Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2024 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2024 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review)

  • Authors:
    • Fatin Fazrina Roslan
    • Yuexin Yu
    • Ghee Chien Ooi
    • Khong Lek Then
    • Kong Yong Then
    • Soon-Keng Cheong
    • Zhikun Guo
    • Mohd Nor Azim Ab Patar
    • Jun Jie Tan
  • View Affiliations / Copyright

    Affiliations: Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang 13200, Malaysia, Cryocord Sdn Bhd, Bio‑X Centre, Cyberjaya, Selangor 63000, Malaysia, Department of Medicine, Faculty of Medicine and Health Sciences, Tunku Abdul Rahman University, Kajang, Selangor 43000, Malaysia, Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, Zhengzhou 453000, P.R. China, Department of Neurosciences, University of Science Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
  • Article Number: 114
    |
    Published online on: October 14, 2024
       https://doi.org/10.3892/ijmm.2024.5438
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Umbilical cord blood (CB) is a valuable source of haematopoietic stem/progenitor cells (HSCs) and is known for the therapeutic use of these cells in treating blood disorders. However, challenges such as a high running cost and the increasing availability of treatment alternatives have made the effort to sustain CB banks difficult. This prompts the need to revisit the current CB banking initiatives to retain the relevance in this ever‑changing era parallel to the fast‑pacing development of cell‑based therapeutic technology. Cellular reprogramming has shown to have successfully converted adult somatic cells into human induced pluripotent stem cells (hiPSCs), which promise wider applications in regenerative medicine, personalized treatment and tissue engineering. CB is the youngest, primitive adult cell source that has not been affected by any prior, acquired disorders. Hence, using CB as a source of candidate cells for generating hiPSCs may be a new opportunity for banking, albeit with challenges. The present review summarizes the rise and fall of CB usage and banking for clinical therapy, the considerations in reprogramming CB into hiPSCs, the safety concerns regarding the use of hiPSC‑derived cells in clinical transplantation and the prospect of using CB‑derived hiPSCs.
View Figures

Figure 1

Figure 2

View References

1 

Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P, et al: Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 321:1174–1178. 1989. View Article : Google Scholar

2 

Ballen KK, Verter F and Kurtzberg J: Umbilical cord blood donation: Public or private? Bone Marrow Transplant. 50:1271–1278. 2015. View Article : Google Scholar

3 

O'Donnell PV, Brunstein CG, Fuchs EJ, Zhang MJ, Allbee-Johnson M, Antin JH, Leifer ES, Elmariah H, Grunwald MR, Hashmi H, et al: Umbilical cord blood or HLA-haploidentical transplantation: Real-world outcomes versus randomized trial outcomes. Transplant Cell Ther. 28:109.e1–109.e8. 2022. View Article : Google Scholar

4 

Álvarez-Palomo B, Veiga A, Raya A, Codinach M, Torrents S, Ponce Verdugo L, Rodriguez-Aierbe C, Cuellar L, Alenda R, Arbona C, et al: Public cord blood banks as a source of starting material for clinical grade HLA-homozygous induced pluripotent stem cells. Stem Cell Res Ther. 13:4082022. View Article : Google Scholar

5 

Abberton K, Tian P, Elefanty A, Stanley E, Leslie S, Youngson J, Diviney M, Holdsworth R, Tiedemann K, Little M and Elwood N: Banked cord blood is a potential source of cells for deriving induced pluripotent stem cell lines suitable for cellular therapy. Stem Cells Transl Med. 7 (Suppl):S132018. View Article : Google Scholar

6 

Hordyjewska A, Popiołek Ł and Horecka A: Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology. 67:387–396. 2015. View Article : Google Scholar

7 

Faivre L, Couzin C, Boucher H, Domet T, Desproges A, Sibony O, Bechard M, Vanneaux V, Larghero J and Cras A: Associated factors of umbilical cord blood collection quality. Transfusion. 58:520–531. 2018. View Article : Google Scholar

8 

Nies C and Gottwald E: Artificial hematopoietic stem cell niches-dimensionality matters. Adv Tissue Eng Regen Med Open Access. 2:236–247. 2017.

9 

Mayani H, Wagner JE and Broxmeyer HE: Cord blood research, banking, and transplantation: Achievements, challenges, and perspectives. Bone Marrow Transplant. 55:48–61. 2020. View Article : Google Scholar

10 

Bowie MB, Kent DG, Dykstra B, McKnight KD, McCaffrey L, Hoodless PA and Eaves CJ: Identification of a new intrinsically timed developmental checkpoint that reprograms key hematopoietic stem cell properties. Proc Natl Acad Sci USA. 104:5878–5882. 2007. View Article : Google Scholar

11 

Jung JJ, Buisman SC and de Haan G: Do hematopoietic stem cells get old? Leukemia. 31:529–531. 2017. View Article : Google Scholar

12 

Jaing TH: Is the benefit-risk ratio for patients with transfusion-dependent thalassemia treated by unrelated cord blood transplantation favorable? Int J Mol Sci. 18:24722017. View Article : Google Scholar

13 

Roura S, Pujal JM, Gálvez-Montón C and Bayes-Genis A: The role and potential of umbilical cord blood in an era of new therapies: A review. Stem Cell Res Ther. 6:1232015. View Article : Google Scholar

14 

Szabolcs P, Park KD, Reese M, Marti L, Broadwater G and Kurtzberg J: Coexistent naïve phenotype and higher cycling rate of cord blood T cells as compared to adult peripheral blood. Exp Hematol. 31:708–714. 2003. View Article : Google Scholar

15 

Chalmers IM, Janossy G, Contreras M and Navarrete C: Intracellular cytokine profile of cord and adult blood lymphocytes. Blood. 92:11–18. 1998. View Article : Google Scholar

16 

Gluckman E, Rocha V, Arcese W, Michel G, Sanz G, Chan KW, Takahashi TA, Ortega J, Filipovich A, Locatelli F, et al: Factors associated with outcomes of unrelated cord blood transplant: Guidelines for donor choice. Exp Hematol. 32:397–407. 2004. View Article : Google Scholar

17 

Wagner JE and Gluckman E: Umbilical cord blood transplantation: The first 20 years. Semin Hematol. 47:3–12. 2010. View Article : Google Scholar

18 

Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, Ciocci G, Carrier C, Stevens CE and Rubinstein P: Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med. 335:157–166. 1996. View Article : Google Scholar

19 

Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE, Gerson SL, Lazarus HM, Cairo M, Stevens CE, et al: Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med. 344:1815–1822. 2001. View Article : Google Scholar

20 

Broxmeyer HE, Lee MR, Hangoc G, Cooper S, Prasain N, Kim YJ, Mallett C, Ye Z, Witting S, Cornetta K, et al: Hematopoietic stem/progenitor cells, generation of induced pluripotent stem cells, and isolation of endothelial progenitors from 21- to 23.5-year cryopreserved cord blood. Blood. 117:4773–4777. 2011. View Article : Google Scholar

21 

World Marrow Donor Association, . Global Trend Report. 2022.Retrieved from. https://wmda.info/wp-content/uploads/2023/06/30052023-GTR-2022-Summary-slides.pdfJuly 17–2023

22 

Rocha V, Kabbara N, Ionescu I, Ruggeri A, Purtill D and Gluckman E: Pediatric related and unrelated cord blood transplantation for malignant diseases. Bone Marrow Transplant. 44:653–659. 2009. View Article : Google Scholar

23 

Herr AL, Kabbara N, Bonfim CMS, Teira P, Locatelli F, Tiedemann K, Lankester A, Jouet JP, Messina C, Bertrand Y, et al: Long-term follow-up and factors influencing outcomes after related HLA-identical cord blood transplantation for patients with malignancies: An analysis on behalf of Eurocord-EBMT. Blood. 116:1849–1856. 2010. View Article : Google Scholar

24 

Marks DI, Woo KA, Zhong X, Appelbaum FR, Bachanova V, Barker JN, Brunstein CG, Gibson J, Kebriaei P, Lazarus HM, et al: Unrelated umbilical cord blood transplant for adult acute lymphoblastic leukemia in first and second complete remission: A comparison with allografts from adult unrelated donors. Haematologica. 99:322–328. 2014. View Article : Google Scholar

25 

Eapen M, Rubinstein P, Zhang MJ, Stevens C, Kurtzberg J, Scaradavou A, Loberiza FR, Champlin RE, Klein JP, Horowitz MM and Wagner JE: Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: A comparison study. Lancet. 369:1947–1954. 2007. View Article : Google Scholar

26 

Eapen M, Wang T, Veys PA, Boelens JJ, St Martin A, Spellman S, Bonfim CS, Brady C, Cant AJ, Dalle JH, et al: Allele-level HLA matching for umbilical cord blood transplantation for non-malignant diseases in children: A retrospective analysis. Lancet Haematol. 4:e325–e333. 2017. View Article : Google Scholar

27 

Eapen M, Klein JP, Ruggeri A, Spellman S, Lee SJ, Anasetti C, Arcese W, Barker JN, Baxter-Lowe LA, Brown M, et al: Impact of allele-level HLA matching on outcomes after myeloablative single unit umbilical cord blood transplantation for hematologic malignancy. Blood. 123:133–140. 2014. View Article : Google Scholar

28 

Eapen M, Klein JP, Sanz GF, Spellman S, Ruggeri A, Anasetti C, Brown M, Champlin RE, Garcia-Lopez J, Hattersely G, et al: Effect of donor-recipient HLA matching at HLA A, B, C, and DRB1 on outcomes after umbilical-cord blood transplantation for leukaemia and myelodysplastic syndrome: A retrospective analysis. Lancet Oncol. 12:1214–1221. 2011. View Article : Google Scholar

29 

Passweg JR, Baldomero H, Chabannon C, Basak GW, de la Cámara R, Corbacioglu S, Dolstra H, Duarte R, Glass B, Greco R, et al: Hematopoietic cell transplantation and cellular therapy survey of the EBMT: Monitoring of activities and trends over 30 years. Bone Marrow Transplant. 56:1651–1664. 2021. View Article : Google Scholar

30 

Dehn J, Spellman S, Hurley CK, Shaw BE, Barker JN, Burns LJ, Confer DL, Eapen M, Fernandez-Vina M, Hartzman R, et al: Selection of unrelated donors and cord blood units for hematopoietic cell transplantation: Guidelines from the NMDP/CIBMTR. Blood. 134:924–934. 2019. View Article : Google Scholar

31 

Gragert L, Eapen M, Williams E, Freeman J, Spellman S, Baitty R, Hartzman R, Rizzo JD, Horowitz M, Confer D and Maiers M: HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 371:339–348. 2014. View Article : Google Scholar

32 

Kanda J, Ichinohe T, Kato S, Uchida N, Terakura S, Fukuda T, Hidaka M, Ueda Y, Kondo T, Taniguchi S, et al: Unrelated cord blood transplantation vs related transplantation with HLA 1-antigen mismatch in the graft-versus-host direction. Leukemia. 27:286–294. 2013. View Article : Google Scholar

33 

Laughlin MJ, Eapen M, Rubinstein P, Wagner JE, Zhang MJ, Champlin RE, Stevens C, Barker JN, Gale RP, Lazarus HM, et al: Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 351:2265–2275. 2004. View Article : Google Scholar

34 

Politikos I, Davis E, Nhaissi M, Wagner JE, Brunstein CG, Cohen S, Shpall EJ, Milano F, Scaradavou A and Barker JN; American Society for Transplantation and Cellular Therapy Cord Blood Special Interest Group, : Guidelines for cord blood unit selection. Biol Blood Marrow Transplant. 26:2190–2196. 2020. View Article : Google Scholar

35 

Rocha V and Gluckman E; Eurocord-Netcord registry, European Blood and Marrow Transplant Group, : Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol. 147:262–274. 2009. View Article : Google Scholar

36 

Ruggeri A: Optimizing cord blood selection. Hematology Am Soc Hematol Educ Program. 2019:522–531. 2019. View Article : Google Scholar

37 

Querol S, Mufti GJ, Marsh SG, Pagliuca A, Little AM, Shaw BE, Jeffery R, Garcia J, Goldman JM and Madrigal JA: Cord blood stem cells for hematopoietic stem cell transplantation in the UK: How big should the bank be? Haematologica. 94:536–541. 2009. View Article : Google Scholar

38 

Wagner JE, Barker JN, DeFor TE, Baker KS, Blazar BR, Eide C, Goldman A, Kersey J, Krivit W, MacMillan ML, et al: Transplantation of unrelated donor umbilical cord blood in 102 patients with malignant and nonmalignant diseases: influence of CD34 cell dose and HLA disparity on treatment-related mortality and survival. Blood. 100:1611–1618. 2002. View Article : Google Scholar

39 

Barker JN, Scaradavou A and Stevens CE: Combined effect of total nucleated cell dose and HLA match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood. 115:1843–1849. 2010. View Article : Google Scholar

40 

Tan JJ: Cord blood with low cell count: Re-use, rather than discard. Single Cell Biol. 6:32017.

41 

Magalon J, Maiers M, Kurtzberg J, Navarrete C, Rubinstein P, Brown C, Schramm C, Larghero J, Katsahian S, Chabannon C, et al: Banking or bankrupting: Strategies for sustaining the economic future of public cord blood banks. PLoS One. 10:e01434402015. View Article : Google Scholar

42 

Marotta D, Rao C and Fossati V: Human induced pluripotent stem cell (iPSC) handling protocols: Maintenance, expansion, and cryopreservation. In: Induced pluripotent stem (iPS) cells: Methods and protocols. Springer; New York, NY: pp. 1–15. 2021

43 

Natunen S, Satomaa T, Pitkänen V, Salo H, Mikkola M, Natunen J, Otonkoski T and Valmu L: The binding specificity of the marker antibodies Tra-1–60 and Tra-1–81 reveals a novel pluripotency-associated type 1 lactosamine epitope. Glycobiology. 21:1125–1130. 2011. View Article : Google Scholar

44 

Horwitz ME, Stiff PJ, Cutler C, Brunstein C, Hanna R, Maziarz RT, Rezvani AR, Karris NA, McGuirk J, Valcarcel D, et al: Omidubicel vs standard myeloablative umbilical cord blood transplantation: Results of a phase 3 randomized study. Blood. 138:1429–1440. 2021. View Article : Google Scholar

45 

Cohen S, Roy J, Lachance S, Delisle JS, Marinier A, Busque L, Roy DC, Barabé F, Ahmad I, Bambace N, et al: Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1–2 safety and feasibility study. Lancet Haematol. 7:e134–e145. 2020. View Article : Google Scholar

46 

Stiff PJ, Montesinos P, Peled T, Landau E, Goudsmid NR, Mandel J, Hasson N, Olesinski E, Glukhman E, Snyder DA, et al: Cohort-controlled comparison of umbilical cord blood transplantation using carlecortemcel-L, a single progenitor-enriched cord blood, to double cord blood unit transplantation. Biol Blood Marrow Transplant. 24:1463–1470. 2018. View Article : Google Scholar

47 

Anand S, Thomas S, Hyslop T, Adcock J, Corbet K, Gasparetto C, Lopez R, Long GD, Morris AK, Rizzieri DA, et al: Transplantation of ex vivo expanded umbilical cord blood (NiCord) decreases early infection and hospitalization. Biol Blood Marrow Transplant. 23:1151–1157. 2017. View Article : Google Scholar

48 

Horwitz ME, Wease S, Blackwell B, Valcarcel D, Frassoni F, Boelens JJ, Nierkens S, Jagasia M, Wagner JE, Kuball J, et al: Phase I/II study of stem-cell transplantation using a single cord blood unit expanded ex vivo with nicotinamide. J Clin Oncol. 37:367–374. 2019. View Article : Google Scholar

49 

Wagner JE Jr, Brunstein CG, Boitano AE, DeFor TE, McKenna D, Sumstad D, Blazar BR, Tolar J, Le C, Jones J, et al: Phase I/II trial of stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell. 18:144–155. 2016. View Article : Google Scholar

50 

de Lima M, McNiece I, Robinson SN, Munsell M, Eapen M, Horowitz M, Alousi A, Saliba R, McMannis JD, Kaur I, et al: Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med. 367:2305–2315. 2012. View Article : Google Scholar

51 

Horwitz ME, Chao NJ, Rizzieri DA, Long GD, Sullivan KM, Gasparetto C, Chute JP, Morris A, McDonald C, Waters-Pick B, et al: Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment. J Clin Invest. 124:3121–3128. 2014. View Article : Google Scholar

52 

Delaney C, Heimfeld S, Brashem-Stein C, Voorhies H, Manger RL and Bernstein ID: Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med. 16:232–236. 2010. View Article : Google Scholar

53 

Saiyin T, Kirkham AM, Bailey AJM, Shorr R, Pineault N, Maganti HB and Allan DS: Clinical outcomes of umbilical cord blood transplantation using ex vivo expansion: A systematic review and meta-analysis of controlled studies. Transplant Cell Ther. 29:129.e1–129.e9. 2023. View Article : Google Scholar

54 

Fares I, Chagraoui J, Gareau Y, Gingras S, Rjean R, Csaszar E, Cohen S, Anne M, Zandstra PW and Sauvageau G: UM171 is a novel and potent agonist of human hematopoietic stem cell renewal. Blood. 122:7982013. View Article : Google Scholar

55 

Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer GN, Lerrer B, Cohen HY, Nagler A, Fibach E and Peled A: Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol. 40:342–355.e1. 2012. View Article : Google Scholar

56 

de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS, Hosing C, Khouri I, Jones R, Champlin R, et al: Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant. 41:771–778. 2008. View Article : Google Scholar

57 

Mehta RS, Saliba RM, Cao K, Kaur I, Rezvani K, Chen J, Olson A, Parmar S, Shah N, Marin D, et al: Ex vivo mesenchymal precursor cell-expanded cord blood transplantation after reduced-intensity conditioning regimens improves time to neutrophil recovery. Biol Blood Marrow Transplant. 23:1359–1366. 2017. View Article : Google Scholar

58 

Passweg JR, Baldomero H, Bregni M, Cesaro S, Dreger P, Duarte RF, Falkenburg JH, Kröger N, Farge-Bancel D, Gaspar HB, et al: Hematopoietic SCT in Europe: Data and trends in 2011. Bone Marrow Transplant. 48:1161–1167. 2013. View Article : Google Scholar

59 

Iida M, Dodds A, Akter M, Srivastava A, Moon JH, Dung PC, Bravo MR, Gyi AA, Jayathilake D, Liu K, et al: The 2016 APBMT activity survey report: Trends in haploidentical and cord blood transplantation in the Asia-Pacific region. Blood Cell Ther. 4:20–28. 2021.

60 

Niederwieser D, Baldomero H, Bazuaye N, Bupp C, Chaudhri N, Corbacioglu S, Elhaddad A, Frutos C, Galeano S, Hamad N, et al: One and a half million hematopoietic stem cell transplants: Continuous and differential improvement in worldwide access with the use of non-identical family donors. Haematologica. 107:1045–1053. 2022. View Article : Google Scholar

61 

Fuchs EJ, O'Donnell PV, Eapen M, Logan B, Antin JH, Dawson P, Devine S, Horowitz MM, Horwitz ME, Karanes C, et al: Double unrelated umbilical cord blood vs HLA-haploidentical bone marrow transplantation: the BMT CTN 1101 trial. Blood. 137:420–428. 2021. View Article : Google Scholar

62 

Ruggeri A, Labopin M, Savani B, Paviglianiti A, Blaise D, Volt F, Ciceri F, Bacigalupo A, Tischer J, Chevallier P, et al: Hematopoietic stem cell transplantation with unrelated cord blood or haploidentical donor grafts in adult patients with secondary acute myeloid leukemia, a comparative study from Eurocord and the ALWP EBMT. Bone Marrow Transplant. 54:1987–1994. 2019. View Article : Google Scholar

63 

Konuma T, Kanda J, Yamasaki S, Harada K, Shimomura Y, Terakura S, Mizuno S, Uchida N, Tanaka M, Doki N, et al: Single cord blood transplantation versus unmanipulated haploidentical transplantation for adults with acute myeloid leukemia in complete remission. Transplant Cell Ther. 27:334.e1–334.e11. 2021. View Article : Google Scholar

64 

Wieduwilt MJ, Metheny L, Zhang MJ, Wang HL, Estrada-Merly N, Marks DI, Al-Homsi AS, Muffly L, Chao N, Rizzieri D, et al: Haploidentical vs sibling, unrelated, or cord blood hematopoietic cell transplantation for acute lymphoblastic leukemia. Blood Adv. 6:339–357. 2022. View Article : Google Scholar

65 

Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar

66 

Tarazi S, Aguilera-Castrejon A, Joubran C, Ghanem N, Ashouokhi S, Roncato F, Wildschutz E, Haddad M, Oldak B, Gomez-Cesar E, et al: Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell. 185:3290–3306.e25. 2022. View Article : Google Scholar

67 

Abberton KM, McDonald TL, Diviney M, Holdsworth R, Leslie S, Delatycki MB, Liu L, Klamer G, Johnson P and Elwood NJ: Identification and Re-consent of existing cord blood donors for creation of induced pluripotent stem cell lines for potential clinical applications. Stem Cells Transl Med. 11:1052–1060. 2022. View Article : Google Scholar

68 

Ye Z, Zhan H, Mali P, Dowey S, Williams DM, Jang YY, Dang CV, Spivak JL, Moliterno AR and Cheng L: Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood. 114:5473–5480. 2009. View Article : Google Scholar

69 

Takenaka C, Nishishita N, Takada N, Jakt LM and Kawamata S: Effective generation of iPS cells from CD34+ cord blood cells by inhibition of p53. Exp Hematol. 38:154–162. 2010. View Article : Google Scholar

70 

Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S, et al: Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell. 5:434–441. 2009. View Article : Google Scholar

71 

Dorn I, Klich K, Arauzo-Bravo MJ, Radstaak M, Santourlidis S, Ghanjati F, Radke TF, Psathaki OE, Hargus G, Kramer J, et al: Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin. Haematologica. 100:32–41. 2015. View Article : Google Scholar

72 

Giorgetti A, Montserrat N, Rodriguez-Piza I, Azqueta C, Veiga A and Izpisúa Belmonte JC: Generation of induced pluripotent stem cells from human cord blood cells with only two factors: Oct4 and Sox2. Nat Protoc. 5:811–820. 2010. View Article : Google Scholar

73 

Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J and Cheng L: Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 21:518–529. 2011. View Article : Google Scholar

74 

Ban H, Nishishita N, Fusaki N, Tabata T, Saeki K, Shikamura M, Takada N, Inoue M, Hasegawa M, Kawamata S and Nishikawa S: Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proc Natl Acad Sci USA. 108:14234–14239. 2011. View Article : Google Scholar

75 

Arellano-Viera E, Zabaleta L, Castaño J, Azkona G, Carvajal-Vergara X and Giorgetti A: Generation of two transgene-free human iPSC lines from CD133+ cord blood cells. Stem Cell Res. 36:1014102019. View Article : Google Scholar

76 

Tian P, Elefanty A, Stanley EG, Durnall JC, Thompson LH and Elwood NJ: Creation of GMP-compliant iPSCs from banked umbilical cord blood. Front Cell Dev Biol. 10:8353212022. View Article : Google Scholar

77 

Gao X, Yourick JJ and Sprando RL: Comparative transcriptomic analysis of endothelial progenitor cells derived from umbilical cord blood and adult peripheral blood: Implications for the generation of induced pluripotent stem cells. Stem Cell Res. 25:202–212. 2017. View Article : Google Scholar

78 

Gao X, Yourick JJ and Sprando RL: Generation of nine induced pluripotent stem cell lines as an ethnic diversity panel. Stem Cell Res. 31:193–196. 2018. View Article : Google Scholar

79 

Wang Q, Wang Y, Chang C, Ma F, Peng D, Yang S, An Y, Deng Q, Wang Q, Gao F, et al: Comparative analysis of mesenchymal stem/stromal cells derived from human induced pluripotent stem cells and the cognate umbilical cord mesenchymal stem/stromal cells. Heliyon. 9:e126832023. View Article : Google Scholar

80 

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar

81 

Kane NM, Nowrouzi A, Mukherjee S, Blundell MP, Greig JA, Lee WK, Houslay MD, Milligan G, Mountford JC, von Kalle C, et al: Lentivirus-mediated reprogramming of somatic cells in the absence of transgenic transcription factors. Mol Ther. 18:2139–2145. 2010. View Article : Google Scholar

82 

Shadid M, Shrestha A and Malik P: Preclinical safety assessment of modified gamma globin lentiviral vector-mediated autologous hematopoietic stem cell gene therapy for hemoglobinopathies. PLoS One. 19:e03067192024. View Article : Google Scholar

83 

Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil JA, Hongeng S, Magrin E, Schiller GJ, Payen E, Semeraro M, et al: Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 378:1479–1493. 2018. View Article : Google Scholar

84 

Kunitomi A, Hirohata R, Arreola V, Osawa M, Kato TM, Nomura M, Kawaguchi J, Hara H, Kusano K, Takashima Y, et al: Improved Sendai viral system for reprogramming to naive pluripotency. Cell Rep Methods. 2:1003172022. View Article : Google Scholar

85 

Kunitomi A, Hirohata R, Osawa M, Washizu K, Arreola V, Saiki N, Kato TM, Nomura M, Kunitomi H, Ohkame T, et al: H1FOO-DD promotes efficiency and uniformity in reprogramming to naive pluripotency. Stem Cell Reports. 19:710–728. 2024. View Article : Google Scholar

86 

Yoshioka N, Gros E, Li HR, Kumar S, Deacon DC, Maron C, Muotri AR, Chi NC, Fu XD, Yu BD and Dowdy SF: Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell. 13:246–254. 2013. View Article : Google Scholar

87 

Judson RL, Babiarz JE, Venere M and Blelloch R: Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 27:459–461. 2009. View Article : Google Scholar

88 

Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, et al: Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 341:651–654. 2013. View Article : Google Scholar

89 

Qin J, Zhang J, Jiang J, Zhang B, Li J, Lin X, Wang S, Zhu M, Fan Z, Lv Y, et al: Direct chemical reprogramming of human cord blood erythroblasts to induced megakaryocytes that produce platelets. Cell Stem Cell. 29:1229–1245.e7. 2022. View Article : Google Scholar

90 

Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, Endo H, Eto K, Toguchida J, Uemoto S and Yamanaka S: Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci USA. 109:12538–12543. 2012. View Article : Google Scholar

91 

Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, Huo H, Loh YH, Aryee MJ, Lensch MW, et al: Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol. 29:1117–1119. 2011. View Article : Google Scholar

92 

Sanchez-Freire V, Lee AS, Hu S, Abilez OJ, Liang P, Lan F, Huber BC, Ong SG, Hong WX, Huang M and Wu JC: Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol. 64:436–448. 2014. View Article : Google Scholar

93 

Streckfuss-Bömeke K, Wolf F, Azizian A, Stauske M, Tiburcy M, Wagner S, Hübscher D, Dressel R, Chen S, Jende J, et al: Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts. Eur Heart J. 34:2618–2629. 2013. View Article : Google Scholar

94 

Kyttälä A, Moraghebi R, Valensisi C, Kettunen J, Andrus C, Pasumarthy KK, Nakanishi M, Nishimura K, Ohtaka M, Weltner J, et al: Genetic variability overrides the impact of parental cell type and determines iPSC differentiation potential. Stem Cell Reports. 6:200–212. 2016. View Article : Google Scholar

95 

Lo Sardo V, Ferguson W, Erikson GA, Topol EJ, Baldwin KK and Torkamani A: Influence of donor age on induced pluripotent stem cells. Nat Biotechnol. 35:69–74. 2017. View Article : Google Scholar

96 

Chang CJ, Mitra K, Koya M, Velho M, Desprat R, Lenz J and Bouhassira EE: Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells. PLoS One. 6:e257612011. View Article : Google Scholar

97 

Lee S, Huh JY, Turner DM, Lee S, Robinson J, Stein JE, Shim SH, Hong CP, Kang MS, Nakagawa M, et al: Repurposing the cord blood bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells. 36:1552–1566. 2018. View Article : Google Scholar

98 

Shin S, Song EY, Kwon YW, Oh S, Park H, Kim NH and Roh EY: Usefulness of the hematopoietic stem cell donor pool as a source of HLA-homozygous induced pluripotent stem cells for haplobanking: Combined analysis of the cord blood inventory and bone marrow donor registry. Biol Blood Marrow Transplant. 26:e202–e208. 2020. View Article : Google Scholar

99 

Yoshida S, Kato TM, Sato Y, Umekage M, Ichisaka T, Tsukahara M, Takasu N and Yamanaka S: A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. Med. 4:51–66.e10. 2023. View Article : Google Scholar

100 

Alvarez-Palomo B, Garcia-Martinez I, Gayoso J, Raya A, Veiga A, Abad ML, Eiras A, Guzmán-Fulgencio M, Luis-Hidalgo M, Eguizabal C, et al: Evaluation of the Spanish population coverage of a prospective HLA haplobank of induced pluripotent stem cells. Stem Cell Res Ther. 12:2332021. View Article : Google Scholar

101 

Sullivan S, Ginty P, McMahon S, May M, Solomon SL, Kurtz A, Stacey GN, Bennaceur Griscelli A, Li RA, Barry J, et al: The global alliance for iPSC therapies (GAiT). Stem Cell Res. 49:1020362020. View Article : Google Scholar

102 

Meissner TB, Schulze HS and Dale SM: Immune editing: Overcoming immune barriers in stem cell transplantation. Curr Stem Cell Rep. 8:206–218. 2022. View Article : Google Scholar

103 

Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, Thayer WO, Wahl A, Garcia JV, Reichenspurner H, et al: Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat Biotechnol. 37:252–258. 2019. View Article : Google Scholar

104 

Han X, Wang M, Duan S, Franco PJ, Kenty JH, Hedrick P, Xia Y, Allen A, Ferreira LMR, Strominger JL, et al: Generation of hypoimmunogenic human pluripotent stem cells. Proc Natl Acad Sci USA. 116:10441–10446. 2019. View Article : Google Scholar

105 

Popp B, Krumbiegel M, Grosch J, Sommer A, Uebe S, Kohl Z, Plötz S, Farrell M, Trautmann U, Kraus C, et al: Need for high-resolution genetic analysis in iPSC: Results and lessons from the ForIPS consortium. Sci Rep. 8:172012018. View Article : Google Scholar

106 

Ohm JE, Mali P, Van Neste L, Berman DM, Liang L, Pandiyan K, Briggs KJ, Zhang W, Argani P, Simons B, et al: Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res. 70:7662–7673. 2010. View Article : Google Scholar

107 

Pick M, Stelzer Y, Bar-Nur O, Mayshar Y, Eden A and Benvenisty N: Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells. 27:2686–2690. 2009. View Article : Google Scholar

108 

Ji J, Sharma V, Qi S, Guarch ME, Zhao P, Luo Z, Fan W, Wang Y, Mbabaali F, Neculai D, et al: Antioxidant supplementation reduces genomic aberrations in human induced pluripotent stem cells. Stem Cell Reports. 2:44–51. 2014. View Article : Google Scholar

109 

Luo L, Kawakatsu M, Guo CW, Urata Y, Huang WJ, Ali H, Doi H, Kitajima Y, Tanaka T, Goto S, et al: Effects of antioxidants on the quality and genomic stability of induced pluripotent stem cells. Sci Rep. 4:37792014. View Article : Google Scholar

110 

Park HS, Hwang I, Choi KA, Jeong H, Lee JY and Hong S: Generation of induced pluripotent stem cells without genetic defects by small molecules. Biomaterials. 39:47–58. 2015. View Article : Google Scholar

111 

Akiyama T, Ishiguro KI, Chikazawa N, Ko SBH, Yukawa M and Ko MSH: ZSCAN4-binding motif-TGCACAC is conserved and enriched in CA/TG microsatellites in both mouse and human genomes. DNA Res. 31:dsad0292024. View Article : Google Scholar

112 

Su RJ, Yang Y, Neises A, Payne KJ, Wang J, Viswanathan K, Wakeland EK, Fang X and Zhang XB: Few single nucleotide variations in exomes of human cord blood induced pluripotent stem cells. PLoS One. 8:e599082013. View Article : Google Scholar

113 

Butler MG and Menitove JE: Umbilical cord blood banking: An update. J Assist Reprod Genet. 28:669–676. 2011. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Roslan F, Yu Y, Ooi G, Then KL, Then K, Cheong S, Guo Z, Ab Patar M and Tan J: From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review). Int J Mol Med 54: 114, 2024.
APA
Roslan, F., Yu, Y., Ooi, G., Then, K.L., Then, K., Cheong, S. ... Tan, J. (2024). From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review). International Journal of Molecular Medicine, 54, 114. https://doi.org/10.3892/ijmm.2024.5438
MLA
Roslan, F., Yu, Y., Ooi, G., Then, K. L., Then, K., Cheong, S., Guo, Z., Ab Patar, M., Tan, J."From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review)". International Journal of Molecular Medicine 54.6 (2024): 114.
Chicago
Roslan, F., Yu, Y., Ooi, G., Then, K. L., Then, K., Cheong, S., Guo, Z., Ab Patar, M., Tan, J."From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review)". International Journal of Molecular Medicine 54, no. 6 (2024): 114. https://doi.org/10.3892/ijmm.2024.5438
Copy and paste a formatted citation
x
Spandidos Publications style
Roslan F, Yu Y, Ooi G, Then KL, Then K, Cheong S, Guo Z, Ab Patar M and Tan J: From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review). Int J Mol Med 54: 114, 2024.
APA
Roslan, F., Yu, Y., Ooi, G., Then, K.L., Then, K., Cheong, S. ... Tan, J. (2024). From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review). International Journal of Molecular Medicine, 54, 114. https://doi.org/10.3892/ijmm.2024.5438
MLA
Roslan, F., Yu, Y., Ooi, G., Then, K. L., Then, K., Cheong, S., Guo, Z., Ab Patar, M., Tan, J."From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review)". International Journal of Molecular Medicine 54.6 (2024): 114.
Chicago
Roslan, F., Yu, Y., Ooi, G., Then, K. L., Then, K., Cheong, S., Guo, Z., Ab Patar, M., Tan, J."From banked human cord blood to induced pluripotent stem cells: New opportunities and promise in induced pluripotent stem cell banking (Review)". International Journal of Molecular Medicine 54, no. 6 (2024): 114. https://doi.org/10.3892/ijmm.2024.5438
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team