Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2024 Volume 54 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 54 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review)

  • Authors:
    • Peng Qu
    • Lanfang Li
    • Qi Jin
    • Donghai Liu
    • Yuan Qiao
    • Yijia Zhang
    • Qiuyue Sun
    • Shuman Ran
    • Zecheng Li
    • Tongtong Liu
    • Liang Peng
  • View Affiliations / Copyright

    Affiliations: Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China, China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China, Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
    Copyright: © Qu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 104
    |
    Published online on: September 17, 2024
       https://doi.org/10.3892/ijmm.2024.5428
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end‑stage renal disease, and is characterized by persistent proteinuria and decreased glomerular filtration rate. Despite extensive efforts, the increasing incidence highlights the urgent need for more effective treatments. Histone methylation is a crucial epigenetic modification, and its alteration can destabilize chromatin structure, thereby regulating the transcriptional activity of specific genes. Histone methylation serves a substantial role in the onset and progression of various diseases. In patients with DKD, changes in histone methylation are pivotal in mediating the interactions between genetic and environmental factors. Targeting these modifications shows promise in ameliorating renal histological manifestations, tissue fibrosis and proteinuria, and represents a novel therapeutic frontier with the potential to halt DKD progression. The present review focuses on the alterations in histone methylation during the development of DKD, systematically summarizes its impact on various renal parenchymal cells and underscores the potential of targeted histone methylation modifications in improving DKD outcomes.
View Figures

Figure 1

Figure 2

View References

1 

Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KA, Zoungas S, Rossing P, Groop PH and Cooper ME: Diabetic kidney disease. Nat Rev Dis Primers. 1:150182015. View Article : Google Scholar : PubMed/NCBI

2 

Johansen KL, Chertow GM, Foley RN, Gilbertson DT, Herzog CA, Ishani A, Israni AK, Ku E, Kurella Tamura M, Li S, et al: US renal data system 2020 annual data report: Epidemiology of kidney disease in the United States. Am J Kidney Dis. 77(4 Suppl 1): A7–A8. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Anders HJ, Huber TB, Isermann B and Schiffer M: CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. 14:361–377. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Thomas MC, Weekes AJ, Broadley OJ, Cooper ME and Mathew TH: The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Med J Aust. 185:140–144. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Scilletta S, Di Marco M, Miano N, Filippello A, Di Mauro S, Scamporrino A, Musmeci M, Coppolino G, Di Giacomo Barbagallo F, Bosco G, et al: Update on diabetic kidney disease (DKD): Focus on Non-Albuminuric DKD and cardiovascular risk. Biomolecules. 13:7522023. View Article : Google Scholar : PubMed/NCBI

6 

Parving HH, Hommel E, Jensen BR and Hansen HP: Long-term beneficial effect of ACE inhibition on diabetic nephropathy in normotensive type 1 diabetic patients. Kidney Int. 60:228–234. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Zou H, Zhou B and Xu G: SGLT2 inhibitors: A novel choice for the combination therapy in diabetic kidney disease. Cardiovasc Diabetol. 16:652017. View Article : Google Scholar : PubMed/NCBI

8 

Barrera-Chimal J, Lima-Posada I, Bakris GL and Jaisser F: Mineralocorticoid receptor antagonists in diabetic kidney disease-mechanistic and therapeutic effects. Nat Rev Nephrol. 18:56–70. 2022. View Article : Google Scholar

9 

Zhang R, Wang Q, Li Y, Li Q, Zhou X, Chen X and Dong Z: A new perspective on proteinuria and drug therapy for diabetic kidney disease. Front Pharmacol. 15:13490222024. View Article : Google Scholar : PubMed/NCBI

10 

Wang N and Zhang C: Recent advances in the management of diabetic kidney disease: Slowing progression. Int J Mol Sci. 25:30862024. View Article : Google Scholar : PubMed/NCBI

11 

Forst T, Mathieu C, Giorgino F, Wheeler DC, Papanas N, Schmieder RE, Halabi A, Schnell O, Streckbein M and Tuttle KR: New strategies to improve clinical outcomes for diabetic kidney disease. BMC Med. 20:3372022. View Article : Google Scholar : PubMed/NCBI

12 

Regele F, Jelencsics K, Shiffman D, Paré G, McQueen MJ, Mann JF and Oberbauer R: Genome-wide studies to identify risk factors for kidney disease with a focus on patients with diabetes. Nephrol Dial Transplant. 30(Suppl 4): iv26–iv34. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Cowie CC, Port FK, Wolfe RA, Savage PJ, Moll PP and Hawthorne VM: Disparities in incidence of diabetic end-stage renal disease according to race and type of diabetes. N Engl J Med. 321:1074–1079. 1989. View Article : Google Scholar : PubMed/NCBI

14 

Cefalu WT, Buse JB, Tuomilehto J, Fleming GA, Ferrannini E, Gerstein HC, Bennett PH, Ramachandran A, Raz I, Rosenstock J and Kahn SE: Update and next steps for real-world translation of interventions for type 2 diabetes prevention: Reflections from a diabetes care editors' expert forum. Diabetes Care. 39:1186–1201. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB, Ferrario F, Fogo AB, Haas M, de Heer E, et al: Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 21:556–563. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Caramori ML, Parks A and Mauer M: Renal lesions predict progression of diabetic nephropathy in type 1 diabetes. J Am Soc Nephrol. 24:1175–1181. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Mohandes S, Doke T, Hu H, Mukhi D, Dhillon P and Susztak K: Molecular pathways that drive diabetic kidney disease. J Clin Invest. 133:e1656542023. View Article : Google Scholar : PubMed/NCBI

18 

Li Y, Ge K, Li T, Cai R and Chen Y: The engagement of histone lysine methyltransferases with nucleosomes: Structural basis, regulatory mechanisms, and therapeutic implications. Protein Cell. 14:165–179. 2023.PubMed/NCBI

19 

Greer EL and Shi Y: Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet. 13:343–357. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Millán-Zambrano G, Burton A, Bannister AJ and Schneider R: Histone post-translational modifications-cause and consequence of genome function. Nat Rev Genet. 23:563–580. 2022. View Article : Google Scholar

21 

Keating ST, van Diepen JA, Riksen NP and El-Osta A: Epigenetics in diabetic nephropathy immunity and metabolism. Diabetologia. 61:6–20. 2018. View Article : Google Scholar

22 

Lefevre GM, Patel SR, Kim D, Tessarollo L and Dressler GR: Altering a histone H3K4 methylation pathway in glomerular podocytes promotes a chronic disease phenotype. PLoS Genet. 6:e10011422010. View Article : Google Scholar : PubMed/NCBI

23 

Sayyed SG, Gaikwad AB, Lichtnekert J, Kulkarni O, Eulberg D, Klussmann S, Tikoo K and Anders HJ: Progressive glomerulosclerosis in type 2 diabetes is associated with renal histone H3K9 and H3K23 acetylation, H3K4 dimethylation and phosphorylation at serine 10. Nephrol Dial Transplant. 25:1811–1817. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Husmann D and Gozani O: Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol. 26:880–889. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Martin C and Zhang Y: The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 6:838–849. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49:e3242017. View Article : Google Scholar : PubMed/NCBI

27 

Gong F and Miller KM: Histone methylation and the DNA damage response. Mutat Res Rev Mutat Res. 780:37–47. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Black JC, Van Rechem C and Whetstine JR: Histone lysine methylation dynamics: Establishment, regulation, and biological impact. Mol Cell. 48:491–507. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Mohan M, Herz HM and Shilatifard A: SnapShot: Histone lysine methylase complexes. Cell. 149:498–498.e1. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Højfeldt JW, Agger K and Helin K: Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov. 12:917–930. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Schwartz-Orbach L, Zhang C, Sidoli S, Amin R, Kaur D, Zhebrun A, Ni J and Gu SG: Caenorhabditis elegans nuclear RNAi factor SET-32 deposits the transgenerational histone modification, H3K23me3. Elife. 9:e543092020. View Article : Google Scholar : PubMed/NCBI

32 

Shen Y, Mevius DEHF, Caliandro R, Carrozzini B, Roh Y, Kim J, Kim S, Ha SC, Morishita M and di Luccio E: Set7 Is a H3K37 methyltransferase in schizosaccharomyces pombe and is required for proper gametogenesis. Structure. 27:631–638.e8. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Zong Y, Weiss N, Wang K, Pagano AE, Heissel S, Perveen S and Huang J: Development of complementary photo-arginine/lysine to promote discovery of Arg/Lys hPTMs Interactomes. Adv Sci (Weinh). 11:e23075262024. View Article : Google Scholar : PubMed/NCBI

34 

Feng X, Wang AH, Juan AH, Ko KD, Jiang K, Riparini G, Ciuffoli V, Kaba A, Lopez C, Naz F, et al: Polycomb Ezh1 maintains murine muscle stem cell quiescence through non-canonical regulation of Notch signaling. Dev Cell. 58:1052–1070.e10. 2023. View Article : Google Scholar : PubMed/NCBI

35 

Wang Z and Liu H: Roles of lysine methylation in glucose and lipid metabolism: Functions, regulatory mechanisms, and therapeutic implications. Biomolecules. 14:8622024. View Article : Google Scholar : PubMed/NCBI

36 

Aziz N, Hong YH, Kim HG, Kim JH and Cho JY: Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med. 55:2475–2497. 2023. View Article : Google Scholar : PubMed/NCBI

37 

Liu BC, Tang TT, Lv LL and Lan HY: Renal tubule injury: A driving force toward chronic kidney disease. Kidney Int. 93:568–579. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Cheng Y, Chen Y, Wang G, Liu P, Xie G, Jing H, Chen H, Fan Y, Wang M and Zhou J: Protein methylation in diabetic kidney disease. Front Med (Lausanne). 9:7360062022. View Article : Google Scholar : PubMed/NCBI

39 

Allis CD, Bowen JK, Abraham GN, Glover CV and Gorovsky MA: Proteolytic processing of histone H3 in chromatin: A physiologically regulated event in Tetrahymena micronuclei. Cell. 20:55–64. 1980. View Article : Google Scholar : PubMed/NCBI

40 

Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 119:941–953. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Di Nisio E, Manzini V, Licursi V and Negri R: To Erase or not to erase: non-canonical catalytic functions and non-catalytic functions of members of histone lysine demethylase families. Int J Mol Sci. 25:69002024. View Article : Google Scholar : PubMed/NCBI

42 

Yang J, Hu Y, Zhang B, Liang X and Li X: The JMJD family histone demethylases in crosstalk between inflammation and cancer. Front Immunol. 13:8813962022. View Article : Google Scholar : PubMed/NCBI

43 

Kim W, Kim R, Park G, Park JW and Kim JE: Deficiency of H3K79 histone methyltransferase Dot1-like protein (DOT1L) inhibits cell proliferation. J Biol Chem. 287:5588–5599. 2012. View Article : Google Scholar :

44 

Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K and Zhang Y: Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol. 12:1052–1058. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Lee YH, Ren D, Jeon B and Liu HW: S-Adenosylmethionine: More than just a methyl donor. Nat Prod Rep. 40:1521–1549. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Gou D, Liu R, Shan X, Deng H, Chen C, Xiang J, Liu Y, Gao Q, Li Z, Huang A, et al: Gluconeogenic enzyme PCK1 supports S-adenosylmethionine biosynthesis and promotes H3K9me3 modification to suppress hepatocellular carcinoma progression. J Clin Invest. 133:e1617132023. View Article : Google Scholar : PubMed/NCBI

47 

Lim CY, Lin HT, Kumsta C, Lu TC, Wang FY, Kang YH, Hansen M, Ching TT and Hsu AL: SAMS-1 coordinates HLH-30/TFEB and PHA-4/FOXA activities through histone methylation to mediate dietary restriction-induced autophagy and longevity. Autophagy. 19:224–240. 2023. View Article : Google Scholar :

48 

Cenik BK and Shilatifard A: COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet. 22:38–58. 2021. View Article : Google Scholar

49 

Xue H, Yao T, Cao M, Zhu G, Li Y, Yuan G, Chen Y, Lei M and Huang J: Structural basis of nucleosome recognition and modification by MLL methyltransferases. Nature. 573:445–449. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Mitchell K, Sprowls SA, Arora S, Shakya S, Silver DJ, Goins CM, Wallace L, Roversi G, Schafer RE, Kay K, et al: WDR5 represents a therapeutically exploitable target for cancer stem cells in glioblastoma. Genes Dev. 37:86–102. 2023. View Article : Google Scholar : PubMed/NCBI

51 

Zhao Z, Rendleman EJ, Szczepanski AP, Morgan MA, Wang L and Shilatifard A: CARM1-mediated methylation of ASXL2 impairs tumor-suppressive function of MLL3/COMPASS. Sci Adv. 8:eadd33392022. View Article : Google Scholar : PubMed/NCBI

52 

Lu J, Huang Y, Zhang X, Xu Y and Nie S: Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res. 170:1055202021. View Article : Google Scholar : PubMed/NCBI

53 

Lee JS, Smith E and Shilatifard A: The language of histone crosstalk. Cell. 142:682–685. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Stirpe A, Guidotti N, Northall SJ, Kilic S, Hainard A, Vadas O, Fierz B and Schalch T: SUV39 SET domains mediate crosstalk of heterochromatic histone marks. Elife. 10:e626822021. View Article : Google Scholar : PubMed/NCBI

55 

Segelle A, Núñez-Álvarez Y, Oldfield AJ, Webb KM, Voigt P and Luco RF: Histone marks regulate the epithelial-to-mesenchymal transition via alternative splicing. Cell Rep. 38:1103572022. View Article : Google Scholar : PubMed/NCBI

56 

Hogg SJ, Motorna O, Cluse LA, Johanson TM, Coughlan HD, Raviram R, Myers RM, Costacurta M, Todorovski I, Pijpers L, et al: Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Mol Cell. 81:2183–2200.e13. 2021. View Article : Google Scholar : PubMed/NCBI

57 

He F, Yu Q, Wang M, Wang R, Gong X, Ge F, Yu X and Li S: SESAME-catalyzed H3T11 phosphorylation inhibits Dot1-catalyzed H3K79me3 to regulate autophagy and telomere silencing. Nat Commun. 13:75262022. View Article : Google Scholar : PubMed/NCBI

58 

Metzker ML: Sequencing technologies-the next generation. Nat Rev Genet. 11:31–46. 2010. View Article : Google Scholar

59 

Pulecio J, Verma N, Mejía-Ramírez E, Huangfu D and Raya A: CRISPR/Cas9-Based engineering of the epigenome. Cell Stem Cell. 21:431–447. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Peng X, Peng Q and Zhong L: Targeting H3K36 methyltransferases NSDs: A promising strategy for tumor targeted therapy. Signal Transduct Target Ther. 6:2202021. View Article : Google Scholar : PubMed/NCBI

61 

Basavarajappa BS and Subbanna S: Histone methylation regulation in neurodegenerative disorders. Int J Mol Sci. 22:46542021. View Article : Google Scholar : PubMed/NCBI

62 

Komers R, Mar D, Denisenko O, Xu B, Oyama TT and Bomsztyk K: Epigenetic changes in renal genes dysregulated in mouse and rat models of type 1 diabetes. Lab Invest. 93:543–552. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Tao S, Yang L, Wu C, Hu Y, Guo F, Ren Q, Ma L and Fu P: Gambogenic acid alleviates kidney fibrosis via epigenetic inhibition of EZH2 to regulate Smad7-dependent mechanism. Phytomedicine. 106:1543902022. View Article : Google Scholar : PubMed/NCBI

64 

Majumder S, Thieme K, Batchu SN, Alghamdi TA, Bowskill BB, Kabir MG, Liu Y, Advani SL, White KE, Geldenhuys L, et al: Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J Clin Invest. 128:483–499. 2018. View Article : Google Scholar :

65 

Paneni F, Costantino S, Battista R, Castello L, Capretti G, Chiandotto S, Scavone G, Villano A, Pitocco D, Lanza G, et al: Adverse epigenetic signatures by histone methyltransferase Set7 contribute to vascular dysfunction in patients with type 2 diabetes mellitus. Circ Cardiovasc Genet. 8:150–158. 2015. View Article : Google Scholar

66 

Siddiqi FS, Majumder S, Thai K, Abdalla M, Hu P, Advani SL, White KE, Bowskill BB, Guarna G, Dos Santos CC, et al: The histone methyltransferase enzyme enhancer of zeste homolog 2 protects against podocyte oxidative stress and renal injury in diabetes. J Am Soc Nephrol. 27:2021–2034. 2016. View Article : Google Scholar :

67 

Pavenstädt H, Kriz W and Kretzler M: Cell biology of the glomerular podocyte. Physiol Rev. 83:253–307. 2003. View Article : Google Scholar

68 

Nagata M: Podocyte injury and its consequences. Kidney Int. 89:1221–1230. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Reidy K, Kang HM, Hostetter T and Susztak K: Molecular mechanisms of diabetic kidney disease. J Clin Invest. 124:2333–2340. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Shankland SJ: The podocyte's response to injury: role in proteinuria and glomerulosclerosis. Kidney Int. 69:2131–2147. 2006. View Article : Google Scholar : PubMed/NCBI

71 

Ying Q and Wu G: Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: An update. Ren Fail. 39:474–483. 2017. View Article : Google Scholar : PubMed/NCBI

72 

May CJ, Saleem M and Welsh GI: Podocyte dedifferentiation: a specialized process for a specialized cell. Front Endocrinol (Lausanne). 5:1482014. View Article : Google Scholar : PubMed/NCBI

73 

Guo Y, Xiong Z and Guo X: Histone demethylase KDM6B regulates human podocyte differentiation in vitro. Biochem J. 476:1741–1751. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Wan J, Hou X, Zhou Z, Geng J, Tian J, Bai X and Nie J: WT1 ameliorates podocyte injury via repression of EZH2/β-catenin pathway in diabetic nephropathy. Free Radic Biol Med. 108:280–299. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Nishad R, Meshram P, Singh AK, Reddy GB and Pasupulati AK: Activation of Notch1 signaling in podocytes by glucose-derived AGEs contributes to proteinuria. BMJ Open Diabetes Res Care. 8:e0012032020. View Article : Google Scholar : PubMed/NCBI

76 

Liebisch M and Wolf G: AGE-Induced Suppression of EZH2 mediates injury of podocytes by reducing H3K27me3. Am J Nephrol. 51:676–692. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Lin CL, Hsu YC, Huang YT, Shih YH, Wang CJ, Chiang WC and Chang PJ: A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction. EMBO Mol Med. 11:e98282019. View Article : Google Scholar : PubMed/NCBI

78 

Muñoz IM and Rouse J: Control of histone methylation and genome stability by PTIP. EMBO Rep. 10:239–245. 2009. View Article : Google Scholar : PubMed/NCBI

79 

Patel SR, Kim D, Levitan I and Dressler GR: The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell. 13:580–592. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Cao A, Li J, Asadi M, Basgen JM, Zhu B, Yi Z, Jiang S, Doke T, El Shamy O, Patel N, et al: DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J Clin Invest. 131:e1412792021. View Article : Google Scholar : PubMed/NCBI

81 

Zhang T, Zhang Y, Xu H, Lan J, Feng Z, Huang R, Geng J, Chi H and Bai X: LINC00355 Mediates CTNNBIP1 promoter methylation and promotes endoplasmic reticulum stress-induced podocyte injury in diabetic nephropathy. Antioxid Redox Signal. 39:225–240. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Qi R and Yang C: Renal tubular epithelial cells: The neglected mediator of tubulointerstitial fibrosis after injury. Cell Death Dis. 9:11262018. View Article : Google Scholar : PubMed/NCBI

83 

Legouis D, Ricksten SE, Faivre A, Verissimo T, Gariani K, Verney C, Galichon P, Berchtold L, Feraille E, Fernandez M, et al: Altered proximal tubular cell glucose metabolism during acute kidney injury is associated with mortality. Nat Metab. 2:732–743. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Edwards A, Palm F and Layton AT: A model of mitochondrial O(2) consumption and ATP generation in rat proximal tubule cells. Am J Physiol Renal Physiol. 318:F248–F259. 2020. View Article : Google Scholar

85 

Wang Y, Jin M, Cheng CK and Li Q: Tubular injury in diabetic kidney disease: Molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne). 14:12389272023. View Article : Google Scholar : PubMed/NCBI

86 

Liu Y: Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 7:684–696. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Sun L, Liu L, Jiang J, Liu K, Zhu J, Wu L, Lu X, Huang Z, Yuan Y, Crowley SD, et al: Transcription factor Twist1 drives fibroblast activation to promote kidney fibrosis via signaling proteins Prrx1/TNC. Kidney Int. Aug 22–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

88 

Bai M, Xu S, Jiang M, Guo Y, Hu D, He J, Wang T, Zhang Y, Guo Y, Zhang Y, et al: Meis1 targets protein tyrosine phosphatase receptor J in fibroblast to retard chronic kidney disease progression. Adv Sci (Weinh). Aug 20–2024.Epub ahead of print. View Article : Google Scholar

89 

Kim DH, Sung M, Park MS, Sun EG, Yoon S, Yoo KH, Radhakrishnan K, Jung SY, Bae WK, Cho SH and Chung IJ: Galectin 3-binding protein (LGALS3BP) depletion attenuates hepatic fibrosis by reducing transforming growth factor-β1 (TGF-β1) availability and inhibits hepatocarcinogenesis. Cancer Commun (Lond). Jul 28–2024.Epub ahead of print. View Article : Google Scholar

90 

Fesneau O, Thevin V, Pinet V, Goldsmith C, Vieille B, M'Homa Soudja S, Lattanzio R, Hahne M, Dardalhon V, Hernandez-Vargas H, et al: An intestinal T(H)17 cell-derived subset can initiate cancer. Nat Immunol. 25:1637–1649. 2024. View Article : Google Scholar : PubMed/NCBI

91 

Gifford CC, Tang J, Costello A, Khakoo NS, Nguyen TQ, Goldschmeding R, Higgins PJ and Samarakoon R: Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities. Clin Sci (Lond). 135:275–303. 2021. View Article : Google Scholar : PubMed/NCBI

92 

You JB, Cao Y, You QY, Liu ZY, Wang XC, Ling H, Sha JM and Tao H: The landscape of histone modification in organ fibrosis. Eur J Pharmacol. 977:1767482024. View Article : Google Scholar : PubMed/NCBI

93 

Zou J, Yu C, Zhang C, Guan Y, Zhang Y, Tolbert E, Zhang W, Zhao T, Bayliss G, Li X, et al: Inhibition of MLL1-menin interaction attenuates renal fibrosis in obstructive nephropathy. FASEB J. 37:e227122023. View Article : Google Scholar

94 

Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND and Zhao YY: New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact. 292:76–83. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Wang J, Pan J, Li H, Long J, Fang F, Chen J, Zhu X, Xiang X and Zhang D: lncRNA ZEB1-AS1 was suppressed by p53 for renal fibrosis in diabetic nephropathy. Mol Ther Nucleic Acids. 12:741–750. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Irifuku T, Doi S, Sasaki K, Doi T, Nakashima A, Ueno T, Yamada K, Arihiro K, Kohno N and Masaki T: Inhibition of H3K9 histone methyltransferase G9a attenuates renal fibrosis and retains klotho expression. Kidney Int. 89:147–157. 2016. View Article : Google Scholar

97 

Ike T, Doi S, Nakashima A, Sasaki K, Ishiuchi N, Asano T and Masaki T: The hypoxia-inducible factor-α prolyl hydroxylase inhibitor FG4592 ameliorates renal fibrosis by inducing the H3K9 demethylase JMJD1A. Am J Physiol Renal Physiol. 323:F539–F552. 2022. View Article : Google Scholar

98 

Wang S, Zuo A, Jiang W, Xie J, Lin H, Sun W, Zhao M, Xia J, Shao J, Zhao X, et al: JMJD1A/NR4A1 signaling regulates the procession of renal tubular epithelial interstitial fibrosis induced by AGEs in HK-2. Front Med (Lausanne). 8:8076942022. View Article : Google Scholar : PubMed/NCBI

99 

Han X and Sun Z: Epigenetic Regulation of KL (Klotho) via H3K27me3 (Histone 3 Lysine [K] 27 Trimethylation) in renal tubule cells. Hypertension. 75:1233–1241. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM and Checherita IA: Pathway from acute kidney injury to chronic kidney disease: Molecules involved in renal fibrosis. Int J Mol Sci. 24:140192023. View Article : Google Scholar : PubMed/NCBI

101 

Cohen C, Mhaidly R, Croizer H, Kieffer Y, Leclere R, Vincent-Salomon A, Robley C, Anglicheau D, Rabant M, Sannier A, et al: WNT-dependent interaction between inflammatory fibroblasts and FOLR2+ macrophages promotes fibrosis in chronic kidney disease. Nat Commun. 15:7432024. View Article : Google Scholar : PubMed/NCBI

102 

Huang R, Fu P and Ma L: Kidney fibrosis: From mechanisms to therapeutic medicines. Signal Transduct Target Ther. 8:1292023. View Article : Google Scholar : PubMed/NCBI

103 

Liu Y: New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol. 21:212–222. 2010. View Article : Google Scholar

104 

Hewitson TD, Holt SG, Tan SJ, Wigg B, Samuel CS and Smith ER: Epigenetic modifications to H3K9 in renal tubulointerstitial cells after unilateral ureteric obstruction and TGF-β1 Stimulation. Front Pharmacol. 8:3072017. View Article : Google Scholar

105 

Zhou X, Zang X, Ponnusamy M, Masucci MV, Tolbert E, Gong R, Zhao TC, Liu N, Bayliss G, Dworkin LD and Zhuang S: Enhancer of Zeste Homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression. J Am Soc Nephrol. 27:2092–2108. 2016. View Article : Google Scholar :

106 

An C, Jiao B, Du H, Tran M, Song B, Wang P, Zhou D and Wang Y: Jumonji domain-containing protein-3 (JMJD3) promotes myeloid fibroblast activation and macrophage polarization in kidney fibrosis. Br J Pharmacol. 180:2250–2265. 2023. View Article : Google Scholar : PubMed/NCBI

107 

Steffes MW, Osterby R, Chavers B and Mauer SM: Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes. 38:1077–1081. 1989. View Article : Google Scholar : PubMed/NCBI

108 

Thomas HY and Ford Versypt AN: Pathophysiology of mesangial expansion in diabetic nephropathy: Mesangial structure, glomerular biomechanics, and biochemical signaling and regulation. J Biol Eng. 16:192022. View Article : Google Scholar : PubMed/NCBI

109 

Kriz W: Maintenance and breakdown of glomerular tuft architecture. J Am Soc Nephrol. 29:1075–1077. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Avraham S, Korin B, Chung JJ, Oxburgh L and Shaw AS: The Mesangial cell-the glomerular stromal cell. Nat Rev Nephrol. 17:855–864. 2021. View Article : Google Scholar : PubMed/NCBI

111 

Alicic RZ, Rooney MT and Tuttle KR: Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephrol. 12:2032–2045. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Baccora MH, Cortes P, Hassett C, Taube DW and Yee J: Effects of long-term elevated glucose on collagen formation by mesangial cells. Kidney Int. 72:1216–1225. 2007. View Article : Google Scholar : PubMed/NCBI

113 

Wu P, Ren Y, Ma Y, Wang Y, Jiang H, Chaudhari S, Davis ME, Zuckerman JE and Ma R: Negative regulation of Smad1 pathway and collagen IV expression by store-operated Ca(2+) entry in glomerular mesangial cells. Am J Physiol Renal Physiol. 312:F1090–F1100. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Kuo FC, Chao CT and Lin SH: The dynamics and plasticity of epigenetics in diabetic kidney disease: therapeutic applications Vis-à-Vis. Int J Mol Sci. 23:8432022. View Article : Google Scholar

115 

Boi R, Ebefors K and Nyström J: The role of the mesangium in glomerular function. Acta Physiol (Oxf). 239:e140452023. View Article : Google Scholar : PubMed/NCBI

116 

Zhong W, Hong C, Dong Y, Li Y, Xiao C and Liu X: ASH2L aggravates fibrosis and inflammation through HIPK2 in high glucose-induced glomerular mesangial cells. Genes (Basel). 13:22442022. View Article : Google Scholar : PubMed/NCBI

117 

Zhong W, Hong C, Zhang Y, Li Y, Xiao C and Liu X: ASH2L-mediated H3K4me3 drives diabetic nephropathy through HIPK2 and Notch1 pathway. Transl Res. 264:85–96. 2024. View Article : Google Scholar

118 

Chen YX, Zhu SY, Huang C, Xu CY, Fang XD and Tu WP: LncRNA Dlx6os1 accelerates diabetic nephropathy progression by epigenetically repressing SOX6 via Recruiting EZH2. Kidney Blood Press Res. 47:177–184. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Hung PH, Hsu YC, Chen TH, Ho C and Lin CL: The histone demethylase inhibitor GSK-J4 Is a therapeutic target for the kidney fibrosis of diabetic kidney disease via DKK1 Modulation. Int J Mol Sci. 23:94072022. View Article : Google Scholar : PubMed/NCBI

120 

Chen H, Huang Y, Zhu X, Liu C, Yuan Y, Su H, Zhang C, Liu C, Xiong M, Qu Y, et al: Histone demethylase UTX is a therapeutic target for diabetic kidney disease. J Physiol. 597:1643–1660. 2019. View Article : Google Scholar :

121 

Jia Y, Reddy MA, Das S, Oh HJ, Abdollahi M, Yuan H, Zhang E, Lanting L, Wang M and Natarajan R: Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1-induced gene expression in mesangial cells and diabetic kidney. J Biol Chem. 294:12695–12707. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Satchell SC and Braet F: Glomerular endothelial cell fenestrations: An integral component of the glomerular filtration barrier. Am J Physiol Renal Physiol. 296:F947–F956. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Savage CO: The biology of the glomerulus: endothelial cells. Kidney Int. 45:314–319. 1994. View Article : Google Scholar : PubMed/NCBI

124 

Lassén E and Daehn IS: Molecular mechanisms in early diabetic kidney disease: Glomerular endothelial cell dysfunction. Int J Mol Sci. 21:94562020. View Article : Google Scholar : PubMed/NCBI

125 

Thakar S, Katakia YT, Ramakrishnan SK, Pandya Thakkar N and Majumder S: Intermittent high glucose elevates nuclear localization of EZH2 to Cause H3K27me3-dependent repression of KLF2 leading to endothelial inflammation. Cells. 10:25482021. View Article : Google Scholar : PubMed/NCBI

126 

Takizawa F, Mizutani S, Ogawa Y and Sawada N: Glucose-independent persistence of PAI-1 gene expression and H3K4 tri-methylation in type 1 diabetic mouse endothelium: implication in metabolic memory. Biochem Biophys Res Commun. 433:66–72. 2013. View Article : Google Scholar : PubMed/NCBI

127 

Huang T, Li X, Wang F, Lu L, Hou W, Zhu M and Miao C: The CREB/KMT5A complex regulates PTP1B to modulate high glucose-induced endothelial inflammatory factor levels in diabetic nephropathy. Cell Death Dis. 12:3332021. View Article : Google Scholar : PubMed/NCBI

128 

Alvandi Z and Bischoff J: Endothelial-Mesenchymal transition in cardiovascular disease. Arterioscler Thromb Vasc Biol. 41:2357–2369. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Glaser SF, Heumüller AW, Tombor L, Hofmann P, Muhly-Reinholz M, Fischer A, Günther S, Kokot KE, Hassel D, Kumar S, et al: The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition. Proc Natl Acad Sci USA. 117:4180–4187. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Pandya Thakkar N, Pereira BMV, Katakia YT, Ramakrishnan SK, Thakar S, Sakhuja A, Rajeev G, Soorya S, Thieme K and Majumder S: Elevated H3K4me3 Through MLL2-WDR82 upon hyperglycemia causes jagged ligand dependent notch activation to interplay with differentiation state of endothelial cells. Front Cell Dev Biol. 10:8391092022. View Article : Google Scholar : PubMed/NCBI

131 

Vastenhouw NL and Schier AF: Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol. 24:374–386. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Conway E, Healy E and Bracken AP: PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol. 37:42–48. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Miller SA, Damle M, Kim J and Kingston RE: Full methylation of H3K27 by PRC2 is dispensable for initial embryoid body formation but required to maintain differentiated cell identity. Development. 148:dev1963292021. View Article : Google Scholar : PubMed/NCBI

134 

Lavarone E, Barbieri CM and Pasini D: Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 10:16792019. View Article : Google Scholar : PubMed/NCBI

135 

Soofi A, Kutschat AP, Azam M, Laszczyk AM and Dressler GR: Regeneration after acute kidney injury requires PTIP-mediated epigenetic modifications. JCI insight. 5:e1302042020. View Article : Google Scholar : PubMed/NCBI

136 

El-Dahr SS and Saifudeen Z: Epigenetic regulation of renal development. Semin Cell Dev Biol. 91:111–118. 2019. View Article : Google Scholar

137 

Jin J, Liu XM, Shao W and Meng XM: Nucleic acid and protein methylation modification in renal diseases. Acta Pharmacol Sin. 45:661–673. 2024. View Article : Google Scholar

138 

Yu C and Zhuang S: Histone methyltransferases as therapeutic targets for kidney diseases. Front Pharmacol. 10:13932019. View Article : Google Scholar : PubMed/NCBI

139 

Ho TCS, Chan AHY and Ganesan A: Thirty Years of HDAC Inhibitors: 2020 insight and hindsight. J Med Chem. 63:12460–12484. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Bhat KP, Ümit Kaniskan H, Jin J and Gozani O: Epigenetics and beyond: Targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov. 20:265–286. 2021. View Article : Google Scholar : PubMed/NCBI

141 

Kourtidou C and Tziomalos K: The role of histone modifications in the pathogenesis of diabetic kidney disease. Int J Mol Sci. 24:60072023. View Article : Google Scholar : PubMed/NCBI

142 

Jones PA, Issa JP and Baylin S: Targeting the cancer epigenome for therapy. Nat Rev Genet. 17:630–641. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Zhang Q, Chen X, Cao J, Yang W, Wan G, Feng Q, Zhou S, Yang H, Wang N, Liu Z, et al: Discovery of a Novel Covalent EZH2 inhibitor based on tazemetostat scaffold for the treatment of ovarian cancer. J Med Chem. 66:1725–1741. 2023. View Article : Google Scholar : PubMed/NCBI

144 

Vejmelkova K, Pokorna P, Noskova K, Faustmannova A, Drabova K, Pavelka Z, Bajciova V, Broz M, Tinka P, Jezova M, et al: Tazemetostat in the therapy of pediatric INI1-negative malignant rhabdoid tumors. Sci Rep. 13:216232023. View Article : Google Scholar : PubMed/NCBI

145 

Ni J, Hou X, Wang X, Shi Y, Xu L, Zheng X, Liu N, Qiu A and Zhuang S: 3-deazaneplanocin A protects against cisplatin-induced renal tubular cell apoptosis and acute kidney injury by restoration of E-cadherin expression. Cell Death Dis. 10:3552019. View Article : Google Scholar : PubMed/NCBI

146 

Tellez CS, Picchi MA, Juri D, Do K, Desai DH, Amin SG, Hutt JA, Filipczak PT and Belinsky SA: Chromatin remodeling by the histone methyltransferase EZH2 drives lung pre-malignancy and is a target for cancer prevention. Clin Epigenetics. 13:442021. View Article : Google Scholar : PubMed/NCBI

147 

De La Rosa J, Urdiciain A, Zazpe I, Zelaya MV, Meléndez B, Rey JA, Idoate MA and Castresana JS: The synergistic effect of DZ-NEP, panobinostat and temozolomide reduces clonogenicity and induces apoptosis in glioblastoma cells. Int J Oncol. 56:283–300. 2020.

148 

Li Y, Ren Y, Wang Y, Tan Y, Wang Q, Cai J, Zhou J, Yang C, Zhao K, Yi K, et al: A Compound AC1Q3QWB Selectively Disrupts HOTAIR-Mediated Recruitment of PRC2 and Enhances Cancer Therapy of DZNep. Theranostics. 9:4608–4623. 2019. View Article : Google Scholar : PubMed/NCBI

149 

Miranda TB, Cortez CC, Yoo CB, Liang G, Abe M, Kelly TK, Marquez VE and Jones PA: DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 8:1579–1588. 2009. View Article : Google Scholar : PubMed/NCBI

150 

Gounder M, Schöffski P, Jones RL, Agulnik M, Cote GM, Villalobos VM, Attia S, Chugh R, Chen TW, Jahan T, et al: Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: An international, open-label, phase 2 basket study. Lancet Oncol. 21:1423–1432. 2020. View Article : Google Scholar : PubMed/NCBI

151 

Dalpatraj N, Naik A and Thakur N: GSK-J4: An H3K27 histone demethylase inhibitor, as a potential anti-cancer agent. Int J Cancer. 153:1130–1138. 2023. View Article : Google Scholar : PubMed/NCBI

152 

Chang Y, Zhang X, Horton JR, Upadhyay AK, Spannhoff A, Liu J, Snyder JP, Bedford MT and Cheng X: Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat Struct Mol Biol. 16:312–317. 2009. View Article : Google Scholar : PubMed/NCBI

153 

Chae YC, Kim JY, Park JW, Kim KB, Oh H, Lee KH and Seo SB: FOXO1 degradation via G9a-mediated methylation promotes cell proliferation in colon cancer. Nucleic Acids Res. 47:1692–1705. 2019. View Article : Google Scholar :

154 

Kim Y, Kim YS, Kim DE, Lee JS, Song JH, Kim HG, Cho DH, Jeong SY, Jin DH, Jang SJ, et al: BIX-01294 induces autophagy-associated cell death via EHMT2/G9a dysfunction and intracellular reactive oxygen species production. Autophagy. 9:2126–2139. 2013. View Article : Google Scholar : PubMed/NCBI

155 

Yokoyama A and Cleary ML: Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell. 14:36–46. 2008. View Article : Google Scholar : PubMed/NCBI

156 

Caslini C, Yang Z, El-Osta M, Milne TA, Slany RK and Hess JL: Interaction of MLL amino terminal sequences with menin is required for transformation. Cancer Res. 67:7275–7283. 2007. View Article : Google Scholar : PubMed/NCBI

157 

Newman DJ and Cragg GM: Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 83:770–803. 2020. View Article : Google Scholar : PubMed/NCBI

158 

Sasaki K, Doi S, Nakashima A, Irifuku T, Yamada K, Kokoroishi K, Ueno T, Doi T, Hida E, Arihiro K, et al: Inhibition of SET domain-containing lysine methyltransferase 7/9 ameliorates renal fibrosis. J Am Soc Nephrol. 27:203–215. 2016. View Article : Google Scholar

159 

Yu X, Zhao Q and Zhang H, Fan C, Zhang X, Xie Q, Xu C, Liu Y, Wu X, Han Q and Zhang H: Gambogenic acid inhibits LPS-simulated inflammatory response by suppressing NF-κB and MAPK in macrophages. Acta Biochim Biophys Sin (Shanghai). 48:454–461. 2016. View Article : Google Scholar : PubMed/NCBI

160 

Chen X, Zhang X, Cai H, Yang W, Lei H, Xu H, Wang W, Zhu Q, Kang J, Yin T, et al: Targeting USP9x/SOX2 axis contributes to the anti-osteosarcoma effect of neogambogic acid. Cancer Lett. 469:277–286. 2020. View Article : Google Scholar

161 

Xu L, Meng X, Xu N, Fu W, Tan H, Zhang L, Zhou Q, Qian J, Tu S, Li X, et al: Gambogenic acid inhibits fibroblast growth factor receptor signaling pathway in erlotinib-resistant non-small-cell lung cancer and suppresses patient-derived xenograft growth. Cell Death Dis. 9:2622018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qu P, Li L, Jin Q, Liu D, Qiao Y, Zhang Y, Sun Q, Ran S, Li Z, Liu T, Liu T, et al: Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). Int J Mol Med 54: 104, 2024.
APA
Qu, P., Li, L., Jin, Q., Liu, D., Qiao, Y., Zhang, Y. ... Peng, L. (2024). Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). International Journal of Molecular Medicine, 54, 104. https://doi.org/10.3892/ijmm.2024.5428
MLA
Qu, P., Li, L., Jin, Q., Liu, D., Qiao, Y., Zhang, Y., Sun, Q., Ran, S., Li, Z., Liu, T., Peng, L."Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review)". International Journal of Molecular Medicine 54.5 (2024): 104.
Chicago
Qu, P., Li, L., Jin, Q., Liu, D., Qiao, Y., Zhang, Y., Sun, Q., Ran, S., Li, Z., Liu, T., Peng, L."Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review)". International Journal of Molecular Medicine 54, no. 5 (2024): 104. https://doi.org/10.3892/ijmm.2024.5428
Copy and paste a formatted citation
x
Spandidos Publications style
Qu P, Li L, Jin Q, Liu D, Qiao Y, Zhang Y, Sun Q, Ran S, Li Z, Liu T, Liu T, et al: Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). Int J Mol Med 54: 104, 2024.
APA
Qu, P., Li, L., Jin, Q., Liu, D., Qiao, Y., Zhang, Y. ... Peng, L. (2024). Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). International Journal of Molecular Medicine, 54, 104. https://doi.org/10.3892/ijmm.2024.5428
MLA
Qu, P., Li, L., Jin, Q., Liu, D., Qiao, Y., Zhang, Y., Sun, Q., Ran, S., Li, Z., Liu, T., Peng, L."Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review)". International Journal of Molecular Medicine 54.5 (2024): 104.
Chicago
Qu, P., Li, L., Jin, Q., Liu, D., Qiao, Y., Zhang, Y., Sun, Q., Ran, S., Li, Z., Liu, T., Peng, L."Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review)". International Journal of Molecular Medicine 54, no. 5 (2024): 104. https://doi.org/10.3892/ijmm.2024.5428
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team