|
1
|
Gluckman E, Broxmeyer HA, Auerbach AD,
Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G,
Lehn P, et al: Hematopoietic reconstitution in a patient with
Fanconi's anemia by means of umbilical-cord blood from an
HLA-identical sibling. N Engl J Med. 321:1174–1178. 1989.
View Article : Google Scholar
|
|
2
|
Ballen KK, Verter F and Kurtzberg J:
Umbilical cord blood donation: Public or private? Bone Marrow
Transplant. 50:1271–1278. 2015. View Article : Google Scholar
|
|
3
|
O'Donnell PV, Brunstein CG, Fuchs EJ,
Zhang MJ, Allbee-Johnson M, Antin JH, Leifer ES, Elmariah H,
Grunwald MR, Hashmi H, et al: Umbilical cord blood or
HLA-haploidentical transplantation: Real-world outcomes versus
randomized trial outcomes. Transplant Cell Ther. 28:109.e1–109.e8.
2022. View Article : Google Scholar
|
|
4
|
Álvarez-Palomo B, Veiga A, Raya A,
Codinach M, Torrents S, Ponce Verdugo L, Rodriguez-Aierbe C,
Cuellar L, Alenda R, Arbona C, et al: Public cord blood banks as a
source of starting material for clinical grade HLA-homozygous
induced pluripotent stem cells. Stem Cell Res Ther. 13:4082022.
View Article : Google Scholar
|
|
5
|
Abberton K, Tian P, Elefanty A, Stanley E,
Leslie S, Youngson J, Diviney M, Holdsworth R, Tiedemann K, Little
M and Elwood N: Banked cord blood is a potential source of cells
for deriving induced pluripotent stem cell lines suitable for
cellular therapy. Stem Cells Transl Med. 7 (Suppl):S132018.
View Article : Google Scholar
|
|
6
|
Hordyjewska A, Popiołek Ł and Horecka A:
Characteristics of hematopoietic stem cells of umbilical cord
blood. Cytotechnology. 67:387–396. 2015. View Article : Google Scholar
|
|
7
|
Faivre L, Couzin C, Boucher H, Domet T,
Desproges A, Sibony O, Bechard M, Vanneaux V, Larghero J and Cras
A: Associated factors of umbilical cord blood collection quality.
Transfusion. 58:520–531. 2018. View Article : Google Scholar
|
|
8
|
Nies C and Gottwald E: Artificial
hematopoietic stem cell niches-dimensionality matters. Adv Tissue
Eng Regen Med Open Access. 2:236–247. 2017.
|
|
9
|
Mayani H, Wagner JE and Broxmeyer HE: Cord
blood research, banking, and transplantation: Achievements,
challenges, and perspectives. Bone Marrow Transplant. 55:48–61.
2020. View Article : Google Scholar
|
|
10
|
Bowie MB, Kent DG, Dykstra B, McKnight KD,
McCaffrey L, Hoodless PA and Eaves CJ: Identification of a new
intrinsically timed developmental checkpoint that reprograms key
hematopoietic stem cell properties. Proc Natl Acad Sci USA.
104:5878–5882. 2007. View Article : Google Scholar
|
|
11
|
Jung JJ, Buisman SC and de Haan G: Do
hematopoietic stem cells get old? Leukemia. 31:529–531. 2017.
View Article : Google Scholar
|
|
12
|
Jaing TH: Is the benefit-risk ratio for
patients with transfusion-dependent thalassemia treated by
unrelated cord blood transplantation favorable? Int J Mol Sci.
18:24722017. View Article : Google Scholar
|
|
13
|
Roura S, Pujal JM, Gálvez-Montón C and
Bayes-Genis A: The role and potential of umbilical cord blood in an
era of new therapies: A review. Stem Cell Res Ther. 6:1232015.
View Article : Google Scholar
|
|
14
|
Szabolcs P, Park KD, Reese M, Marti L,
Broadwater G and Kurtzberg J: Coexistent naïve phenotype and higher
cycling rate of cord blood T cells as compared to adult peripheral
blood. Exp Hematol. 31:708–714. 2003. View Article : Google Scholar
|
|
15
|
Chalmers IM, Janossy G, Contreras M and
Navarrete C: Intracellular cytokine profile of cord and adult blood
lymphocytes. Blood. 92:11–18. 1998. View Article : Google Scholar
|
|
16
|
Gluckman E, Rocha V, Arcese W, Michel G,
Sanz G, Chan KW, Takahashi TA, Ortega J, Filipovich A, Locatelli F,
et al: Factors associated with outcomes of unrelated cord blood
transplant: Guidelines for donor choice. Exp Hematol. 32:397–407.
2004. View Article : Google Scholar
|
|
17
|
Wagner JE and Gluckman E: Umbilical cord
blood transplantation: The first 20 years. Semin Hematol. 47:3–12.
2010. View Article : Google Scholar
|
|
18
|
Kurtzberg J, Laughlin M, Graham ML, Smith
C, Olson JF, Halperin EC, Ciocci G, Carrier C, Stevens CE and
Rubinstein P: Placental blood as a source of hematopoietic stem
cells for transplantation into unrelated recipients. N Engl J Med.
335:157–166. 1996. View Article : Google Scholar
|
|
19
|
Laughlin MJ, Barker J, Bambach B, Koc ON,
Rizzieri DA, Wagner JE, Gerson SL, Lazarus HM, Cairo M, Stevens CE,
et al: Hematopoietic engraftment and survival in adult recipients
of umbilical-cord blood from unrelated donors. N Engl J Med.
344:1815–1822. 2001. View Article : Google Scholar
|
|
20
|
Broxmeyer HE, Lee MR, Hangoc G, Cooper S,
Prasain N, Kim YJ, Mallett C, Ye Z, Witting S, Cornetta K, et al:
Hematopoietic stem/progenitor cells, generation of induced
pluripotent stem cells, and isolation of endothelial progenitors
from 21- to 23.5-year cryopreserved cord blood. Blood.
117:4773–4777. 2011. View Article : Google Scholar
|
|
21
|
World Marrow Donor Association, . Global
Trend Report. 2022.Retrieved from. https://wmda.info/wp-content/uploads/2023/06/30052023-GTR-2022-Summary-slides.pdfJuly
17–2023
|
|
22
|
Rocha V, Kabbara N, Ionescu I, Ruggeri A,
Purtill D and Gluckman E: Pediatric related and unrelated cord
blood transplantation for malignant diseases. Bone Marrow
Transplant. 44:653–659. 2009. View Article : Google Scholar
|
|
23
|
Herr AL, Kabbara N, Bonfim CMS, Teira P,
Locatelli F, Tiedemann K, Lankester A, Jouet JP, Messina C,
Bertrand Y, et al: Long-term follow-up and factors influencing
outcomes after related HLA-identical cord blood transplantation for
patients with malignancies: An analysis on behalf of Eurocord-EBMT.
Blood. 116:1849–1856. 2010. View Article : Google Scholar
|
|
24
|
Marks DI, Woo KA, Zhong X, Appelbaum FR,
Bachanova V, Barker JN, Brunstein CG, Gibson J, Kebriaei P, Lazarus
HM, et al: Unrelated umbilical cord blood transplant for adult
acute lymphoblastic leukemia in first and second complete
remission: A comparison with allografts from adult unrelated
donors. Haematologica. 99:322–328. 2014. View Article : Google Scholar
|
|
25
|
Eapen M, Rubinstein P, Zhang MJ, Stevens
C, Kurtzberg J, Scaradavou A, Loberiza FR, Champlin RE, Klein JP,
Horowitz MM and Wagner JE: Outcomes of transplantation of unrelated
donor umbilical cord blood and bone marrow in children with acute
leukaemia: A comparison study. Lancet. 369:1947–1954. 2007.
View Article : Google Scholar
|
|
26
|
Eapen M, Wang T, Veys PA, Boelens JJ, St
Martin A, Spellman S, Bonfim CS, Brady C, Cant AJ, Dalle JH, et al:
Allele-level HLA matching for umbilical cord blood transplantation
for non-malignant diseases in children: A retrospective analysis.
Lancet Haematol. 4:e325–e333. 2017. View Article : Google Scholar
|
|
27
|
Eapen M, Klein JP, Ruggeri A, Spellman S,
Lee SJ, Anasetti C, Arcese W, Barker JN, Baxter-Lowe LA, Brown M,
et al: Impact of allele-level HLA matching on outcomes after
myeloablative single unit umbilical cord blood transplantation for
hematologic malignancy. Blood. 123:133–140. 2014. View Article : Google Scholar
|
|
28
|
Eapen M, Klein JP, Sanz GF, Spellman S,
Ruggeri A, Anasetti C, Brown M, Champlin RE, Garcia-Lopez J,
Hattersely G, et al: Effect of donor-recipient HLA matching at HLA
A, B, C, and DRB1 on outcomes after umbilical-cord blood
transplantation for leukaemia and myelodysplastic syndrome: A
retrospective analysis. Lancet Oncol. 12:1214–1221. 2011.
View Article : Google Scholar
|
|
29
|
Passweg JR, Baldomero H, Chabannon C,
Basak GW, de la Cámara R, Corbacioglu S, Dolstra H, Duarte R, Glass
B, Greco R, et al: Hematopoietic cell transplantation and cellular
therapy survey of the EBMT: Monitoring of activities and trends
over 30 years. Bone Marrow Transplant. 56:1651–1664. 2021.
View Article : Google Scholar
|
|
30
|
Dehn J, Spellman S, Hurley CK, Shaw BE,
Barker JN, Burns LJ, Confer DL, Eapen M, Fernandez-Vina M, Hartzman
R, et al: Selection of unrelated donors and cord blood units for
hematopoietic cell transplantation: Guidelines from the
NMDP/CIBMTR. Blood. 134:924–934. 2019. View Article : Google Scholar
|
|
31
|
Gragert L, Eapen M, Williams E, Freeman J,
Spellman S, Baitty R, Hartzman R, Rizzo JD, Horowitz M, Confer D
and Maiers M: HLA match likelihoods for hematopoietic stem-cell
grafts in the U.S. registry. N Engl J Med. 371:339–348. 2014.
View Article : Google Scholar
|
|
32
|
Kanda J, Ichinohe T, Kato S, Uchida N,
Terakura S, Fukuda T, Hidaka M, Ueda Y, Kondo T, Taniguchi S, et
al: Unrelated cord blood transplantation vs related transplantation
with HLA 1-antigen mismatch in the graft-versus-host direction.
Leukemia. 27:286–294. 2013. View Article : Google Scholar
|
|
33
|
Laughlin MJ, Eapen M, Rubinstein P, Wagner
JE, Zhang MJ, Champlin RE, Stevens C, Barker JN, Gale RP, Lazarus
HM, et al: Outcomes after transplantation of cord blood or bone
marrow from unrelated donors in adults with leukemia. N Engl J Med.
351:2265–2275. 2004. View Article : Google Scholar
|
|
34
|
Politikos I, Davis E, Nhaissi M, Wagner
JE, Brunstein CG, Cohen S, Shpall EJ, Milano F, Scaradavou A and
Barker JN; American Society for Transplantation and Cellular
Therapy Cord Blood Special Interest Group, : Guidelines for cord
blood unit selection. Biol Blood Marrow Transplant. 26:2190–2196.
2020. View Article : Google Scholar
|
|
35
|
Rocha V and Gluckman E; Eurocord-Netcord
registry, European Blood and Marrow Transplant Group, : Improving
outcomes of cord blood transplantation: HLA matching, cell dose and
other graft- and transplantation-related factors. Br J Haematol.
147:262–274. 2009. View Article : Google Scholar
|
|
36
|
Ruggeri A: Optimizing cord blood
selection. Hematology Am Soc Hematol Educ Program. 2019:522–531.
2019. View Article : Google Scholar
|
|
37
|
Querol S, Mufti GJ, Marsh SG, Pagliuca A,
Little AM, Shaw BE, Jeffery R, Garcia J, Goldman JM and Madrigal
JA: Cord blood stem cells for hematopoietic stem cell
transplantation in the UK: How big should the bank be?
Haematologica. 94:536–541. 2009. View Article : Google Scholar
|
|
38
|
Wagner JE, Barker JN, DeFor TE, Baker KS,
Blazar BR, Eide C, Goldman A, Kersey J, Krivit W, MacMillan ML, et
al: Transplantation of unrelated donor umbilical cord blood in 102
patients with malignant and nonmalignant diseases: influence of
CD34 cell dose and HLA disparity on treatment-related mortality and
survival. Blood. 100:1611–1618. 2002. View Article : Google Scholar
|
|
39
|
Barker JN, Scaradavou A and Stevens CE:
Combined effect of total nucleated cell dose and HLA match on
transplantation outcome in 1061 cord blood recipients with
hematologic malignancies. Blood. 115:1843–1849. 2010. View Article : Google Scholar
|
|
40
|
Tan JJ: Cord blood with low cell count:
Re-use, rather than discard. Single Cell Biol. 6:32017.
|
|
41
|
Magalon J, Maiers M, Kurtzberg J,
Navarrete C, Rubinstein P, Brown C, Schramm C, Larghero J,
Katsahian S, Chabannon C, et al: Banking or bankrupting: Strategies
for sustaining the economic future of public cord blood banks. PLoS
One. 10:e01434402015. View Article : Google Scholar
|
|
42
|
Marotta D, Rao C and Fossati V: Human
induced pluripotent stem cell (iPSC) handling protocols:
Maintenance, expansion, and cryopreservation. In: Induced
pluripotent stem (iPS) cells: Methods and protocols. Springer; New
York, NY: pp. 1–15. 2021
|
|
43
|
Natunen S, Satomaa T, Pitkänen V, Salo H,
Mikkola M, Natunen J, Otonkoski T and Valmu L: The binding
specificity of the marker antibodies Tra-1–60 and Tra-1–81 reveals
a novel pluripotency-associated type 1 lactosamine epitope.
Glycobiology. 21:1125–1130. 2011. View Article : Google Scholar
|
|
44
|
Horwitz ME, Stiff PJ, Cutler C, Brunstein
C, Hanna R, Maziarz RT, Rezvani AR, Karris NA, McGuirk J, Valcarcel
D, et al: Omidubicel vs standard myeloablative umbilical cord blood
transplantation: Results of a phase 3 randomized study. Blood.
138:1429–1440. 2021. View Article : Google Scholar
|
|
45
|
Cohen S, Roy J, Lachance S, Delisle JS,
Marinier A, Busque L, Roy DC, Barabé F, Ahmad I, Bambace N, et al:
Hematopoietic stem cell transplantation using single UM171-expanded
cord blood: a single-arm, phase 1–2 safety and feasibility study.
Lancet Haematol. 7:e134–e145. 2020. View Article : Google Scholar
|
|
46
|
Stiff PJ, Montesinos P, Peled T, Landau E,
Goudsmid NR, Mandel J, Hasson N, Olesinski E, Glukhman E, Snyder
DA, et al: Cohort-controlled comparison of umbilical cord blood
transplantation using carlecortemcel-L, a single
progenitor-enriched cord blood, to double cord blood unit
transplantation. Biol Blood Marrow Transplant. 24:1463–1470. 2018.
View Article : Google Scholar
|
|
47
|
Anand S, Thomas S, Hyslop T, Adcock J,
Corbet K, Gasparetto C, Lopez R, Long GD, Morris AK, Rizzieri DA,
et al: Transplantation of ex vivo expanded umbilical cord blood
(NiCord) decreases early infection and hospitalization. Biol Blood
Marrow Transplant. 23:1151–1157. 2017. View Article : Google Scholar
|
|
48
|
Horwitz ME, Wease S, Blackwell B,
Valcarcel D, Frassoni F, Boelens JJ, Nierkens S, Jagasia M, Wagner
JE, Kuball J, et al: Phase I/II study of stem-cell transplantation
using a single cord blood unit expanded ex vivo with nicotinamide.
J Clin Oncol. 37:367–374. 2019. View Article : Google Scholar
|
|
49
|
Wagner JE Jr, Brunstein CG, Boitano AE,
DeFor TE, McKenna D, Sumstad D, Blazar BR, Tolar J, Le C, Jones J,
et al: Phase I/II trial of stemregenin-1 expanded umbilical cord
blood hematopoietic stem cells supports testing as a stand-alone
graft. Cell Stem Cell. 18:144–155. 2016. View Article : Google Scholar
|
|
50
|
de Lima M, McNiece I, Robinson SN, Munsell
M, Eapen M, Horowitz M, Alousi A, Saliba R, McMannis JD, Kaur I, et
al: Cord-blood engraftment with ex vivo mesenchymal-cell coculture.
N Engl J Med. 367:2305–2315. 2012. View Article : Google Scholar
|
|
51
|
Horwitz ME, Chao NJ, Rizzieri DA, Long GD,
Sullivan KM, Gasparetto C, Chute JP, Morris A, McDonald C,
Waters-Pick B, et al: Umbilical cord blood expansion with
nicotinamide provides long-term multilineage engraftment. J Clin
Invest. 124:3121–3128. 2014. View Article : Google Scholar
|
|
52
|
Delaney C, Heimfeld S, Brashem-Stein C,
Voorhies H, Manger RL and Bernstein ID: Notch-mediated expansion of
human cord blood progenitor cells capable of rapid myeloid
reconstitution. Nat Med. 16:232–236. 2010. View Article : Google Scholar
|
|
53
|
Saiyin T, Kirkham AM, Bailey AJM, Shorr R,
Pineault N, Maganti HB and Allan DS: Clinical outcomes of umbilical
cord blood transplantation using ex vivo expansion: A systematic
review and meta-analysis of controlled studies. Transplant Cell
Ther. 29:129.e1–129.e9. 2023. View Article : Google Scholar
|
|
54
|
Fares I, Chagraoui J, Gareau Y, Gingras S,
Rjean R, Csaszar E, Cohen S, Anne M, Zandstra PW and Sauvageau G:
UM171 is a novel and potent agonist of human hematopoietic stem
cell renewal. Blood. 122:7982013. View Article : Google Scholar
|
|
55
|
Peled T, Shoham H, Aschengrau D, Yackoubov
D, Frei G, Rosenheimer GN, Lerrer B, Cohen HY, Nagler A, Fibach E
and Peled A: Nicotinamide, a SIRT1 inhibitor, inhibits
differentiation and facilitates expansion of hematopoietic
progenitor cells with enhanced bone marrow homing and engraftment.
Exp Hematol. 40:342–355.e1. 2012. View Article : Google Scholar
|
|
56
|
de Lima M, McMannis J, Gee A, Komanduri K,
Couriel D, Andersson BS, Hosing C, Khouri I, Jones R, Champlin R,
et al: Transplantation of ex vivo expanded cord blood cells using
the copper chelator tetraethylenepentamine: a phase I/II clinical
trial. Bone Marrow Transplant. 41:771–778. 2008. View Article : Google Scholar
|
|
57
|
Mehta RS, Saliba RM, Cao K, Kaur I,
Rezvani K, Chen J, Olson A, Parmar S, Shah N, Marin D, et al: Ex
vivo mesenchymal precursor cell-expanded cord blood transplantation
after reduced-intensity conditioning regimens improves time to
neutrophil recovery. Biol Blood Marrow Transplant. 23:1359–1366.
2017. View Article : Google Scholar
|
|
58
|
Passweg JR, Baldomero H, Bregni M, Cesaro
S, Dreger P, Duarte RF, Falkenburg JH, Kröger N, Farge-Bancel D,
Gaspar HB, et al: Hematopoietic SCT in Europe: Data and trends in
2011. Bone Marrow Transplant. 48:1161–1167. 2013. View Article : Google Scholar
|
|
59
|
Iida M, Dodds A, Akter M, Srivastava A,
Moon JH, Dung PC, Bravo MR, Gyi AA, Jayathilake D, Liu K, et al:
The 2016 APBMT activity survey report: Trends in haploidentical and
cord blood transplantation in the Asia-Pacific region. Blood Cell
Ther. 4:20–28. 2021.
|
|
60
|
Niederwieser D, Baldomero H, Bazuaye N,
Bupp C, Chaudhri N, Corbacioglu S, Elhaddad A, Frutos C, Galeano S,
Hamad N, et al: One and a half million hematopoietic stem cell
transplants: Continuous and differential improvement in worldwide
access with the use of non-identical family donors. Haematologica.
107:1045–1053. 2022. View Article : Google Scholar
|
|
61
|
Fuchs EJ, O'Donnell PV, Eapen M, Logan B,
Antin JH, Dawson P, Devine S, Horowitz MM, Horwitz ME, Karanes C,
et al: Double unrelated umbilical cord blood vs HLA-haploidentical
bone marrow transplantation: the BMT CTN 1101 trial. Blood.
137:420–428. 2021. View Article : Google Scholar
|
|
62
|
Ruggeri A, Labopin M, Savani B,
Paviglianiti A, Blaise D, Volt F, Ciceri F, Bacigalupo A, Tischer
J, Chevallier P, et al: Hematopoietic stem cell transplantation
with unrelated cord blood or haploidentical donor grafts in adult
patients with secondary acute myeloid leukemia, a comparative study
from Eurocord and the ALWP EBMT. Bone Marrow Transplant.
54:1987–1994. 2019. View Article : Google Scholar
|
|
63
|
Konuma T, Kanda J, Yamasaki S, Harada K,
Shimomura Y, Terakura S, Mizuno S, Uchida N, Tanaka M, Doki N, et
al: Single cord blood transplantation versus unmanipulated
haploidentical transplantation for adults with acute myeloid
leukemia in complete remission. Transplant Cell Ther.
27:334.e1–334.e11. 2021. View Article : Google Scholar
|
|
64
|
Wieduwilt MJ, Metheny L, Zhang MJ, Wang
HL, Estrada-Merly N, Marks DI, Al-Homsi AS, Muffly L, Chao N,
Rizzieri D, et al: Haploidentical vs sibling, unrelated, or cord
blood hematopoietic cell transplantation for acute lymphoblastic
leukemia. Blood Adv. 6:339–357. 2022. View Article : Google Scholar
|
|
65
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar
|
|
66
|
Tarazi S, Aguilera-Castrejon A, Joubran C,
Ghanem N, Ashouokhi S, Roncato F, Wildschutz E, Haddad M, Oldak B,
Gomez-Cesar E, et al: Post-gastrulation synthetic embryos generated
ex utero from mouse naive ESCs. Cell. 185:3290–3306.e25. 2022.
View Article : Google Scholar
|
|
67
|
Abberton KM, McDonald TL, Diviney M,
Holdsworth R, Leslie S, Delatycki MB, Liu L, Klamer G, Johnson P
and Elwood NJ: Identification and Re-consent of existing cord blood
donors for creation of induced pluripotent stem cell lines for
potential clinical applications. Stem Cells Transl Med.
11:1052–1060. 2022. View Article : Google Scholar
|
|
68
|
Ye Z, Zhan H, Mali P, Dowey S, Williams
DM, Jang YY, Dang CV, Spivak JL, Moliterno AR and Cheng L:
Human-induced pluripotent stem cells from blood cells of healthy
donors and patients with acquired blood disorders. Blood.
114:5473–5480. 2009. View Article : Google Scholar
|
|
69
|
Takenaka C, Nishishita N, Takada N, Jakt
LM and Kawamata S: Effective generation of iPS cells from CD34+
cord blood cells by inhibition of p53. Exp Hematol. 38:154–162.
2010. View Article : Google Scholar
|
|
70
|
Haase A, Olmer R, Schwanke K, Wunderlich
S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, et
al: Generation of induced pluripotent stem cells from human cord
blood. Cell Stem Cell. 5:434–441. 2009. View Article : Google Scholar
|
|
71
|
Dorn I, Klich K, Arauzo-Bravo MJ, Radstaak
M, Santourlidis S, Ghanjati F, Radke TF, Psathaki OE, Hargus G,
Kramer J, et al: Erythroid differentiation of human induced
pluripotent stem cells is independent of donor cell type of origin.
Haematologica. 100:32–41. 2015. View Article : Google Scholar
|
|
72
|
Giorgetti A, Montserrat N, Rodriguez-Piza
I, Azqueta C, Veiga A and Izpisúa Belmonte JC: Generation of
induced pluripotent stem cells from human cord blood cells with
only two factors: Oct4 and Sox2. Nat Protoc. 5:811–820. 2010.
View Article : Google Scholar
|
|
73
|
Chou BK, Mali P, Huang X, Ye Z, Dowey SN,
Resar LM, Zou C, Zhang YA, Tong J and Cheng L: Efficient human iPS
cell derivation by a non-integrating plasmid from blood cells with
unique epigenetic and gene expression signatures. Cell Res.
21:518–529. 2011. View Article : Google Scholar
|
|
74
|
Ban H, Nishishita N, Fusaki N, Tabata T,
Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S and
Nishikawa S: Efficient generation of transgene-free human induced
pluripotent stem cells (iPSCs) by temperature-sensitive Sendai
virus vectors. Proc Natl Acad Sci USA. 108:14234–14239. 2011.
View Article : Google Scholar
|
|
75
|
Arellano-Viera E, Zabaleta L, Castaño J,
Azkona G, Carvajal-Vergara X and Giorgetti A: Generation of two
transgene-free human iPSC lines from CD133+ cord blood
cells. Stem Cell Res. 36:1014102019. View Article : Google Scholar
|
|
76
|
Tian P, Elefanty A, Stanley EG, Durnall
JC, Thompson LH and Elwood NJ: Creation of GMP-compliant iPSCs from
banked umbilical cord blood. Front Cell Dev Biol. 10:8353212022.
View Article : Google Scholar
|
|
77
|
Gao X, Yourick JJ and Sprando RL:
Comparative transcriptomic analysis of endothelial progenitor cells
derived from umbilical cord blood and adult peripheral blood:
Implications for the generation of induced pluripotent stem cells.
Stem Cell Res. 25:202–212. 2017. View Article : Google Scholar
|
|
78
|
Gao X, Yourick JJ and Sprando RL:
Generation of nine induced pluripotent stem cell lines as an ethnic
diversity panel. Stem Cell Res. 31:193–196. 2018. View Article : Google Scholar
|
|
79
|
Wang Q, Wang Y, Chang C, Ma F, Peng D,
Yang S, An Y, Deng Q, Wang Q, Gao F, et al: Comparative analysis of
mesenchymal stem/stromal cells derived from human induced
pluripotent stem cells and the cognate umbilical cord mesenchymal
stem/stromal cells. Heliyon. 9:e126832023. View Article : Google Scholar
|
|
80
|
Takahashi K, Tanabe K, Ohnuki M, Narita M,
Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell.
131:861–872. 2007. View Article : Google Scholar
|
|
81
|
Kane NM, Nowrouzi A, Mukherjee S, Blundell
MP, Greig JA, Lee WK, Houslay MD, Milligan G, Mountford JC, von
Kalle C, et al: Lentivirus-mediated reprogramming of somatic cells
in the absence of transgenic transcription factors. Mol Ther.
18:2139–2145. 2010. View Article : Google Scholar
|
|
82
|
Shadid M, Shrestha A and Malik P:
Preclinical safety assessment of modified gamma globin lentiviral
vector-mediated autologous hematopoietic stem cell gene therapy for
hemoglobinopathies. PLoS One. 19:e03067192024. View Article : Google Scholar
|
|
83
|
Thompson AA, Walters MC, Kwiatkowski J,
Rasko JEJ, Ribeil JA, Hongeng S, Magrin E, Schiller GJ, Payen E,
Semeraro M, et al: Gene therapy in patients with
transfusion-dependent β-thalassemia. N Engl J Med. 378:1479–1493.
2018. View Article : Google Scholar
|
|
84
|
Kunitomi A, Hirohata R, Arreola V, Osawa
M, Kato TM, Nomura M, Kawaguchi J, Hara H, Kusano K, Takashima Y,
et al: Improved Sendai viral system for reprogramming to naive
pluripotency. Cell Rep Methods. 2:1003172022. View Article : Google Scholar
|
|
85
|
Kunitomi A, Hirohata R, Osawa M, Washizu
K, Arreola V, Saiki N, Kato TM, Nomura M, Kunitomi H, Ohkame T, et
al: H1FOO-DD promotes efficiency and uniformity in reprogramming to
naive pluripotency. Stem Cell Reports. 19:710–728. 2024. View Article : Google Scholar
|
|
86
|
Yoshioka N, Gros E, Li HR, Kumar S, Deacon
DC, Maron C, Muotri AR, Chi NC, Fu XD, Yu BD and Dowdy SF:
Efficient generation of human iPSCs by a synthetic self-replicative
RNA. Cell Stem Cell. 13:246–254. 2013. View Article : Google Scholar
|
|
87
|
Judson RL, Babiarz JE, Venere M and
Blelloch R: Embryonic stem cell-specific microRNAs promote induced
pluripotency. Nat Biotechnol. 27:459–461. 2009. View Article : Google Scholar
|
|
88
|
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H,
Zhao T, Ye J, Yang W, Liu K, et al: Pluripotent stem cells induced
from mouse somatic cells by small-molecule compounds. Science.
341:651–654. 2013. View Article : Google Scholar
|
|
89
|
Qin J, Zhang J, Jiang J, Zhang B, Li J,
Lin X, Wang S, Zhu M, Fan Z, Lv Y, et al: Direct chemical
reprogramming of human cord blood erythroblasts to induced
megakaryocytes that produce platelets. Cell Stem Cell.
29:1229–1245.e7. 2022. View Article : Google Scholar
|
|
90
|
Kajiwara M, Aoi T, Okita K, Takahashi R,
Inoue H, Takayama N, Endo H, Eto K, Toguchida J, Uemoto S and
Yamanaka S: Donor-dependent variations in hepatic differentiation
from human-induced pluripotent stem cells. Proc Natl Acad Sci USA.
109:12538–12543. 2012. View Article : Google Scholar
|
|
91
|
Kim K, Zhao R, Doi A, Ng K, Unternaehrer
J, Cahan P, Huo H, Loh YH, Aryee MJ, Lensch MW, et al: Donor cell
type can influence the epigenome and differentiation potential of
human induced pluripotent stem cells. Nat Biotechnol. 29:1117–1119.
2011. View Article : Google Scholar
|
|
92
|
Sanchez-Freire V, Lee AS, Hu S, Abilez OJ,
Liang P, Lan F, Huber BC, Ong SG, Hong WX, Huang M and Wu JC:
Effect of human donor cell source on differentiation and function
of cardiac induced pluripotent stem cells. J Am Coll Cardiol.
64:436–448. 2014. View Article : Google Scholar
|
|
93
|
Streckfuss-Bömeke K, Wolf F, Azizian A,
Stauske M, Tiburcy M, Wagner S, Hübscher D, Dressel R, Chen S,
Jende J, et al: Comparative study of human-induced pluripotent stem
cells derived from bone marrow cells, hair keratinocytes, and skin
fibroblasts. Eur Heart J. 34:2618–2629. 2013. View Article : Google Scholar
|
|
94
|
Kyttälä A, Moraghebi R, Valensisi C,
Kettunen J, Andrus C, Pasumarthy KK, Nakanishi M, Nishimura K,
Ohtaka M, Weltner J, et al: Genetic variability overrides the
impact of parental cell type and determines iPSC differentiation
potential. Stem Cell Reports. 6:200–212. 2016. View Article : Google Scholar
|
|
95
|
Lo Sardo V, Ferguson W, Erikson GA, Topol
EJ, Baldwin KK and Torkamani A: Influence of donor age on induced
pluripotent stem cells. Nat Biotechnol. 35:69–74. 2017. View Article : Google Scholar
|
|
96
|
Chang CJ, Mitra K, Koya M, Velho M,
Desprat R, Lenz J and Bouhassira EE: Production of embryonic and
fetal-like red blood cells from human induced pluripotent stem
cells. PLoS One. 6:e257612011. View Article : Google Scholar
|
|
97
|
Lee S, Huh JY, Turner DM, Lee S, Robinson
J, Stein JE, Shim SH, Hong CP, Kang MS, Nakagawa M, et al:
Repurposing the cord blood bank for haplobanking of HLA-homozygous
iPSCs and their usefulness to multiple populations. Stem Cells.
36:1552–1566. 2018. View Article : Google Scholar
|
|
98
|
Shin S, Song EY, Kwon YW, Oh S, Park H,
Kim NH and Roh EY: Usefulness of the hematopoietic stem cell donor
pool as a source of HLA-homozygous induced pluripotent stem cells
for haplobanking: Combined analysis of the cord blood inventory and
bone marrow donor registry. Biol Blood Marrow Transplant.
26:e202–e208. 2020. View Article : Google Scholar
|
|
99
|
Yoshida S, Kato TM, Sato Y, Umekage M,
Ichisaka T, Tsukahara M, Takasu N and Yamanaka S: A clinical-grade
HLA haplobank of human induced pluripotent stem cells matching
approximately 40% of the Japanese population. Med. 4:51–66.e10.
2023. View Article : Google Scholar
|
|
100
|
Alvarez-Palomo B, Garcia-Martinez I,
Gayoso J, Raya A, Veiga A, Abad ML, Eiras A, Guzmán-Fulgencio M,
Luis-Hidalgo M, Eguizabal C, et al: Evaluation of the Spanish
population coverage of a prospective HLA haplobank of induced
pluripotent stem cells. Stem Cell Res Ther. 12:2332021. View Article : Google Scholar
|
|
101
|
Sullivan S, Ginty P, McMahon S, May M,
Solomon SL, Kurtz A, Stacey GN, Bennaceur Griscelli A, Li RA, Barry
J, et al: The global alliance for iPSC therapies (GAiT). Stem Cell
Res. 49:1020362020. View Article : Google Scholar
|
|
102
|
Meissner TB, Schulze HS and Dale SM:
Immune editing: Overcoming immune barriers in stem cell
transplantation. Curr Stem Cell Rep. 8:206–218. 2022. View Article : Google Scholar
|
|
103
|
Deuse T, Hu X, Gravina A, Wang D,
Tediashvili G, De C, Thayer WO, Wahl A, Garcia JV, Reichenspurner
H, et al: Hypoimmunogenic derivatives of induced pluripotent stem
cells evade immune rejection in fully immunocompetent allogeneic
recipients. Nat Biotechnol. 37:252–258. 2019. View Article : Google Scholar
|
|
104
|
Han X, Wang M, Duan S, Franco PJ, Kenty
JH, Hedrick P, Xia Y, Allen A, Ferreira LMR, Strominger JL, et al:
Generation of hypoimmunogenic human pluripotent stem cells. Proc
Natl Acad Sci USA. 116:10441–10446. 2019. View Article : Google Scholar
|
|
105
|
Popp B, Krumbiegel M, Grosch J, Sommer A,
Uebe S, Kohl Z, Plötz S, Farrell M, Trautmann U, Kraus C, et al:
Need for high-resolution genetic analysis in iPSC: Results and
lessons from the ForIPS consortium. Sci Rep. 8:172012018.
View Article : Google Scholar
|
|
106
|
Ohm JE, Mali P, Van Neste L, Berman DM,
Liang L, Pandiyan K, Briggs KJ, Zhang W, Argani P, Simons B, et al:
Cancer-related epigenome changes associated with reprogramming to
induced pluripotent stem cells. Cancer Res. 70:7662–7673. 2010.
View Article : Google Scholar
|
|
107
|
Pick M, Stelzer Y, Bar-Nur O, Mayshar Y,
Eden A and Benvenisty N: Clone- and gene-specific aberrations of
parental imprinting in human induced pluripotent stem cells. Stem
Cells. 27:2686–2690. 2009. View Article : Google Scholar
|
|
108
|
Ji J, Sharma V, Qi S, Guarch ME, Zhao P,
Luo Z, Fan W, Wang Y, Mbabaali F, Neculai D, et al: Antioxidant
supplementation reduces genomic aberrations in human induced
pluripotent stem cells. Stem Cell Reports. 2:44–51. 2014.
View Article : Google Scholar
|
|
109
|
Luo L, Kawakatsu M, Guo CW, Urata Y, Huang
WJ, Ali H, Doi H, Kitajima Y, Tanaka T, Goto S, et al: Effects of
antioxidants on the quality and genomic stability of induced
pluripotent stem cells. Sci Rep. 4:37792014. View Article : Google Scholar
|
|
110
|
Park HS, Hwang I, Choi KA, Jeong H, Lee JY
and Hong S: Generation of induced pluripotent stem cells without
genetic defects by small molecules. Biomaterials. 39:47–58. 2015.
View Article : Google Scholar
|
|
111
|
Akiyama T, Ishiguro KI, Chikazawa N, Ko
SBH, Yukawa M and Ko MSH: ZSCAN4-binding motif-TGCACAC is conserved
and enriched in CA/TG microsatellites in both mouse and human
genomes. DNA Res. 31:dsad0292024. View Article : Google Scholar
|
|
112
|
Su RJ, Yang Y, Neises A, Payne KJ, Wang J,
Viswanathan K, Wakeland EK, Fang X and Zhang XB: Few single
nucleotide variations in exomes of human cord blood induced
pluripotent stem cells. PLoS One. 8:e599082013. View Article : Google Scholar
|
|
113
|
Butler MG and Menitove JE: Umbilical cord
blood banking: An update. J Assist Reprod Genet. 28:669–676. 2011.
View Article : Google Scholar
|