macrophage and therapeutic efficacy against murine glioblastoma. J Natl Cancer Inst. 106:dju1622014. View Article : Google Scholar : PubMed/NCBI

47 

Wang Q, Zhang J, Fang S, Wang J, Han X, Liu F and Jin G: P4HA1 down-regulation inhibits glioma invasiveness by promoting M1 microglia polarization. Onco Targets Ther. 14:1771–1782. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Rao G, Latha K, Ott M, Sabbagh A, Marisetty A, Ling X, Zamler D, Doucette TA, Yang Y, Kong LY, et al: Anti-PD-1 Induces M1 polarization in the glioma microenvironment and exerts therapeutic efficacy in the absence of CD8 Cytotoxic T cells. Clin Cancer Res. 26:4699–4712. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Feng X, Szulzewsky F, Yerevanian A, Chen Z, Heinzmann D, Rasmussen RD, Alvarez-Garcia V, Kim Y, Wang B, Tamagno I, et al: Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget. 6:15077–15094. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Zhou C, Li T, Dong Q, Liang H and Xu L: SARM suppresses glioma progression in GL261 glioma cells and regulates microglial polarization. Cell Biol Int. 46:1927–1936. 2022. View Article : Google Scholar : PubMed/NCBI

51 

Wei J, Gabrusiewicz K and Heimberger A: The controversial role of microglia in malignant gliomas. Clin Dev Immunol. 2013:2852462013. View Article : Google Scholar : PubMed/NCBI

52 

Gutmann DH and Kettenmann H: Microglia/Brain macrophages as central drivers of brain tumor pathobiology. Neuron. 104:442–449. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Zeppellini A, Galimberti S, Leone BE, Pacifico C, Riva F, Cicchiello F, Capici S, Maggioni C, Sala L and Cazzaniga ME: Comparison of tumor microenvironment in primary and paired metastatic ER+/HER2-breast cancers: Results of a pilot study. BMC Cancer. 21:2602021. View Article : Google Scholar

54 

Lailler C, Louandre C, Morisse MC, Lhossein T, Godin C, Lottin M, Constans JM, Chauffert B, Galmiche A and Saidak Z: ERK1/2 signaling regulates the immune microenvironment and macrophage recruitment in glioblastoma. Biosci Rep. 39:BSR201914332019. View Article : Google Scholar : PubMed/NCBI

55 

De Boeck A, Ahn BY, D'Mello C, Lun X, Menon SV, Alshehri MM, Szulzewsky F, Shen Y, Khan L, Dang NH, et al: Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nat Commun. 11:49972020. View Article : Google Scholar : PubMed/NCBI

56 

Greten FR and Grivennikov SI: Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 51:27–41. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Zhang Q, Wang J, Yao X, Wu S, Tian W, Gan C, Wan X, You C, Hu F, Zhang S, et al: Programmed Cell Death 10 Mediated CXCL2-CXCR2 signaling in regulating tumor-associated microglia/macrophages recruitment in glioblastoma. Front Immunol. 12:6370532021. View Article : Google Scholar : PubMed/NCBI

58 

Anagnostakis F and Piperi C: Targeting options of tumor-associated macrophages (TAM) activity in gliomas. Curr Neuropharmacol. 21:457–470. 2023. View Article : Google Scholar :

59 

Sun L, Zhang H and Gao P: Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 13:877–919. 2022. View Article : Google Scholar :

60 

Liu Y, Xu R, Gu H, Zhang E, Qu J, Cao W, Huang X, Yan H, He J and Cai Z: Metabolic reprogramming in macrophage responses. Biomark Res. 9:12021. View Article : Google Scholar : PubMed/NCBI

61 

Wang Y, Wang D, Yang L and Zhang Y: Metabolic reprogramming in the immunosuppression of tumor-associated macrophages. Chin Med J (Engl). 135:2405–2416. 2022.PubMed/NCBI

62 

Muri J and Kopf M: Redox regulation of immunometabolism. Nat Rev Immunol. 21:363–381. 2021. View Article : Google Scholar

63 

Blouin CC, Pagé EL, Soucy GM and Richard DE: Hypoxic gene activation by lipopolysaccharide in macrophages: Implication of hypoxia-inducible factor 1alpha. Blood. 103:1124–1130. 2004. View Article : Google Scholar

64 

Van den Bossche J, Baardman J, Otto NA, van der Velden S, Neele AE, van den Berg SM, Luque-Martin R, Chen HJ, Boshuizen MC, Ahmed M, et al: Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 17:684–696. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Liu S, Liu J, Ma Q, Cao L, Fattah RJ, Yu Z, Bugge TH, Finkel T and Leppla SH: Solid tumor therapy by selectively targeting stromal endothelial cells. Proc Natl Acad Sci USA. 113:E4079–E4087. 2016.PubMed/NCBI

66 

Su P, Wang Q, Bi E, Ma X, Liu L, Yang M, Qian J and Yi Q: enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res. 80:1438–1450. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Luo Q, Zheng NS, Jiang L, Wang T, Zhang P, Liu Y, Zheng P, Wang W, Xie G, Chen L, et al: Lipid accumulation in macrophages confers protumorigenic polarization and immunity in gastric cancer. Cancer Sci. 111:4000–4011. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O'Neill CM, et al: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol. 15:846–855. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Teng Y, Xu L, Li W, Liu P, Tian L and Liu M: Targeting reactive oxygen species and fat acid oxidation for the modulation of tumor-associated macrophages: A narrative review. Front Immunol. 14:12244432023. View Article : Google Scholar : PubMed/NCBI

70 

Kumar S, Mittal S, Gupta P, Singh M, Chaluvally-Raghavan P and Pradeep S: Metabolic reprogramming in tumor-associated macrophages in the ovarian tumor microenvironment. Cancers (Basel). 14:52242022. View Article : Google Scholar : PubMed/NCBI

71 

Liu S, Zhang H, Li Y, Zhang Y, Bian Y, Zeng Y, Yao X, Wan J, Chen X, Li J, et al: S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation. J Immunother Cancer. 9:e0025482021. View Article : Google Scholar

72 

Zhou D, Ji L and Chen Y: TSPO Modulates IL-4-Induced Microglia/Macrophage M2 Polarization via PPAR-gamma Pathway. J Mol Neurosci. 70:542–549. 2020. View Article : Google Scholar

73 

Dubey S, Ghosh S, Goswami D, Ghatak D and De R: Immunometabolic attributes and mitochondria-associated signaling of Tumor-Associated Macrophages in tumor microenvironment modulate cancer progression. Biochem Pharmacol. 208:1153692023. View Article : Google Scholar

74 

Puthenveetil A and Dubey S: Metabolic reprograming of tumor-associated macrophages. Ann Transl Med. 8:10302020. View Article : Google Scholar : PubMed/NCBI

75 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Lee LY, Oldham WM, He H, Wang R, Mulhern R, Handy DE and Loscalzo J: Interferon-ү impairs human coronary artery endothelial glucose metabolism by tryptophan catabolism and activates fatty acid oxidation. Circulation. 144:1612–1628. 2021. View Article : Google Scholar : PubMed/NCBI

77 

Friedmann Angeli JP, Xavier da Silva TN and Schilling B: CD8+ T cells PUF(A)ing the flames of cancer ferroptotic cell death. Cancer Cell. 40:346–348. 2022. View Article : Google Scholar : PubMed/NCBI

78 

Yerrapragada MR and Mampallil D: Interferon-γ detection in point of care diagnostics: Short review. Talanta. 245:1234282022. View Article : Google Scholar

79 

Lin CY, Chen WL, Huang YC, Lim CL and Yang CH: Gum Arabic in combination with IFN-γ promotes the M1 polarization in macrophage. Int J Biol Macromol. 209:506–512. 2022. View Article : Google Scholar : PubMed/NCBI

80 

Abdi K, Laky K, Abshari M, Hill EM, Lantz L, Singh NJ and Long EO: Dendritic cells Trigger IFN-γ secretion by NK cells independent of IL-12 and IL-18. Eur J Immunol. 52:1431–1440. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Zhao X, Peng T, Cao X, Hou Y, Li R, Han T, Fan Z, Zhao M, Chang Y, Chen H, et al: In vivo G-CSF treatment activates the GR-SOCS1 axis to suppress IFN-y secretion by natural killer cells. Cell Rep. 40:1113422022. View Article : Google Scholar

82 

Chawla A: Control of Macrophage Activation and Function by PPARs. Circ Res. 106:1559–1569. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Christofides A, Konstantinidou E, Jani C and Boussiotis VA: The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 114:1543382021. View Article : Google Scholar

84 

Qiao X, Hu Z, Xiong F, Yang Y, Peng C, Wang D and Li X: Lipid metabolism reprogramming in tumor-associated macrophages and implications for therapy. Lipids Health Dis. 22:452023. View Article : Google Scholar : PubMed/NCBI

85 

Schumann T, Adhikary T, Wortmann A, Finkernagel F, Lieber S, Schnitzer E, Legrand N, Schober Y, Nockher WA, Toth PM, et al: Deregulation of PPARβ/δ target genes in tumor-associated macrophages by fatty acid ligands in the ovarian cancer microenvironment. Oncotarget. 6:13416–13433. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Fernandez-Marcos PJ and Serrano M: Sirt4: The glutamine gatekeeper. Cancer Cell. 23:427–428. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Li Z, Li H, Zhao ZB, Zhu W, Feng PP, Zhu XW and Gong JP: SIRT4 silencing in tumor-associated macrophages promotes HCC development via PPARδ signalling-mediated alternative activation of macrophages. J Exp Clin Cancer Res. 38:4692019. View Article : Google Scholar

88 

Mojsilovic SS, Mojsilovic S, Villar VH and Santibanez JF: The metabolic features of tumor-associated macrophages: Opportunities for immunotherapy? Anal Cell Pathol (Amst). 2021:55230552021.PubMed/NCBI

89 

Wu L, Zhang X, Zheng L, Zhao H, Yan G, Zhang Q, Zhou Y, Lei J, Zhang J, Wang J, et al: RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol Res. 8:710–721. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Niu Z, Shi Q, Zhang W, Shu Y, Yang N, Chen B, Wang Q, Zhao X, Chen J, Cheng N, et al: Caspase-1 cleaves PPARγ for potentiating the pro-tumor action of TAMs. Nat Commun. 8:7662017. View Article : Google Scholar

91 

McKillop LH, Girardi CA and Thompson KJ: Role of fatty acid binding proteins (FABPs) in cancer development and progression. Cell Signal. 62:1093362019. View Article : Google Scholar : PubMed/NCBI

92 

Zhang Y, Sun Y, Rao E, Yan F, Li Q, Zhang Y, Silverstein KA, Liu S, Sauter E, Cleary MP and Li B: Fatty Acid-Binding Protein E-FABP restricts tumor growth by promoting IFN-β responses in tumor-associated macrophages. Cancer Res. 74:2986–2998. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Furuhashi M and Hotamisligil GS: Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov. 7:489–503. 2008. View Article : Google Scholar : PubMed/NCBI

94 

Hao J, Yan F, Zhang Y, Triplett A, Zhang Y, Schultz DA, Sun Y, Zeng J, Silverstein KAT, Zheng Q, et al: Expression of adipocyte/macrophage fatty acid-binding protein in tumor-associated macrophages promotes breast cancer progression. Cancer Res. 78:2343–2355. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Wang J and Li Y: CD36 tango in cancer: Signaling pathways and functions. Theranostics. 9:4893–4908. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Nath A and Chan C: Genetic alterations in fatty acid transport and metabolism genes are associated with metastatic progression and poor prognosis of human cancers. Sci Rep. 6:186692016. View Article : Google Scholar : PubMed/NCBI

97 

Harizi H, Corcuff JB and Gualde N: Arachidonic-acid-derived eicosanoids: Roles in biology and immunopathology. Trends Mol Med. 14:461–469. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Qin Q, Ji H, Li D, Zhang H, Zhang Z and Zhang Q: Tumor-associated macrophages increase COX-2 expression promoting endocrine resistance in breast cancer via the PI3K/Akt/mTOR pathway. Neoplasma. 68:938–946. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Rabold K, Netea MG, Adema GJ and Netea-Maier RT: Cellular metabolism of tumor-associated macrophages-functional impact and consequences. FEBS Lett. 591:3022–3041. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Olesch C, Sha W, Angioni C, Sha LK, Açaf E, Patrignani P, Jakobsson PJ, Radeke HH, Grösch S, Geisslinger G, et al: MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to inhibit anti-tumor immune responses in breast cancer. Oncotarget. 6:10284–10296. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Kale S, Raja R, Thorat D, Soundararajan G, Patil TV and Kundu GC: Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via alpha9beta1 integrin. Oncogene. 33:2295–2306. 2014. View Article : Google Scholar

102 

Nakanishi Y, Nakatsuji M, Seno H, Ishizu S, Akitake-Kawano R, Kanda K, Ueo T, Komekado H, Kawada M, Minami M and Chiba T: COX-2 inhibition alters the phenotype of tumor-associated macrophages from M2 to M1 in ApcMin/+ mouse polyps. Carcinogenesis. 32:1333–1339. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Nosaka T, Baba T, Naito T, et al: Leukotriene B 4 generated by alveolar macrophages drive hepatocellular carcinoma lung metastasis. Hepatology. 66:85A. 2017.

104 

Hall Z, Ament Z, Wilson CH, Burkhart DL, Ashmore T, Koulman A, Littlewood T, Evan GI and Griffin JL: Myc expression drives aberrant lipid metabolism in lung cancer. Cancer Res. 76:4608–4618. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Ringleb J, Strack E, Angioni C, Geisslinger G, Steinhilber D, Weigert A and Brüne B: Apoptotic cancer cells suppress 5-lipoxygenase in tumor-associated macrophages. J Immunol. 200:857–868. 2018. View Article : Google Scholar

106 

Cheng C, Geng F, Cheng X and Guo D: Lipid metabolism reprogramming and its potential targets in cancer. Cancer Commun (Lond). 38:272018.PubMed/NCBI

107 

Ou J, Miao H, Ma Y, Guo F, Deng J, Wei X, Zhou J, Xie G, Shi H, Xue B, et al: Loss of Abhd5 promotes colorectal tumor development and progression by inducing aerobic glycolysis and epithelial-mesenchymal transition. Cell Rep. 9:1798–1811. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Yen CL, Nelson DW and Yen MI: Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J Lipid Res. 56:489–501. 2015. View Article : Google Scholar :

109 

Miao H, Ou J, Peng Y, Zhang X, Chen Y, Hao L, Xie G, Wang Z, Pang X, Ruan Z, et al: Macrophage ABHD5 promotes colorectal cancer growth by suppressing spermidine production by SRM. Nat Commun. 7:117162016. View Article : Google Scholar : PubMed/NCBI

110 

Shang S, Ji X, Zhang L, Chen J, Li C, Shi R, Xiang W, Kang X, Zhang D, Yang F, et al: Macrophage ABHD5 Suppresses NFκB-Dependent matrix metalloproteinase expression and cancer metastasis. Cancer Res. 79:5513–5526. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Xiang W, Shi R, Kang X, Zhang X, Chen P, Zhang L, Hou A, Wang R, Zhao Y, Zhao K, et al: Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun. 9:25742018. View Article : Google Scholar : PubMed/NCBI

112 

King RJ, Singh PK and Mehla K: The cholesterol pathway: Impact on immunity and cancer. Trends Immunol. 43:78–92. 2022. View Article : Google Scholar :

113 

van der Vorst EPC, Theodorou K, Wu Y, Hoeksema MA, Goossens P, Bursill CA, Aliyev T, Huitema LFA, Tas SW, Wolfs IMJ, et al: High-Density lipoproteins exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-κB/STAT1-IRF1 signaling. Cell Metab. 25:197–207. 2017. View Article : Google Scholar

114 

Sag D, Cekic C, Wu R, Linden J and Hedrick CC: The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity. Nat Commun. 6:63542015. View Article : Google Scholar : PubMed/NCBI

115 

Wang S, Yan W, Kong L, Zuo S, Wu J, Zhu C, Huang H, He B, Dong J and Wei J: Oncolytic viruses engineered to enforce cholesterol efflux restore tumor-associated macrophage phagocytosis and anti-tumor immunity in glioblastoma. Nat Commun. 14:43672023. View Article : Google Scholar : PubMed/NCBI

116 

Goossens P, Rodriguez-Vita J, Etzerodt A, Masse M, Rastoin O, Gouirand V, Ulas T, Papantonopoulou O, Van Eck M, Auphan-Anezin N, et al: Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab. 29:1376–1389.e4. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, et al: 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 342:1094–1098. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Shi SZ, Lee EJ, Lin YJ, Chen L, Zheng HY, He XQ, Peng JY, Noonepalle SK, Shull AY, Pei FC, et al: Recruitment of monocytes and epigenetic silencing of intratumoral CYP7B1 primarily contribute to the accumulation of 27-hydroxycholesterol in breast cancer. Am J Cancer Res. 9:2194–2208. 2019.PubMed/NCBI

119 

Ohira H, Fujioka Y, Katagiri C, Mamoto R, Aoyama-Ishikawa M, Amako K, Izumi Y, Nishiumi S, Yoshida M, Usami M and Ikeda M: Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb. 20:425–442. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Yao Y, Cai X, Fei W, Ye Y, Zhao M and Zheng C: The role of short-chain fatty acids in immunity, inflammation and metabolism. Crit Rev Food Sci Nutr. 62:1–12. 2022. View Article : Google Scholar

121 

Masui R, Sasaki M, Funaki Y, Ogasawara N, Mizuno M, Iida A, Izawa S, Kondo Y, Ito Y, Tamura Y, et al: G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm Bowel Dis. 19:2848–2856. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Seljeset S and Siehler S: Receptor-specific regulation of ERK1/2 activation by members of the 'free fatty acid receptor' family. J Recept Signal Transduct Res. 32:196–201. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR and Macia L: The role of short-chain fatty acids in health and disease. Adv Immunol. 121:91–119. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Schaub A, Fütterer A and Pfeffer K: PUMA-G, an IFN-gamma-inducible gene in macrophages is a novel member of the seven transmembrane spanning receptor superfamily. Eur J Immunol. 31:3714–3725. 2001. View Article : Google Scholar : PubMed/NCBI

125 

Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, et al: Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 40:128–139. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Karunaratne TB, Okereke C, Seamon M, Purohit S, Wakade C and Sharma A: Niacin and Butyrate: Nutraceuticals targeting dysbiosis and intestinal permeability in parkinson's disease. Nutrients. 13:282020. View Article : Google Scholar : PubMed/NCBI

127 

Bach Knudsen KE, Laerke HN, Hedemann MS, Nielsen TS, Ingerslev AK, Gundelund Nielsen DS, Theil PK, Purup S, Hald S, Schioldan AG, et al: Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients. 10:14992018. View Article : Google Scholar : PubMed/NCBI

128 

Chai JT, Digby JE and Choudhury RP: GPR109A and vascular inflammation. Curr Atheroscler Rep. 15:3252013. View Article : Google Scholar : PubMed/NCBI

129 

Aoyama M, Kotani J and Usami M: Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways. Nutrition. 26:653–661. 2010. View Article : Google Scholar

130 

Chang PV, Hao L, Offermanns S and Medzhitov R: The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 111:2247–2252. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Usami M, Kishimoto K, Ohata A, Miyoshi M, Aoyama M, Fueda Y and Kotani J: Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor α secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res. 28:321–328. 2008. View Article : Google Scholar : PubMed/NCBI

132 

Hara T, Hirasawa A, Ichimura A, Kimura I and Tsujimoto G: Free fatty acid receptors FFAR1 and GPR120 as novel therapeutic targets for metabolic disorders. J Pharm Sci. 100:3594–3601. 2011. View Article : Google Scholar : PubMed/NCBI

133 

Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM and Olefsky JM: GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 142:687–698. 2010. View Article : Google Scholar : PubMed/NCBI

134 

Liang P, Henning SM, Guan J, Grogan T, Elashoff D, Olefsky JM, Cohen P and Aronson WJ: Role of Host GPR120 in mediating dietary omega-3 fatty acid inhibition of prostate cancer. J Natl Cancer Inst. 111:52–59. 2019. View Article : Google Scholar :

135 

Liang P, Henning SM, Schokrpur S, Wu L, Doan N, Said J, Grogan T, Elashoff D, Cohen P and Aronson WJ: Effect of dietary omega-3 fatty acids on tumor-associated macrophages and prostate cancer progression. Prostate. 76:1293–1302. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Zhu L, Zhao Q, Yang T, Ding W and Zhao Y: Cellular metabolism and macrophage functional polarization. Int Rev Immunol. 34:82–100. 2015. View Article : Google Scholar

137 

Wu H, Han Y, Rodriguez Sillke Y, Deng H, Siddiqui S, Treese C, Schmidt F, Friedrich M, Keye J, Wan J, et al: Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 11:e106982019. View Article : Google Scholar : PubMed/NCBI

138 

Ahluwalia M, Battiste J, Bockorny B, Bullock A, Patel MR, Wen P, Shepard D, Vaickus L, Vincent M, Vincent M, et al: Clinical efficacy and biomarker assessment of VT1021, A CD36/CD47 dual-targeting agent, in recurrent glioblastoma. Neuro-Oncology. 23:50. 2021. View Article : Google Scholar

139 

Zhang Q, Wang H, Mao C, Sun M, Dominah G, Chen L and Zhuang Z: Fatty acid oxidation contributes to IL-1β secretion in M2 macrophages and promotes macrophage-mediated tumor cell migration. Mol Immunol. 94:27–35. 2018. View Article : Google Scholar

140 

Lang S, Tiwari S, Andratschke M, Loehr I, Lauffer L, Bergmann C, Mack B, Lebeau A, Moosmann A, Whiteside TL and Zeidler R: Immune restoration in head and neck cancer patients after in vivo COX-2 inhibition. Cancer Immunol Immunother. 56:1645–1652. 2007. View Article : Google Scholar : PubMed/NCBI

141 

Zheng X, Mansouri S, Krager A, Grimminger F, Seeger W, Pullamsetti SS, Wheelock CE and Savai R: Metabolism in tumour-associated macrophages: A quid pro quo with the tumour microenvironment. Eur Respir Rev. 29:2001342020. View Article : Google Scholar : PubMed/NCBI

142 

Eruslanov E, Daurkin I, Ortiz J, Vieweg J and Kusmartsev S: Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE2 catabolism in myeloid cells. J Leukoc Biol. 88:839–848. 2010. View Article : Google Scholar : PubMed/NCBI

143 

Wen Z, Liu H, Li M, Li B, Gao W, Shao Q, Fan B, Zhao F, Wang Q, Xie Q, et al: Increased metabolites of 5-lipoxygenase from hypoxic ovarian cancer cells promote tumor-associated macrophage infiltration. Oncogene. 34:1241–1252. 2015. View Article : Google Scholar

144 

Nosaka T, Baba T, Tanabe Y, Sasaki S, Nishimura T, Imamura Y, Yurino H, Hashimoto S, Arita M, Nakamoto Y and Mukaida N: Alveolar macrophages drive hepatocellular carcinoma lung metastasis by generating leukotriene B4. J Immunol. 200:1839–1852. 2018. View Article : Google Scholar : PubMed/NCBI

145 

Hoppstadter J, Dembek A, Horing M, Schymik HS, Dahlem C, Sultan A, Wirth N, Al-Fityan S, Diesel B, Gasparoni G, et al: Dysregulation of cholesterol homeostasis in human lung cancer tissue and tumour-associated macrophages. Ebiomedicine. 72:1035782021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ma Y, Huang Y, Hu F and Shu K: Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review). Int J Mol Med 54: 102, 2024.
APA
Ma, Y., Huang, Y., Hu, F., & Shu, K. (2024). Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review). International Journal of Molecular Medicine, 54, 102. https://doi.org/10.3892/ijmm.2024.5426
MLA
Ma, Y., Huang, Y., Hu, F., Shu, K."Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review)". International Journal of Molecular Medicine 54.5 (2024): 102.
Chicago
Ma, Y., Huang, Y., Hu, F., Shu, K."Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review)". International Journal of Molecular Medicine 54, no. 5 (2024): 102. https://doi.org/10.3892/ijmm.2024.5426
Copy and paste a formatted citation
x
Spandidos Publications style
Ma Y, Huang Y, Hu F and Shu K: Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review). Int J Mol Med 54: 102, 2024.
APA
Ma, Y., Huang, Y., Hu, F., & Shu, K. (2024). Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review). International Journal of Molecular Medicine, 54, 102. https://doi.org/10.3892/ijmm.2024.5426
MLA
Ma, Y., Huang, Y., Hu, F., Shu, K."Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review)". International Journal of Molecular Medicine 54.5 (2024): 102.
Chicago
Ma, Y., Huang, Y., Hu, F., Shu, K."Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review)". International Journal of Molecular Medicine 54, no. 5 (2024): 102. https://doi.org/10.3892/ijmm.2024.5426
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team