From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review)
- Authors:
- Fatin Fazrina Roslan
- Yuexin Yu
- Ghee Chien Ooi
- Khong Lek Then
- Kong Yong Then
- Soon-Keng Cheong
- Zhikun Guo
- Mohd Nor Azim Ab Patar
- Jun Jie Tan
-
Affiliations: Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang 13200, Malaysia, Cryocord Sdn Bhd, Bio‑X Centre, Cyberjaya, Selangor 63000, Malaysia, Department of Medicine, Faculty of Medicine and Health Sciences, Tunku Abdul Rahman University, Kajang, Selangor 43000, Malaysia, Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, Zhengzhou 453000, P.R. China, Department of Neurosciences, University of Science Malaysia, Kubang Kerian, Kelantan 16150, Malaysia - Published online on: October 14, 2024 https://doi.org/10.3892/ijmm.2024.5438
- Article Number: 114
This article is mentioned in:
Abstract
Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P, et al: Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 321:1174–1178. 1989. View Article : Google Scholar | |
Ballen KK, Verter F and Kurtzberg J: Umbilical cord blood donation: Public or private? Bone Marrow Transplant. 50:1271–1278. 2015. View Article : Google Scholar | |
O'Donnell PV, Brunstein CG, Fuchs EJ, Zhang MJ, Allbee-Johnson M, Antin JH, Leifer ES, Elmariah H, Grunwald MR, Hashmi H, et al: Umbilical cord blood or HLA-haploidentical transplantation: Real-world outcomes versus randomized trial outcomes. Transplant Cell Ther. 28:109.e1–109.e8. 2022. View Article : Google Scholar | |
Álvarez-Palomo B, Veiga A, Raya A, Codinach M, Torrents S, Ponce Verdugo L, Rodriguez-Aierbe C, Cuellar L, Alenda R, Arbona C, et al: Public cord blood banks as a source of starting material for clinical grade HLA-homozygous induced pluripotent stem cells. Stem Cell Res Ther. 13:4082022. View Article : Google Scholar | |
Abberton K, Tian P, Elefanty A, Stanley E, Leslie S, Youngson J, Diviney M, Holdsworth R, Tiedemann K, Little M and Elwood N: Banked cord blood is a potential source of cells for deriving induced pluripotent stem cell lines suitable for cellular therapy. Stem Cells Transl Med. 7 (Suppl):S132018. View Article : Google Scholar | |
Hordyjewska A, Popiołek Ł and Horecka A: Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology. 67:387–396. 2015. View Article : Google Scholar | |
Faivre L, Couzin C, Boucher H, Domet T, Desproges A, Sibony O, Bechard M, Vanneaux V, Larghero J and Cras A: Associated factors of umbilical cord blood collection quality. Transfusion. 58:520–531. 2018. View Article : Google Scholar | |
Nies C and Gottwald E: Artificial hematopoietic stem cell niches-dimensionality matters. Adv Tissue Eng Regen Med Open Access. 2:236–247. 2017. | |
Mayani H, Wagner JE and Broxmeyer HE: Cord blood research, banking, and transplantation: Achievements, challenges, and perspectives. Bone Marrow Transplant. 55:48–61. 2020. View Article : Google Scholar | |
Bowie MB, Kent DG, Dykstra B, McKnight KD, McCaffrey L, Hoodless PA and Eaves CJ: Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci USA. 104:5878–5882. 2007. View Article : Google Scholar | |
Jung JJ, Buisman SC and de Haan G: Do hematopoietic stem cells get old? Leukemia. 31:529–531. 2017. View Article : Google Scholar | |
Jaing TH: Is the benefit-risk ratio for patients with transfusion-dependent thalassemia treated by unrelated cord blood transplantation favorable? Int J Mol Sci. 18:24722017. View Article : Google Scholar | |
Roura S, Pujal JM, Gálvez-Montón C and Bayes-Genis A: The role and potential of umbilical cord blood in an era of new therapies: A review. Stem Cell Res Ther. 6:1232015. View Article : Google Scholar | |
Szabolcs P, Park KD, Reese M, Marti L, Broadwater G and Kurtzberg J: Coexistent naïve phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood. Exp Hematol. 31:708–714. 2003. View Article : Google Scholar | |
Chalmers IM, Janossy G, Contreras M and Navarrete C: Intracellular cytokine profile of cord and adult blood lymphocytes. Blood. 92:11–18. 1998. View Article : Google Scholar | |
Gluckman E, Rocha V, Arcese W, Michel G, Sanz G, Chan KW, Takahashi TA, Ortega J, Filipovich A, Locatelli F, et al: Factors associated with outcomes of unrelated cord blood transplant: Guidelines for donor choice. Exp Hematol. 32:397–407. 2004. View Article : Google Scholar | |
Wagner JE and Gluckman E: Umbilical cord blood transplantation: The first 20 years. Semin Hematol. 47:3–12. 2010. View Article : Google Scholar | |
Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, Ciocci G, Carrier C, Stevens CE and Rubinstein P: Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 335:157–166. 1996. View Article : Google Scholar | |
Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE, Gerson SL, Lazarus HM, Cairo M, Stevens CE, et al: Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med. 344:1815–1822. 2001. View Article : Google Scholar | |
Broxmeyer HE, Lee MR, Hangoc G, Cooper S, Prasain N, Kim YJ, Mallett C, Ye Z, Witting S, Cornetta K, et al: Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood. 117:4773–4777. 2011. View Article : Google Scholar | |
World Marrow Donor Association, . Global Trend Report. 2022.Retrieved from. https://wmda.info/wp-content/uploads/2023/06/30052023-GTR-2022-Summary-slides.pdfJuly 17–2023 | |
Rocha V, Kabbara N, Ionescu I, Ruggeri A, Purtill D and Gluckman E: Pediatric related and unrelated cord blood transplantation for malignant diseases. Bone Marrow Transplant. 44:653–659. 2009. View Article : Google Scholar | |
Herr AL, Kabbara N, Bonfim CMS, Teira P, Locatelli F, Tiedemann K, Lankester A, Jouet JP, Messina C, Bertrand Y, et al: Long-term follow-up and factors influencing outcomes after related HLA-identical cord blood transplantation for patients with malignancies: An analysis on behalf of Eurocord-EBMT. Blood. 116:1849–1856. 2010. View Article : Google Scholar | |
Marks DI, Woo KA, Zhong X, Appelbaum FR, Bachanova V, Barker JN, Brunstein CG, Gibson J, Kebriaei P, Lazarus HM, et al: Unrelated umbilical cord blood transplant for adult acute lymphoblastic leukemia in first and second complete remission: A comparison with allografts from adult unrelated donors. Haematologica. 99:322–328. 2014. View Article : Google Scholar | |
Eapen M, Rubinstein P, Zhang MJ, Stevens C, Kurtzberg J, Scaradavou A, Loberiza FR, Champlin RE, Klein JP, Horowitz MM and Wagner JE: Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: A comparison study. Lancet. 369:1947–1954. 2007. View Article : Google Scholar | |
Eapen M, Wang T, Veys PA, Boelens JJ, St Martin A, Spellman S, Bonfim CS, Brady C, Cant AJ, Dalle JH, et al: Allele-level HLA matching for umbilical cord blood transplantation for non-malignant diseases in children: A retrospective analysis. Lancet Haematol. 4:e325–e333. 2017. View Article : Google Scholar | |
Eapen M, Klein JP, Ruggeri A, Spellman S, Lee SJ, Anasetti C, Arcese W, Barker JN, Baxter-Lowe LA, Brown M, et al: Impact of allele-level HLA matching on outcomes after myeloablative single unit umbilical cord blood transplantation for hematologic malignancy. Blood. 123:133–140. 2014. View Article : Google Scholar | |
Eapen M, Klein JP, Sanz GF, Spellman S, Ruggeri A, Anasetti C, Brown M, Champlin RE, Garcia-Lopez J, Hattersely G, et al: Effect of donor-recipient HLA matching at HLA A, B, C, and DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: A retrospective analysis. Lancet Oncol. 12:1214–1221. 2011. View Article : Google Scholar | |
Passweg JR, Baldomero H, Chabannon C, Basak GW, de la Cámara R, Corbacioglu S, Dolstra H, Duarte R, Glass B, Greco R, et al: Hematopoietic cell transplantation and cellular therapy survey of the EBMT: Monitoring of activities and trends over 30 years. Bone Marrow Transplant. 56:1651–1664. 2021. View Article : Google Scholar | |
Dehn J, Spellman S, Hurley CK, Shaw BE, Barker JN, Burns LJ, Confer DL, Eapen M, Fernandez-Vina M, Hartzman R, et al: Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: Guidelines from the NMDP/CIBMTR. Blood. 134:924–934. 2019. View Article : Google Scholar | |
Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, Hartzman R, Rizzo JD, Horowitz M, Confer D and Maiers M: HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 371:339–348. 2014. View Article : Google Scholar | |
Kanda J, Ichinohe T, Kato S, Uchida N, Terakura S, Fukuda T, Hidaka M, Ueda Y, Kondo T, Taniguchi S, et al: Unrelated cord blood transplantation vs related transplantation with HLA 1-antigen mismatch in the graft-versus-host direction. Leukemia. 27:286–294. 2013. View Article : Google Scholar | |
Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE, Stevens C, Barker JN, Gale RP, Lazarus HM, et al: Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 351:2265–2275. 2004. View Article : Google Scholar | |
Politikos I, Davis E, Nhaissi M, Wagner JE, Brunstein CG, Cohen S, Shpall EJ, Milano F, Scaradavou A and Barker JN; American Society for Transplantation and Cellular Therapy Cord Blood Special Interest Group, : Guidelines for cord blood unit selection. Biol Blood Marrow Transplant. 26:2190–2196. 2020. View Article : Google Scholar | |
Rocha V and Gluckman E; Eurocord-Netcord registry, European Blood and Marrow Transplant Group, : Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol. 147:262–274. 2009. View Article : Google Scholar | |
Ruggeri A: Optimizing cord blood selection. Hematology Am Soc Hematol Educ Program. 2019:522–531. 2019. View Article : Google Scholar | |
Querol S, Mufti GJ, Marsh SG, Pagliuca A, Little AM, Shaw BE, Jeffery R, Garcia J, Goldman JM and Madrigal JA: Cord blood stem cells for hematopoietic stem cell transplantation in the UK: How big should the bank be? Haematologica. 94:536–541. 2009. View Article : Google Scholar | |
Wagner JE, Barker JN, DeFor TE, Baker KS, Blazar BR, Eide C, Goldman A, Kersey J, Krivit W, MacMillan ML, et al: Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 100:1611–1618. 2002. View Article : Google Scholar | |
Barker JN, Scaradavou A and Stevens CE: Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood. 115:1843–1849. 2010. View Article : Google Scholar | |
Tan JJ: Cord blood with low cell count: Re-use, rather than discard. Single Cell Biol. 6:32017. | |
Magalon J, Maiers M, Kurtzberg J, Navarrete C, Rubinstein P, Brown C, Schramm C, Larghero J, Katsahian S, Chabannon C, et al: Banking or bankrupting: Strategies for sustaining the economic future of public cord blood banks. PLoS One. 10:e01434402015. View Article : Google Scholar | |
Marotta D, Rao C and Fossati V: Human induced pluripotent stem cell (iPSC) handling protocols: Maintenance, expansion, and cryopreservation. In: Induced pluripotent stem (iPS) cells: Methods and protocols. Springer; New York, NY: pp. 1–15. 2021 | |
Natunen S, Satomaa T, Pitkänen V, Salo H, Mikkola M, Natunen J, Otonkoski T and Valmu L: The binding specificity of the marker antibodies Tra-1–60 and Tra-1–81 reveals a novel pluripotency-associated type 1 lactosamine epitope. Glycobiology. 21:1125–1130. 2011. View Article : Google Scholar | |
Horwitz ME, Stiff PJ, Cutler C, Brunstein C, Hanna R, Maziarz RT, Rezvani AR, Karris NA, McGuirk J, Valcarcel D, et al: Omidubicel vs standard myeloablative umbilical cord blood transplantation: Results of a phase 3 randomized study. Blood. 138:1429–1440. 2021. View Article : Google Scholar | |
Cohen S, Roy J, Lachance S, Delisle JS, Marinier A, Busque L, Roy DC, Barabé F, Ahmad I, Bambace N, et al: Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1–2 safety and feasibility study. Lancet Haematol. 7:e134–e145. 2020. View Article : Google Scholar | |
Stiff PJ, Montesinos P, Peled T, Landau E, Goudsmid NR, Mandel J, Hasson N, Olesinski E, Glukhman E, Snyder DA, et al: Cohort-controlled comparison of umbilical cord blood transplantation using carlecortemcel-L, a single progenitor-enriched cord blood, to double cord blood unit transplantation. Biol Blood Marrow Transplant. 24:1463–1470. 2018. View Article : Google Scholar | |
Anand S, Thomas S, Hyslop T, Adcock J, Corbet K, Gasparetto C, Lopez R, Long GD, Morris AK, Rizzieri DA, et al: Transplantation of ex vivo expanded umbilical cord blood (NiCord) decreases early infection and hospitalization. Biol Blood Marrow Transplant. 23:1151–1157. 2017. View Article : Google Scholar | |
Horwitz ME, Wease S, Blackwell B, Valcarcel D, Frassoni F, Boelens JJ, Nierkens S, Jagasia M, Wagner JE, Kuball J, et al: Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide. J Clin Oncol. 37:367–374. 2019. View Article : Google Scholar | |
Wagner JE Jr, Brunstein CG, Boitano AE, DeFor TE, McKenna D, Sumstad D, Blazar BR, Tolar J, Le C, Jones J, et al: Phase I/II trial of stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell. 18:144–155. 2016. View Article : Google Scholar | |
de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, Alousi A, Saliba R, McMannis JD, Kaur I, et al: Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 367:2305–2315. 2012. View Article : Google Scholar | |
Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C, Chute JP, Morris A, McDonald C, Waters-Pick B, et al: Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest. 124:3121–3128. 2014. View Article : Google Scholar | |
Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL and Bernstein ID: Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 16:232–236. 2010. View Article : Google Scholar | |
Saiyin T, Kirkham AM, Bailey AJM, Shorr R, Pineault N, Maganti HB and Allan DS: Clinical outcomes of umbilical cord blood transplantation using ex vivo expansion: A systematic review and meta-analysis of controlled studies. Transplant Cell Ther. 29:129.e1–129.e9. 2023. View Article : Google Scholar | |
Fares I, Chagraoui J, Gareau Y, Gingras S, Rjean R, Csaszar E, Cohen S, Anne M, Zandstra PW and Sauvageau G: UM171 is a novel and potent agonist of human hematopoietic stem cell renewal. Blood. 122:7982013. View Article : Google Scholar | |
Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer GN, Lerrer B, Cohen HY, Nagler A, Fibach E and Peled A: Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol. 40:342–355.e1. 2012. View Article : Google Scholar | |
de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, Hosing C, Khouri I, Jones R, Champlin R, et al: Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant. 41:771–778. 2008. View Article : Google Scholar | |
Mehta RS, Saliba RM, Cao K, Kaur I, Rezvani K, Chen J, Olson A, Parmar S, Shah N, Marin D, et al: Ex vivo mesenchymal precursor cell-expanded cord blood transplantation after reduced-intensity conditioning regimens improves time to neutrophil recovery. Biol Blood Marrow Transplant. 23:1359–1366. 2017. View Article : Google Scholar | |
Passweg JR, Baldomero H, Bregni M, Cesaro S, Dreger P, Duarte RF, Falkenburg JH, Kröger N, Farge-Bancel D, Gaspar HB, et al: Hematopoietic SCT in Europe: Data and trends in 2011. Bone Marrow Transplant. 48:1161–1167. 2013. View Article : Google Scholar | |
Iida M, Dodds A, Akter M, Srivastava A, Moon JH, Dung PC, Bravo MR, Gyi AA, Jayathilake D, Liu K, et al: The 2016 APBMT activity survey report: Trends in haploidentical and cord blood transplantation in the Asia-Pacific region. Blood Cell Ther. 4:20–28. 2021. | |
Niederwieser D, Baldomero H, Bazuaye N, Bupp C, Chaudhri N, Corbacioglu S, Elhaddad A, Frutos C, Galeano S, Hamad N, et al: One and a half million hematopoietic stem cell transplants: Continuous and differential improvement in worldwide access with the use of non-identical family donors. Haematologica. 107:1045–1053. 2022. View Article : Google Scholar | |
Fuchs EJ, O'Donnell PV, Eapen M, Logan B, Antin JH, Dawson P, Devine S, Horowitz MM, Horwitz ME, Karanes C, et al: Double unrelated umbilical cord blood vs HLA-haploidentical bone marrow transplantation: the BMT CTN 1101 trial. Blood. 137:420–428. 2021. View Article : Google Scholar | |
Ruggeri A, Labopin M, Savani B, Paviglianiti A, Blaise D, Volt F, Ciceri F, Bacigalupo A, Tischer J, Chevallier P, et al: Hematopoietic stem cell transplantation with unrelated cord blood or haploidentical donor grafts in adult patients with secondary acute myeloid leukemia, a comparative study from Eurocord and the ALWP EBMT. Bone Marrow Transplant. 54:1987–1994. 2019. View Article : Google Scholar | |
Konuma T, Kanda J, Yamasaki S, Harada K, Shimomura Y, Terakura S, Mizuno S, Uchida N, Tanaka M, Doki N, et al: Single cord blood transplantation versus unmanipulated haploidentical transplantation for adults with acute myeloid leukemia in complete remission. Transplant Cell Ther. 27:334.e1–334.e11. 2021. View Article : Google Scholar | |
Wieduwilt MJ, Metheny L, Zhang MJ, Wang HL, Estrada-Merly N, Marks DI, Al-Homsi AS, Muffly L, Chao N, Rizzieri D, et al: Haploidentical vs sibling, unrelated, or cord blood hematopoietic cell transplantation for acute lymphoblastic leukemia. Blood Adv. 6:339–357. 2022. View Article : Google Scholar | |
Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar | |
Tarazi S, Aguilera-Castrejon A, Joubran C, Ghanem N, Ashouokhi S, Roncato F, Wildschutz E, Haddad M, Oldak B, Gomez-Cesar E, et al: Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell. 185:3290–3306.e25. 2022. View Article : Google Scholar | |
Abberton KM, McDonald TL, Diviney M, Holdsworth R, Leslie S, Delatycki MB, Liu L, Klamer G, Johnson P and Elwood NJ: Identification and Re-consent of existing cord blood donors for creation of induced pluripotent stem cell lines for potential clinical applications. Stem Cells Transl Med. 11:1052–1060. 2022. View Article : Google Scholar | |
Ye Z, Zhan H, Mali P, Dowey S, Williams DM, Jang YY, Dang CV, Spivak JL, Moliterno AR and Cheng L: Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood. 114:5473–5480. 2009. View Article : Google Scholar | |
Takenaka C, Nishishita N, Takada N, Jakt LM and Kawamata S: Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53. Exp Hematol. 38:154–162. 2010. View Article : Google Scholar | |
Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, et al: Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell. 5:434–441. 2009. View Article : Google Scholar | |
Dorn I, Klich K, Arauzo-Bravo MJ, Radstaak M, Santourlidis S, Ghanjati F, Radke TF, Psathaki OE, Hargus G, Kramer J, et al: Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin. Haematologica. 100:32–41. 2015. View Article : Google Scholar | |
Giorgetti A, Montserrat N, Rodriguez-Piza I, Azqueta C, Veiga A and Izpisúa Belmonte JC: Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat Protoc. 5:811–820. 2010. View Article : Google Scholar | |
Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J and Cheng L: Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 21:518–529. 2011. View Article : Google Scholar | |
Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S and Nishikawa S: Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA. 108:14234–14239. 2011. View Article : Google Scholar | |
Arellano-Viera E, Zabaleta L, Castaño J, Azkona G, Carvajal-Vergara X and Giorgetti A: Generation of two transgene-free human iPSC lines from CD133+ cord blood cells. Stem Cell Res. 36:1014102019. View Article : Google Scholar | |
Tian P, Elefanty A, Stanley EG, Durnall JC, Thompson LH and Elwood NJ: Creation of GMP-compliant iPSCs from banked umbilical cord blood. Front Cell Dev Biol. 10:8353212022. View Article : Google Scholar | |
Gao X, Yourick JJ and Sprando RL: Comparative transcriptomic analysis of endothelial progenitor cells derived from umbilical cord blood and adult peripheral blood: Implications for the generation of induced pluripotent stem cells. Stem Cell Res. 25:202–212. 2017. View Article : Google Scholar | |
Gao X, Yourick JJ and Sprando RL: Generation of nine induced pluripotent stem cell lines as an ethnic diversity panel. Stem Cell Res. 31:193–196. 2018. View Article : Google Scholar | |
Wang Q, Wang Y, Chang C, Ma F, Peng D, Yang S, An Y, Deng Q, Wang Q, Gao F, et al: Comparative analysis of mesenchymal stem/stromal cells derived from human induced pluripotent stem cells and the cognate umbilical cord mesenchymal stem/stromal cells. Heliyon. 9:e126832023. View Article : Google Scholar | |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar | |
Kane NM, Nowrouzi A, Mukherjee S, Blundell MP, Greig JA, Lee WK, Houslay MD, Milligan G, Mountford JC, von Kalle C, et al: Lentivirus-mediated reprogramming of somatic cells in the absence of transgenic transcription factors. Mol Ther. 18:2139–2145. 2010. View Article : Google Scholar | |
Shadid M, Shrestha A and Malik P: Preclinical safety assessment of modified gamma globin lentiviral vector-mediated autologous hematopoietic stem cell gene therapy for hemoglobinopathies. PLoS One. 19:e03067192024. View Article : Google Scholar | |
Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, Magrin E, Schiller GJ, Payen E, Semeraro M, et al: Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 378:1479–1493. 2018. View Article : Google Scholar | |
Kunitomi A, Hirohata R, Arreola V, Osawa M, Kato TM, Nomura M, Kawaguchi J, Hara H, Kusano K, Takashima Y, et al: Improved Sendai viral system for reprogramming to naive pluripotency. Cell Rep Methods. 2:1003172022. View Article : Google Scholar | |
Kunitomi A, Hirohata R, Osawa M, Washizu K, Arreola V, Saiki N, Kato TM, Nomura M, Kunitomi H, Ohkame T, et al: H1FOO-DD promotes efficiency and uniformity in reprogramming to naive pluripotency. Stem Cell Reports. 19:710–728. 2024. View Article : Google Scholar | |
Yoshioka N, Gros E, Li HR, Kumar S, Deacon DC, Maron C, Muotri AR, Chi NC, Fu XD, Yu BD and Dowdy SF: Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell. 13:246–254. 2013. View Article : Google Scholar | |
Judson RL, Babiarz JE, Venere M and Blelloch R: Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 27:459–461. 2009. View Article : Google Scholar | |
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, et al: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 341:651–654. 2013. View Article : Google Scholar | |
Qin J, Zhang J, Jiang J, Zhang B, Li J, Lin X, Wang S, Zhu M, Fan Z, Lv Y, et al: Direct chemical reprogramming of human cord blood erythroblasts to induced megakaryocytes that produce platelets. Cell Stem Cell. 29:1229–1245.e7. 2022. View Article : Google Scholar | |
Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, Endo H, Eto K, Toguchida J, Uemoto S and Yamanaka S: Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci USA. 109:12538–12543. 2012. View Article : Google Scholar | |
Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, Huo H, Loh YH, Aryee MJ, Lensch MW, et al: Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol. 29:1117–1119. 2011. View Article : Google Scholar | |
Sanchez-Freire V, Lee AS, Hu S, Abilez OJ, Liang P, Lan F, Huber BC, Ong SG, Hong WX, Huang M and Wu JC: Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol. 64:436–448. 2014. View Article : Google Scholar | |
Streckfuss-Bömeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, Hübscher D, Dressel R, Chen S, Jende J, et al: Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J. 34:2618–2629. 2013. View Article : Google Scholar | |
Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy KK, Nakanishi M, Nishimura K, Ohtaka M, Weltner J, et al: Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Reports. 6:200–212. 2016. View Article : Google Scholar | |
Lo Sardo V, Ferguson W, Erikson GA, Topol EJ, Baldwin KK and Torkamani A: Influence of donor age on induced pluripotent stem cells. Nat Biotechnol. 35:69–74. 2017. View Article : Google Scholar | |
Chang CJ, Mitra K, Koya M, Velho M, Desprat R, Lenz J and Bouhassira EE: Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells. PLoS One. 6:e257612011. View Article : Google Scholar | |
Lee S, Huh JY, Turner DM, Lee S, Robinson J, Stein JE, Shim SH, Hong CP, Kang MS, Nakagawa M, et al: Repurposing the cord blood bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells. 36:1552–1566. 2018. View Article : Google Scholar | |
Shin S, Song EY, Kwon YW, Oh S, Park H, Kim NH and Roh EY: Usefulness of the hematopoietic stem cell donor pool as a source of HLA-homozygous induced pluripotent stem cells for haplobanking: Combined analysis of the cord blood inventory and bone marrow donor registry. Biol Blood Marrow Transplant. 26:e202–e208. 2020. View Article : Google Scholar | |
Yoshida S, Kato TM, Sato Y, Umekage M, Ichisaka T, Tsukahara M, Takasu N and Yamanaka S: A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. Med. 4:51–66.e10. 2023. View Article : Google Scholar | |
Alvarez-Palomo B, Garcia-Martinez I, Gayoso J, Raya A, Veiga A, Abad ML, Eiras A, Guzmán-Fulgencio M, Luis-Hidalgo M, Eguizabal C, et al: Evaluation of the Spanish population coverage of a prospective HLA haplobank of induced pluripotent stem cells. Stem Cell Res Ther. 12:2332021. View Article : Google Scholar | |
Sullivan S, Ginty P, McMahon S, May M, Solomon SL, Kurtz A, Stacey GN, Bennaceur Griscelli A, Li RA, Barry J, et al: The global alliance for iPSC therapies (GAiT). Stem Cell Res. 49:1020362020. View Article : Google Scholar | |
Meissner TB, Schulze HS and Dale SM: Immune editing: Overcoming immune barriers in stem cell transplantation. Curr Stem Cell Rep. 8:206–218. 2022. View Article : Google Scholar | |
Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, Thayer WO, Wahl A, Garcia JV, Reichenspurner H, et al: Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol. 37:252–258. 2019. View Article : Google Scholar | |
Han X, Wang M, Duan S, Franco PJ, Kenty JH, Hedrick P, Xia Y, Allen A, Ferreira LMR, Strominger JL, et al: Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci USA. 116:10441–10446. 2019. View Article : Google Scholar | |
Popp B, Krumbiegel M, Grosch J, Sommer A, Uebe S, Kohl Z, Plötz S, Farrell M, Trautmann U, Kraus C, et al: Need for high-resolution genetic analysis in iPSC: Results and lessons from the ForIPS consortium. Sci Rep. 8:172012018. View Article : Google Scholar | |
Ohm JE, Mali P, Van Neste L, Berman DM, Liang L, Pandiyan K, Briggs KJ, Zhang W, Argani P, Simons B, et al: Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res. 70:7662–7673. 2010. View Article : Google Scholar | |
Pick M, Stelzer Y, Bar-Nur O, Mayshar Y, Eden A and Benvenisty N: Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells. 27:2686–2690. 2009. View Article : Google Scholar | |
Ji J, Sharma V, Qi S, Guarch ME, Zhao P, Luo Z, Fan W, Wang Y, Mbabaali F, Neculai D, et al: Antioxidant supplementation reduces genomic aberrations in human induced pluripotent stem cells. Stem Cell Reports. 2:44–51. 2014. View Article : Google Scholar | |
Luo L, Kawakatsu M, Guo CW, Urata Y, Huang WJ, Ali H, Doi H, Kitajima Y, Tanaka T, Goto S, et al: Effects of antioxidants on the quality and genomic stability of induced pluripotent stem cells. Sci Rep. 4:37792014. View Article : Google Scholar | |
Park HS, Hwang I, Choi KA, Jeong H, Lee JY and Hong S: Generation of induced pluripotent stem cells without genetic defects by small molecules. Biomaterials. 39:47–58. 2015. View Article : Google Scholar | |
Akiyama T, Ishiguro KI, Chikazawa N, Ko SBH, Yukawa M and Ko MSH: ZSCAN4-binding motif-TGCACAC is conserved and enriched in CA/TG microsatellites in both mouse and human genomes. DNA Res. 31:dsad0292024. View Article : Google Scholar | |
Su RJ, Yang Y, Neises A, Payne KJ, Wang J, Viswanathan K, Wakeland EK, Fang X and Zhang XB: Few single nucleotide variations in exomes of human cord blood induced pluripotent stem cells. PLoS One. 8:e599082013. View Article : Google Scholar | |
Butler MG and Menitove JE: Umbilical cord blood banking: An update. J Assist Reprod Genet. 28:669–676. 2011. View Article : Google Scholar |