Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2024 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2024 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review)

  • Authors:
    • Qian Liu
    • Jiajia Li
    • Xin Li
    • Li Zhang
    • Shun Yao
    • Yongfeng Wang
    • Biguang Tuo
    • Hai Jin
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 105
    |
    Published online on: September 19, 2024
       https://doi.org/10.3892/ijmm.2024.5429
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Liver fibrosis is a pathophysiologic manifestation of chronic liver disease and a precursor to cirrhosis and hepatocellular carcinoma. Glycolysis provides intermediate metabolites as well as energy support for cell proliferation and phenotypic transformation in liver fibers. 6‑Phosphofructo‑2‑kinase/fructose‑2,6‑bisphosphatase 3 (PFKFB3) is a key activator of glycolysis and plays an important role in the process of glycolysis. The role of PFKFB3‑mediated glycolysis in myocardial fibrosis, renal fibrosis and pulmonary fibrosis has been demonstrated, and the role of PFKFB3 in the activation of hepatic stellate cells by aerobic glycolysis has been proven by relevant experiments. The present study reviews the research progress on the role and mechanism of action of PFKFB3‑mediated glycolysis in the progression of hepatic fibrosis to discuss the role of PFKFB3‑mediated glycolysis in hepatic fibrosis and to provide new ideas for research on PFKFB3 as a target for the treatment of hepatic fibrosis.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E and Kamath PS: Global burden of liver disease: 2023 Update. J Hepatol. 79:516–537. 2023. View Article : Google Scholar : PubMed/NCBI

2 

Huang DQ, Terrault NA, Tacke F, Gluud LL, Arrese M, Bugianesi E and Loomba R: Global epidemiology of cirrhosis-aetiology, trends and predictions. Nat Rev Gastroenterol Hepatol. 20:388–398. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Gilgenkrantz H, Mallat A, Moreau R and Lotersztajn S: Targeting cell-intrinsic metabolism for antifibrotic therapy. J Hepatol. 74:1442–1454. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Parola M and Pinzani M: Liver fibrosis in NAFLD/NASH: From pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med. 95:1012312024. View Article : Google Scholar

5 

Pei Q, Yi Q and Tang L: Liver fibrosis resolution: from molecular mechanisms to therapeutic opportunities. Int J Mol Sci. 24:96712023. View Article : Google Scholar : PubMed/NCBI

6 

Campana L, Esser H, Huch M and Forbes S: Liver regeneration and inflammation: From fundamental science to clinical applications. Nat Rev Mol Cell Biol. 22:608–624. 2021. View Article : Google Scholar : PubMed/NCBI

7 

Kisseleva T and Brenner D: Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 18:151–166. 2021. View Article : Google Scholar

8 

Wang FD, Zhou J and Chen EQ: Molecular mechanisms and potential new therapeutic drugs for liver fibrosis. Front Pharmacol. 13:7877482022. View Article : Google Scholar : PubMed/NCBI

9 

Zeng H, Pan T, Zhan M, Hailiwu R, Liu B, Yang H and Li P: Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response. Signal Transduct Target Ther. 7:3032022. View Article : Google Scholar : PubMed/NCBI

10 

Yang Q, Zong X, Zhuang L, Pan R, Tudi X, Fan Q and Tao R: PFKFB3 inhibitor 3PO reduces cardiac remodeling after myocardial infarction by regulating the TGF-β1/SMAD2/3 pathway. Biomolecules. 13:10722023. View Article : Google Scholar

11 

Song C, Wang S, Fu Z, Chi K, Geng X, Liu C, Cai G, Chen X, Wu D and Hong Q: IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis. Cell Death Dis. 13:3402022. View Article : Google Scholar : PubMed/NCBI

12 

Jiang A, Liu J, Wang Y and Zhang C: cGAS-STING signaling pathway promotes hypoxia-induced renal fibrosis by regulating PFKFB3-mediated glycolysis. Free Radic Biol Med. 208:516–529. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H, Gao Y and He Z: PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest. 100:801–811. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Zhao X, Kwan JYY, Yip K, Liu PP and Liu FF: Targeting metabolic dysregulation for fibrosis therapy. Nat Rev Drug Discov. 19:57–75. 2020. View Article : Google Scholar

15 

Horn P and Tacke F: Metabolic reprogramming in liver fibrosis. Cell Metab. 36:1439–1455. 2024. View Article : Google Scholar : PubMed/NCBI

16 

Hammerich L and Tacke F: Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol. 20:633–646. 2023. View Article : Google Scholar : PubMed/NCBI

17 

Cogliati B, Yashaswini CN, Wang S, Sia D and Friedman SL: Friend or foe? The elusive role of hepatic stellate cells in liver cancer. Nat Rev Gastroenterol Hepatol. 20:647–661. 2023. View Article : Google Scholar : PubMed/NCBI

18 

Qu H, Liu J, Zhang D, Xie R, Wang L and Hong J: Glycolysis in chronic liver diseases: Mechanistic insights and therapeutic opportunities. Cells. 12:19302023. View Article : Google Scholar : PubMed/NCBI

19 

Jones BC, Pohlmann PR, Clarke R and Sengupta S: Treatment against glucose-dependent cancers through metabolic PFKFB3 targeting of glycolytic flux. Cancer Metastasis Rev. 41:447–458. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Baker SA and Rutter J: Metabolites as signalling molecules. Nat Rev Mol Cell Biol. 24:355–374. 2023. View Article : Google Scholar : PubMed/NCBI

21 

Shi L, Pan H, Liu Z, Xie J and Han W: Roles of PFKFB3 in cancer. Signal Transduct Target Ther. 2:170442017. View Article : Google Scholar : PubMed/NCBI

22 

Mejias M, Gallego J, Naranjo-Suarez S, Ramirez M, Pell N, Manzano A, Suñer C, Bartrons R, Mendez R and Fernandez M: CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis. Gastroenterology. 159:273–288. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Alvarez R, Mandal D and Chittiboina P: Canonical and non-canonical roles of PFKFB3 in brain tumors. Cells. 10:29132021. View Article : Google Scholar : PubMed/NCBI

24 

Calderone V, Gallego J, Fernandez-Miranda G, Garcia-Pras E, Maillo C, Berzigotti A, Mejias M, Bava FA, Angulo-Urarte A, Graupera M, et al: Sequential functions of CPEB1 and CPEB4 regulate pathologic expression of vascular endothelial growth factor and angiogenesis in chronic liver disease. Gastroenterology. 150:982–997.e30. 2016. View Article : Google Scholar

25 

Hu KF, Shu CW, Lee CH, Tseng CJ, Chou YH and Liu PF: Comparative clinical significance and biological roles of PFKFB family members in oral squamous cell carcinoma. Cancer Cell Int. 23:2572023. View Article : Google Scholar : PubMed/NCBI

26 

Zodda E, Tura-Ceide O, Mills NL, Tarragó-Celada J, Carini M, Thomson TM and Cascante M: Autonomous metabolic reprogramming and oxidative stress characterize endothelial dysfunction in acute myocardial infarction. Elife. 12:e862602023. View Article : Google Scholar : PubMed/NCBI

27 

Wang Y, Tang S, Wu Y, Wan X, Zhou M, Li H and Zha X: Upregulation of 6-phosphofructo-2-kinase (PFKFB3) by hyperactivated mammalian target of rapamycin complex 1 is critical for tumor growth in tuberous sclerosis complex. IUBMB Life. 72:965–977. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Boscaro C, Carotti M, Albiero M, Trenti A, Fadini GP, Trevisi L, Sandonà D, Cignarella A and Bolego C: Non-genomic mechanisms in the estrogen regulation of glycolytic protein levels in endothelial cells. FASEB J. 34:12768–12784. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Kommagani R, Szwarc MM, Kovanci E, Gibbons WE, Putluri N, Maity S, Creighton CJ, Sreekumar A, DeMayo FJ, Lydon JP and O'Malley BW: Acceleration of the glycolytic flux by steroid receptor coactivator-2 is essential for endometrial decidualization. PLoS Genet. 9:e10039002013. View Article : Google Scholar : PubMed/NCBI

30 

Novellasdemunt L, Bultot L, Manzano A, Ventura F, Rosa JL, Vertommen D, Rider MH, Navarro-Sabate À and Bartrons R: PFKFB3 activation in cancer cells by the p38/MK2 pathway in response to stress stimuli. Biochem J. 452:531–543. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Watanuki S, Kobayashi H, Sugiura Y, Yamamoto M, Karigane D, Shiroshita K, Sorimachi Y, Fujita S, Morikawa T, Koide S, et al: Context-dependent modification of PFKFB3 in hematopoietic stem cells promotes anaerobic glycolysis and ensures stress hematopoiesis. Elife. 12:RP876742024. View Article : Google Scholar : PubMed/NCBI

32 

Yi M, Ban Y, Tan Y, Xiong W, Li G and Xiang B: 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 and 4: A pair of valves for fine-tuning of glucose metabolism in human cancer. Mol Metab. 20:1–13. 2019. View Article : Google Scholar :

33 

Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Sadykhov N, Midiber K and Orekhov A: Commentary: PFKFB3 overexpression in monocytes of patients with colon but not rectal cancer programs pro-tumor macrophages and is indicative for higher risk of tumor relapse. Front Immunol. 14:12904592023. View Article : Google Scholar

34 

Jia W, Wu Q, Shen M, Yu X, An S, Zhao L, Huang G and Liu J: PFKFB3 regulates breast cancer tumorigenesis and Fulvestrant sensitivity by affecting ERα stability. Cell Signal. 119:1111842024. View Article : Google Scholar

35 

Wang Y, Wang X, Du C, Wang Z, Wang J, Zhou N, Wang B, Tan K, Fan Y and Cao P: Glycolysis and beyond in glucose metabolism: Exploring pulmonary fibrosis at the metabolic crossroads. Front Endocrinol (Lausanne). 15:13795212024. View Article : Google Scholar : PubMed/NCBI

36 

Yang Q, Huo E, Cai Y, Zhang Z, Dong C, Asara JM, Shi H and Wei Q: Myeloid PFKFB3-mediated glycolysis promotes kidney fibrosis. Front Immunol. 14:12594342023. View Article : Google Scholar : PubMed/NCBI

37 

Chandel NS: Glycolysis. Cold Spring Harb Perspect Biol. 13:a0405352021. View Article : Google Scholar : PubMed/NCBI

38 

Paul S, Ghosh S and Kumar S: Tumor glycolysis, an essential sweet tooth of tumor cells. Semin Cancer Biol. 86:1216–1230. 2022. View Article : Google Scholar : PubMed/NCBI

39 

Qiao Q, Hu S and Wang X: The regulatory roles and clinical significance of glycolysis in tumor. Cancer Commun (Lond). 44:761–786. 2024. View Article : Google Scholar : PubMed/NCBI

40 

Fendt SM: 100 Years of the Warburg effect: A cancer metabolism endeavor. Cell. 187:3824–3828. 2024. View Article : Google Scholar : PubMed/NCBI

41 

Jaccard A, Wyss T, Maldonado-Pérez N, Rath JA, Bevilacqua A, Peng JJ, Lepez A, Von Gunten C, Franco F, Kao KC, et al: Reductive carboxylation epigenetically instructs T cell differentiation. Nature. 621:849–856. 2023. View Article : Google Scholar : PubMed/NCBI

42 

Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai W and Guo C: Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 39:1262020. View Article : Google Scholar : PubMed/NCBI

43 

Ma H, Zhang J, Zhou L, Wen S, Tang HY, Jiang B, Zhang F, Suleman M, Sun D, Chen A, et al: c-Src promotes tumorigenesis and tumor progression by activating PFKFB3. Cell Rep. 30:4235–4249.e6. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Galindo CM, de Oliveira Ganzella FA, Klassen G, Souza Ramos EA and Acco A: Nuances of PFKFB3 signaling in breast cancer. Clin Breast Cancer. 22:e604–e614. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Li FL, Liu JP, Bao RX, Yan G, Feng X, Xu YP, Sun YP, Yan W, Ling ZQ, Xiong Y, et al: Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis. Nat Commun. 9:5082018. View Article : Google Scholar : PubMed/NCBI

46 

Suematsu M, Nakamura T, Tokumoto Y, Yamamoto T, Kajimura M and Kabe Y: CO-CBS-H2 S axis: From vascular mediator to cancer regulator. Microcirculation. 23:183–190. 2016. View Article : Google Scholar

47 

McErlean P, Bell CG, Hewitt RJ, Busharat Z, Ogger PP, Ghai P, Albers GJ, Calamita E, Kingston S, Molyneaux PL, et al: DNA methylome alterations are associated with airway macrophage differentiation and phenotype during lung fibrosis. Am J Respir Crit Care Med. 204:954–966. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Desideri E, Vegliante R, Cardaci S, Nepravishta R, Paci M and Ciriolo MR: MAPK14/p38α-dependent modulation of glucose metabolism affects ROS levels and autophagy during starvation. Autophagy. 10:1652–1665. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Yuan Y, Wang W, Zhang Y, Hong Q, Huang W, Li L, Xie Z, Chen Y, Li X and Meng Y: Apelin-13 attenuates lipopolysaccharide-induced inflammatory responses and acute lung injury by regulating PFKFB3-Driven glycolysis induced by NOX4-dependent ROS. J Inflamm Res. 15:2121–2139. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Lin S, Li Y, Wang D, Huang C, Marino D, Bollt O, Wu C, Taylor MD, Li W, DeNicola GM, et al: Fascin promotes lung cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer Lett. 518:230–242. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Lin S, Taylor MD, Singh PK and Yang S: How does fascin promote cancer metastasis? FEBS J. 288:1434–1446. 2021. View Article : Google Scholar :

52 

Zhang LF, Deng WQ, Huang QW, Zhang JJ, Wang Y, Zhou TJ, Xing L and Jiang HL: Vicious cycle-breaking lipid nanoparticles remodeling multicellular crosstalk to reverse liver fibrosis. Adv Mater. 36:e23114742024. View Article : Google Scholar : PubMed/NCBI

53 

Moreno-Lanceta A, Medrano-Bosch M, Fundora Y, Perramón M, Aspas J, Parra-Robert M, Baena S, Fondevila C, Edelman ER, Jiménez W and Melgar-Lesmes P: RNF41 orchestrates macrophage-driven fibrosis resolution and hepatic regeneration. Sci Transl Med. 15:eabq62252023. View Article : Google Scholar : PubMed/NCBI

54 

Cai X, Wang J, Wang J, Zhou Q, Yang B, He Q and Weng Q: Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res. 155:1047202020. View Article : Google Scholar : PubMed/NCBI

55 

Sinha S, Hassan N and Schwartz RE: Organelle stress and alterations in interorganelle crosstalk during liver fibrosis. Hepatology. 79:482–501. 2024. View Article : Google Scholar

56 

Roehlen N, Crouchet E and Baumert TF: Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells. 9:8752020. View Article : Google Scholar : PubMed/NCBI

57 

Odagiri N, Matsubara T, Sato-Matsubara M, Fujii H, Enomoto M and Kawada N: Anti-fibrotic treatments for chronic liver diseases: The present and the future. Clin Mol Hepatol. 27:413–424. 2021. View Article : Google Scholar :

58 

An P, Wei LL, Zhao S, Sverdlov DY, Vaid KA, Miyamoto M, Kuramitsu K, Lai M and Popov YV: Hepatocyte mitochondria-derived danger signals directly activate hepatic stellate cells and drive progression of liver fibrosis. Nat Commun. 11:23622020. View Article : Google Scholar : PubMed/NCBI

59 

Geervliet E, Moreno S, Baiamonte L, Booijink R, Boye S, Wang P, Voit B, Lederer A, Appelhans D and Bansal R: Matrix metalloproteinase-1 decorated polymersomes, a surface-active extracellular matrix therapeutic, potentiates collagen degradation and attenuates early liver fibrosis. J Control Release. 332:594–607. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Casari M, Siegl D, Deppermann C and Schuppan D: Macrophages and platelets in liver fibrosis and hepatocellular carcinoma. Front Immunol. 14:12778082023. View Article : Google Scholar : PubMed/NCBI

61 

Gao J, Wei B, de Assuncao TM, Liu Z, Hu X, Ibrahim S, Cooper SA, Cao S, Shah VH and Kostallari E: Hepatic stellate cell autophagy inhibits extracellular vesicle release to attenuate liver fibrosis. J Hepatol. 73:1144–1154. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Song Y, Wei J, Li R, Fu R, Han P, Wang H, Zhang G, Li S, Chen S, Liu Z, et al: Tyrosine kinase receptor B attenuates liver fibrosis by inhibiting TGF-β/SMAD signaling. Hepatology. 78:1433–1447. 2023. View Article : Google Scholar : PubMed/NCBI

63 

de Carvalho Ribeiro M and Szabo G: Role of the inflammasome in liver disease. Annu Rev Pathol. 17:345–365. 2022. View Article : Google Scholar

64 

Wang F, Chen L, Kong D, Zhang X, Xia S, Liang B, Li Y, Zhou Y, Zhang Z, Shao J, et al: Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex. Hepatology. 79:606–623. 2024.

65 

Xu F, Liu C, Zhou D and Zhang L: TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem. 64:157–167. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Feng W, Guan Z, Ying WZ, Xing D, Ying KE and Sanders PW: Matrix metalloproteinase-9 regulates afferent arteriolar remodeling and function in hypertension-induced kidney disease. Kidney Int. 104:740–753. 2023. View Article : Google Scholar : PubMed/NCBI

67 

Yao QY, Feng YD, Han P, Yang F and Song GQ: Hepatic microenvironment underlies fibrosis in chronic hepatitis B patients. World J Gastroenterol. 26:3917–3928. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Giarratana AO, Prendergast CM, Salvatore MM and Capaccione KM: TGF-β signaling: Critical nexus of fibrogenesis and cancer. J Transl Med. 22:5942024. View Article : Google Scholar

69 

Liu Y, Meyer C, Müller A, Herweck F, Li Q, Müllenbach R, Mertens PR, Dooley S and Weng HL: IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-β-independent Smad signaling. J Immunol. 187:2814–2823. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Akkız H, Gieseler RK and Canbay A: Liver fibrosis: From basic science towards clinical progress, focusing on the central role of hepatic stellate cells. Int J Mol Sci. 25:78732024. View Article : Google Scholar

71 

Yan M, Xie Y, Yao J and Li X: The dual-mode transition of myofibroblasts derived from hepatic stellate cells in liver fibrosis. Int J Mol Sci. 24:154602023. View Article : Google Scholar : PubMed/NCBI

72 

Bouguéon M, Legagneux V, Hazard O, Bomo J, Siegel A, Feret J and Théret N: A rule-based multiscale model of hepatic stellate cell plasticity: Critical role of the inactivation loop in fibrosis progression. PLoS Comput Biol. 20:e10118582024. View Article : Google Scholar : PubMed/NCBI

73 

Lu JL, Yu CX and Song LJ: Programmed cell death in hepatic fibrosis: Current and perspectives. Cell Death Discov. 9:4492023. View Article : Google Scholar : PubMed/NCBI

74 

Li R, Li Z, Feng Y, Yang H, Shi Q, Tao Z, Cheng J and Lu X: PDGFRβ-targeted TRAIL specifically induces apoptosis of activated hepatic stellate cells and ameliorates liver fibrosis. Apoptosis. 25:105–119. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Noom A, Sawitzki B, Knaus P and Duda GN: A two-way street-cellular metabolism and myofibroblast contraction. NPJ Regen Med. 9:152024. View Article : Google Scholar

76 

Cao Y, Wang S, Zhang M, Lai B and Liang Y: PFKFB3-mediated glycolysis in hepatic stellate cells promotes liver regeneration. Biochem Biophys Res Commun. 712-713:1499582024. View Article : Google Scholar : PubMed/NCBI

77 

Kovacs L, Cao Y, Han W, Meadows L, Kovacs-Kasa A, Kondrikov D, Verin AD, Barman SA, Dong Z, Huo Y and Su Y: PFKFB3 in smooth muscle promotes vascular remodeling in pulmonary arterial hypertension. Am J Respir Crit Care Med. 200:617–627. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Cheng D, Chai J, Wang H, Fu L, Peng S and Ni X: Hepatic macrophages: Key players in the development and progression of liver fibrosis. Liver Int. 41:2279–2294. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Wang Z, Du K, Jin N, Tang B and Zhang W: Macrophage in liver fibrosis: Identities and mechanisms. Int Immunopharmacol. 120:1103572023. View Article : Google Scholar : PubMed/NCBI

80 

Pei L, Li R, Wang X, Xu D, Gong F, Chen W, Zheng X, Liu W, Zhao S, Wang Q, et al: MSCs-derived extracellular vesicles alleviate sepsis-associated liver dysfunction by inhibiting macrophage glycolysis-mediated inflammatory response. Int Immunopharmacol. 128:1115752024. View Article : Google Scholar : PubMed/NCBI

81 

Liang W, Huang X and Shi J: Macrophages serve as bidirectional regulators and potential therapeutic targets for liver fibrosis. Cell Biochem Biophys. 81:659–671. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Strickland JD and Copple BL: Modulation of macrophage phenotype to treat liver fibrosis-current approaches and future possibilities. Adv Pharmacol. 91:213–228. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Liu Y, Xu R, Gu H, Zhang E, Qu J, Cao W, Huang X, Yan H, He J and Cai Z: Metabolic reprogramming in macrophage responses. Biomark Res. 9:12021. View Article : Google Scholar : PubMed/NCBI

84 

Soto-Heredero G, Gómez de Las Heras MM, Gabandé-Rodríguez E, Oller J and Mittelbrunn M: Glycolysis-a key player in the inflammatory response. FEBS J. 287:3350–3369. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Duan S, Lou X, Chen S, Jiang H, Chen D, Yin R, Huang X, Yan H, He J and Cai Z: Macrophage LMO7 deficiency facilitates inflammatory injury via metabolic-epigenetic reprogramming. Acta Pharm Sin B. 13:4785–4800. 2023. View Article : Google Scholar : PubMed/NCBI

86 

Leslie J, Macia MG, Luli S, Worrell JC, Reilly WJ, Paish HL, Knox A, Barksby BS, Gee LM, Zaki MYW, et al: c-Rel orchestrates energy-dependent epithelial and macrophage reprogramming in fibrosis. Nat Metab. 2:1350–1367. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Fuhrmann DC and Brüne B: miR-193a-3p increases glycolysis under hypoxia by facilitating Akt phosphorylation and PFKFB3 activation in human macrophages. Cell Mol Life Sci. 79:892022. View Article : Google Scholar : PubMed/NCBI

88 

Zhang J, Muri J, Fitzgerald G, Gorski T, Gianni-Barrera R, Masschelein E, D'Hulst G, Gilardoni P, Turiel G, Fan Z, et al: Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab. 31:1136–1153.e7. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Zhang M and Zhang S: T cells in fibrosis and fibrotic diseases. Front Immunol. 11:11422020. View Article : Google Scholar : PubMed/NCBI

90 

Koda Y, Teratani T, Chu PS, Hagihara Y, Mikami Y, Harada Y, Tsujikawa H, Miyamoto K, Suzuki T, Taniki N, et al: CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat Commun. 12:44742021. View Article : Google Scholar

91 

Barron L and Wynn TA: Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Gastrointest Liver Physiol. 300:G723–G728. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Li N, Yamamoto G, Fuji H and Kisseleva T: Interleukin-17 in liver disease pathogenesis. Semin Liver Dis. 41:507–515. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Savage TM, Fortson KT, de Los Santos-Alexis K, Oliveras-Alsina A, Rouanne M, Rae SS, Gamarra JR, Shayya H, Kornberg A, Cavero R, et al: Amphiregulin from regulatory T cells promotes liver fibrosis and insulin resistance in non-alcoholic steatohepatitis. Immunity. 57:303–318.e6. 2024. View Article : Google Scholar

94 

Hann A, Oo YH and Perera MTPR: Regulatory T-cell therapy in liver transplantation and chronic liver disease. Front Immune. 12:7199542021. View Article : Google Scholar

95 

Patel AM, Liu YS, Davies SP, Brown RM, Kelly DA, Scheel-Toellner D, Reynolds GM and Stamataki Z: The role of B cells in adult and paediatric liver injury. Front Immunol. 12:7291432021. View Article : Google Scholar : PubMed/NCBI

96 

Cao J, Liao S, Zeng F, Liao Q, Luo G and Zhou Y: Effects of altered glycolysis levels on CD8+ T cell activation and function. Cell Death Dis. 14:4072023. View Article : Google Scholar

97 

Madden MZ and Rathmell JC: The complex integration of T-cell metabolism and immunotherapy. Cancer Discov. 11:1636–1643. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Icard P, Alifano M, Donnadieu E and Simula L: Fructose-1,6-bisphosphate promotes PI3K and glycolysis in T cells? Trends Endocrinol Metab. 32:540–543. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Simon-Molas H, Arnedo-Pac C, Fontova P, Vidal-Alabró A, Castaño E, Rodríguez-García A, Navarro-Sabaté À, Lloberas N, Manzano A and Bartrons R: PI3K-Akt signaling controls PFKFB3 expression during human T-lymphocyte activation. Mol Cell Biochem. 448:187–197. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Harshan S, Dey P and Raghunathan S: Altered transcriptional regulation of glycolysis in circulating CD8+ T cells of rheumatoid arthritis patients. Genes (Basel). 13:12162022. View Article : Google Scholar

101 

Dou Q, Grant AK, Callahan C, Coutinho de Souza P, Mwin D, Booth AL, Nasser I, Moussa M, Ahmed M and Tsai LL: PFKFB3-mediated pro-glycolytic shift in hepatocellular carcinoma proliferation. Cell Mol Gastroenterol Hepatol. 15:61–75. 2023. View Article : Google Scholar

102 

Li Y, Zhou Y, Xia S, Chen L, Yang T, Zhao D, Zhang Z, Shao J, Xu X, Zhang F and Zheng S: Blockade of KLF5/LDH-A feedback loop contributes to Curcumol inhibition of sinusoidal endothelial cell glycolysis and mitigation of liver fibrosis. Phytomedicine. 114:1547592023. View Article : Google Scholar : PubMed/NCBI

103 

Gracia-Sancho J, Caparros E, Fernández-Iglesias A and Francés R: Role of liver sinusoidal endothelial cells in liver diseases. Nat Rev Gastroenterol Hepatol. 18:411–431. 2021. View Article : Google Scholar : PubMed/NCBI

104 

Gracia-Sancho J, Marrone G and Fernández-Iglesias A: Hepatic microcirculation and mechanisms of portal hypertension. Nat Rev Gastroenterol Hepatol. 16:221–234. 2019. View Article : Google Scholar

105 

Kumar S, Duan Q, Wu R, Harris EN and Su Q: Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev. 176:1138692021. View Article : Google Scholar : PubMed/NCBI

106 

Pandey E, Nour AS and Harris EN: Prominent receptors of liver sinusoidal endothelial cells in liver homeostasis and disease. Front Physiol. 11:8732020. View Article : Google Scholar : PubMed/NCBI

107 

Khan MA, Fischer J, Harrer L, Schwiering F, Groneberg D and Friebe A: Hepatic stellate cells in zone 1 engage in capillarization rather than myofibroblast formation in murine liver fibrosis. Sci Rep. 14:188402024. View Article : Google Scholar : PubMed/NCBI

108 

Baiocchini A, Del Nonno F, Taibi C, Visco-Comandini U, D'Offizi G, Piacentini M and Falasca L: Liver sinusoidal endothelial cells (LSECs) modifications in patients with chronic hepatitis C. Sci Rep. 9:87602019. View Article : Google Scholar : PubMed/NCBI

109 

Lee KC, Wu PS and Lin HC: Pathogenesis and treatment of non-alcoholic steatohepatitis and its fibrosis. Clin Mol Hepatol. 29:77–98. 2023. View Article : Google Scholar :

110 

Hammoutene A, Biquard L, Lasselin J, Kheloufi M, Tanguy M, Vion AC, Mérian J, Colnot N, Loyer X, Tedgui A, et al: A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol. 72:528–538. 2020. View Article : Google Scholar

111 

Maeso-Díaz R, Boyer-Diaz Z, Lozano JJ, Ortega-Ribera M, Peralta C, Bosch J and Gracia-Sancho J: New rat model of advanced NASH mimicking pathophysiological features and transcriptomic signature of the human disease. Cells. 8:10622019. View Article : Google Scholar : PubMed/NCBI

112 

McConnell MJ, Kostallari E, Ibrahim SH and Iwakiri Y: The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology. 78:649–669. 2023. View Article : Google Scholar : PubMed/NCBI

113 

Wei M, Zhang Y, Zhang H, Huang Z, Miao H, Zhang T, Lu B and Ji L: HMGB1 induced endothelial to mesenchymal transition in liver fibrosis: The key regulation of early growth response factor 1. Biochim Biophys Acta Gen Subj. 1866:1302022022. View Article : Google Scholar : PubMed/NCBI

114 

Wang L, Guo S, Cao K, Li Z, Li Z, Song M, Wang C, Chen P, Cui Y, Dai X, et al: Glycolysis promotes angiotensin II-induced aortic remodeling through regulating endothelial-to-mesenchymal transition via the corepressor C-terminal binding protein 1. Hypertension. 80:2627–2640. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Greuter T, Yaqoob U, Gan C, Jalan-Sakrikar N, Kostallari E, Lu J, Gao J, Sun L, Liu M, Sehrawat TS, et al: Mechanotransduction-induced glycolysis epigenetically regulates a CXCL1-dominant angiocrine signaling program in liver sinusoidal endothelial cells in vitro and in vivo. J Hepatol. 77:723–734. 2022. View Article : Google Scholar : PubMed/NCBI

116 

Atherton P, Stutchbury B, Jethwa D and Ballestrem C: Mechanosensitive components of integrin adhesions: Role of vinculin. Exp Cell Res. 343:21–27. 2016. View Article : Google Scholar :

117 

Lovisa S, Fletcher-Sananikone E, Sugimoto H, Hensel J, Lahiri S, Hertig A, Taduri G, Lawson E, Dewar R, Revuelta I, et al: Endothelial-to-mesenchymal transition compromises vascular integrity to induce Myc-mediated metabolic reprogramming in kidney fibrosis. Sci Signal. 13:eaaz25972020. View Article : Google Scholar : PubMed/NCBI

118 

DeLeve LD: Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology. 61:1740–1746. 2015. View Article : Google Scholar

119 

Kim HY, Sakane S, Eguileor A, Carvalho Gontijo Weber R, Lee W, Liu X, Lam K, Ishizuka K, Rosenthal SB, Diggle K, et al: The origin and fate of liver myofibroblasts. Cell Mol Gastroenterol Hepatol. 17:93–106. 2024. View Article : Google Scholar

120 

Yang W, He H, Wang T, Su N, Zhang F, Jiang K, Zhu J, Zhang C, Niu K, Wang L, et al: Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice. Hepatology. 74:2774–2790. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Wang W, Zhang Y, Huang W, Yuan Y, Hong Q, Xie Z, Li L, Chen Y, Li X and Meng Y: Alamandine/MrgD axis prevents TGF-β1-mediated fibroblast activation via regulation of aerobic glycolysis and mitophagy. J Transl Med. 21:242023. View Article : Google Scholar

122 

Chen W, Zhang J, Zhong W, Liu Y, Lu Y, Zeng Z, Huang H, Wan X, Meng X, Zou F, et al: Anlotinib inhibits PFKFB3-driven glycolysis in myofibroblasts to reverse pulmonary fibrosis. Front Pharmacol. 12:7448262021. View Article : Google Scholar : PubMed/NCBI

123 

Nie Z, Wu J, Xie J and Yin W: Sinomenine ameliorates bleomycin-induced pulmonary fibrosis by inhibiting the differentiation of fibroblast into myofibroblast. Heliyon. 10:e333142024. View Article : Google Scholar : PubMed/NCBI

124 

Yang Q, Huo E, Cai Y, Zhang Z, Dong C, Asara JM and Wei Q: PFKFB3-mediated glycolysis boosts fibroblast activation and subsequent kidney fibrosis. Cells. 12:20812023. View Article : Google Scholar : PubMed/NCBI

125 

Wang F, Yin X, Fan YM, Zhang X, Ma C, Jia K, Zhou W, Tang Z, Qi LW and Li J: Upregulation of glycolytic enzyme PFKFB3 by deubiquitinase OTUD4 promotes cardiac fibrosis post myocardial infarction. J Mol Med (Berl). 101:743–756. 2023. View Article : Google Scholar : PubMed/NCBI

126 

Dewidar B, Meyer C, Dooley S and Meindl-Beinker AN: TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019. Cells. 8:14182019. View Article : Google Scholar

127 

Kotowski K, Rosik J, Machaj F, Supplitt S, Wiczew D, Jabłońska K, Wiechec E, Ghavami S and Dzięgiel P: Role of PFKFB3 and PFKFB4 in cancer: Genetic basis, impact on disease development/progression, and potential as therapeutic targets. Cancers (Basel). 13:9092021. View Article : Google Scholar : PubMed/NCBI

128 

Kashyap A, Umar SM, Dev JRA, Mathur SR, Gogia A, Batra A, Deo SVS and Prasad CP: Combination of 3PO analog PFK15 and siPFKL efficiently suppresses the migration, colony formation ability, and PFK-1 activity of triple-negative breast cancers by reducing the glycolysis. J Cell Biochem. 124:1259–1272. 2023. View Article : Google Scholar : PubMed/NCBI

129 

Edelmann M, Fan S, De Oliveira T, Goldhardt T, Sartorius D, Midelashvili T, Conrads K, Paul NB, Beißbarth T, Fleischer JR, et al: Tumor vessel normalization via PFKFB3 inhibition alleviates hypoxia and increases tumor necrosis in rectal cancer upon radiotherapy. Cancer Res Commun. 4:2008–2024. 2024. View Article : Google Scholar : PubMed/NCBI

130 

Lyu ZS, Tang SQ, Xing T, Zhou Y, Lv M, Fu HX, Wang Y, Xu LP, Zhang XH, Lee HY, et al: The glycolytic enzyme PFKFB3 determines bone marrow endothelial progenitor cell damage after chemotherapy and irradiation. Haematologica. 107:2365–2380. 2022. View Article : Google Scholar : PubMed/NCBI

131 

Larionova I, Patysheva M, Iamshchikov P, Kazakova E, Kazakova A, Rakina M, Grigoryeva E, Tarasova A, Afanasiev S, Bezgodova N, et al: PFKFB3 overexpression in monocytes of patients with colon but not rectal cancer programs pro-tumor macrophages and is indicative for higher risk of tumor relapse. Front Immunol. 13:10805012023. View Article : Google Scholar : PubMed/NCBI

132 

Vezza T and Víctor VM: The HIF1α-PFKFB3 pathway: A key player in diabetic retinopathy. J Clin Endocrinol Metab. 106:e4778–e4780. 2021. View Article : Google Scholar

133 

Min J, Zeng T, Roux M, Lazar D, Chen L and Tudzarova S: The role of HIF1α-PFKFB3 pathway in diabetic retinopathy. J Clin Endocrinol Metab. 106:2505–2519. 2021. View Article : Google Scholar : PubMed/NCBI

134 

Xiao M, Liu D, Xu Y, Mao W and Li W: Role of PFKFB3-driven glycolysis in sepsis. Ann Med. 55:1278–1289. 2023. View Article : Google Scholar : PubMed/NCBI

135 

Liu D, Xiao M, Zhou J, Wang P, Peng J, Mao W, Hu Y, Liu Y, Yin J, Ke L and Li W: PFKFB3 promotes sepsis-induced acute lung injury by enhancing NET formation by CXCR4hi neutrophils. Int Immunopharmacol. 123:1107372023. View Article : Google Scholar

136 

Zhou Z, Plug LG, Patente TA, de Jonge-Muller ESM, Elmagd AA, van der Meulen-de Jong AE, Everts B, Barnhoorn MC and Hawinkels LJAC: Increased stromal PFKFB3-mediated glycolysis in inflammatory bowel disease contributes to intestinal inflammation. Front Immunol. 13:9660672022. View Article : Google Scholar : PubMed/NCBI

137 

Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T and Shao P: Glycolysis rate-limiting enzymes: Novel potential regulators of rheumatoid arthritis pathogenesis. Front Immunol. 12:7797872021. View Article : Google Scholar : PubMed/NCBI

138 

Wang Y, Li H, Jiang S, Fu D, Lu X, Lu M, Li Y, Luo D, Wu K, Xu Y, et al: The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation. Kidney Int. 106:226–240. 2024. View Article : Google Scholar : PubMed/NCBI

139 

Tang CJ, Xu J, Ye HY and Wang XB: Metformin prevents PFKFB3-related aerobic glycolysis from enhancing collagen synthesis in lung fibroblasts by regulating AMPK/mTOR pathway. Exp Ther Med. 21:5812021. View Article : Google Scholar : PubMed/NCBI

140 

Fu J, Li N, He M, Huang D and Zhang P: STAT3 signaling mediates peritoneal fibrosis by activating hyperglycolysis. Am J Transl Res. 14:7552–7565. 2022.PubMed/NCBI

141 

Wang Y, Qu C, Liu T and Wang C: PFKFB3 inhibitors as potential anticancer agents: Mechanisms of action, current developments, and structure-activity relationships. Eur J Med Chem. 203:1126122020. View Article : Google Scholar : PubMed/NCBI

142 

Zlacká J, Murár M, Addová G, Moravčík R, Boháč A and Zeman M: Synthesis of glycolysis inhibitor PFK15 and its synergistic action with an approved multikinase antiangiogenic drug on human endothelial cell migration and proliferation. Int J Mol Sci. 23:142952022. View Article : Google Scholar : PubMed/NCBI

143 

Shi WK, Zhu XD, Wang CH, Zhang YY, Cai H, Li XL, Cao MQ, Zhang SZ, Li KS and Sun HC: PFKFB3 blockade inhibits hepatocellular carcinoma growth by impairing DNA repair through AKT. Cell Death Dis. 9:4282018. View Article : Google Scholar : PubMed/NCBI

144 

Thirusangu P, Ray U, Sarkar Bhattacharya S, Oien DB, Jin L, Staub J, Kannan N, Molina JR and Shridhar V: PFKFB3 regulates cancer stemness through the hippo pathway in small cell lung carcinoma. Oncogene. 41:4003–4017. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Q, Li J, Li X, Zhang L, Yao S, Wang Y, Tuo B and Jin H: Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review). Int J Mol Med 54: 105, 2024.
APA
Liu, Q., Li, J., Li, X., Zhang, L., Yao, S., Wang, Y. ... Jin, H. (2024). Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review). International Journal of Molecular Medicine, 54, 105. https://doi.org/10.3892/ijmm.2024.5429
MLA
Liu, Q., Li, J., Li, X., Zhang, L., Yao, S., Wang, Y., Tuo, B., Jin, H."Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review)". International Journal of Molecular Medicine 54.6 (2024): 105.
Chicago
Liu, Q., Li, J., Li, X., Zhang, L., Yao, S., Wang, Y., Tuo, B., Jin, H."Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review)". International Journal of Molecular Medicine 54, no. 6 (2024): 105. https://doi.org/10.3892/ijmm.2024.5429
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Q, Li J, Li X, Zhang L, Yao S, Wang Y, Tuo B and Jin H: Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review). Int J Mol Med 54: 105, 2024.
APA
Liu, Q., Li, J., Li, X., Zhang, L., Yao, S., Wang, Y. ... Jin, H. (2024). Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review). International Journal of Molecular Medicine, 54, 105. https://doi.org/10.3892/ijmm.2024.5429
MLA
Liu, Q., Li, J., Li, X., Zhang, L., Yao, S., Wang, Y., Tuo, B., Jin, H."Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review)". International Journal of Molecular Medicine 54.6 (2024): 105.
Chicago
Liu, Q., Li, J., Li, X., Zhang, L., Yao, S., Wang, Y., Tuo, B., Jin, H."Advances in the understanding of the role and mechanism of action of PFKFB3‑mediated glycolysis in liver fibrosis (Review)". International Journal of Molecular Medicine 54, no. 6 (2024): 105. https://doi.org/10.3892/ijmm.2024.5429
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team