Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2024 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2024 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review)

  • Authors:
    • Meihong Chen
    • Hui Li
    • Yun Li
    • Yangui Luo
    • Yuan He
    • Xiaorong Shui
    • Wei Lei
  • View Affiliations / Copyright

    Affiliations: Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 115
    |
    Published online on: October 16, 2024
       https://doi.org/10.3892/ijmm.2024.5439
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pulmonary hypertension (PH) is a progressive life‑threatening cardiopulmonary vascular disease involving various pathological mechanisms, including hypoxia, cellular metabolism, inflammation, abnormal proliferation and apoptosis. Specifically, metabolism has attracted the most attention. Glucose metabolism is essential to maintain the cardiopulmonary vascular function. However, once exposed to a noxious stimulus, intracellular glucose metabolism changes or switches to an alternative pathway more suitable for adaptation, which is known as metabolic reprogramming. By promoting the switch from oxidative phosphorylation to glycolysis, cellular metabolic reprogramming plays an important role in PH development. Suppression of glucose oxidation and secondary upregulation of glycolysis are responsible for various features of PH, including the proliferation and apoptosis resistance of pulmonary artery endothelial and smooth muscle cells. In the present review, the roles and importance of the glucose metabolism shift were discussed to aid in the development of new treatment approaches for PH.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, et al: 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 61:22008792023. View Article : Google Scholar

2 

Jia Z, Wang S, Yan H, Cao Y, Zhang X, Wang L, Zhang Z, Lin S, Wang X and Mao J: Pulmonary vascular remodeling in pulmonary hypertension. J Pers Med. 13:3662023. View Article : Google Scholar : PubMed/NCBI

3 

Kang M, Hart CM, Kempker JA, Veeraraghavan S and Trammell AW: Pulmonary hypertension mortality trends in United States 1999-2019. Ann Epidemiol. 75:47–52. 2022. View Article : Google Scholar : PubMed/NCBI

4 

Hoeper MM, Humbert M, Souza R, Idrees M, Kawut SM, Sliwa-Hahnle K, Jing ZC and Gibbs JSR: A global view of pulmonary hypertension. Lancet Respir Med. 4:306–322. 2016. View Article : Google Scholar : PubMed/NCBI

5 

George MP, Gladwin MT and Graham BB: Exploring new therapeutic pathways in pulmonary hypertension. metabolism, proliferation, and personalized medicine. Am J Respir Cell Mol Biol. 63:279–292. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Culley MK and Chan SY: Mitochondrial metabolism in pulmonary hypertension: Beyond mountains there are mountains. J Clin Invest. 128:3704–3715. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Smolders VFED, Rodríguez C, Morén C, Blanco I, Osorio J, Piccari L, Bonjoch C, Quax PHA, Peinado VI, Castellà M, et al: Decreased glycolysis as metabolic fingerprint of endothelial cells in chronic thromboembolic pulmonary hypertension. Am J Respir Cell Mol Biol. 63:710–713. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Goncharov DA, Kudryashova TV, Ziai H, Ihida-Stansbury K, DeLisser H, Krymskaya VP, Tuder RM, Kawut SM and Goncharova EA: Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension. Circulation. 129:864–874. 2014. View Article : Google Scholar

9 

Singh N, Manhas A, Kaur G, Jagavelu K and Hanif K: Inhibition of fatty acid synthase is protective in pulmonary hypertension. Br J Pharmacol. 173:2030–2045. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Bertero T, Perk D and Chan SY: The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension. Expert Opin Ther Targets. 23:511–524. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Hantzidiamantis PJ and Lappin SL: StatPearls; Treasure Island (FL): 2023

12 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar : PubMed/NCBI

13 

Vaupel P and Multhoff G: Revisiting the Warburg effect: Historical dogma versus current understanding. J Physiol. 599:1745–1757. 2021. View Article : Google Scholar

14 

Archer SL: Pyruvate kinase and warburg metabolism in pulmonary arterial hypertension: Uncoupled Glycolysis and the cancer-like phenotype of pulmonary arterial hypertension. Circulation. 136:2486–2490. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Archer SL: Acquired mitochondrial abnormalities, including epigenetic inhibition of superoxide dismutase 2, in pulmonary hypertension and cancer: Therapeutic implications. Adv Exp Med Biol. 903:29–53. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Vaupel P, Schmidberger H and Mayer A: The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Condon D, Agarwal S, Chakraborty A and de Jesus Perez VA: The cancer hypothesis of pulmonary arterial hypertension: The next ten years. Am J Physiol Lung Cell Mol Physiol. 318:L1138–L1139. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Christou H and Khalil RA: Mechanisms of pulmonary vascular dysfunction in pulmonary hypertension and implications for novel therapies. Am J Physiol Heart Circ Physiol. 322:H702–H724. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Ryanto GRT, Suraya R and Nagano T: Mitochondrial dysfunction in pulmonary hypertension. Antioxidants (Basel). 12:3722023. View Article : Google Scholar : PubMed/NCBI

20 

Arai MA, Sakuraba K, Makita Y, Hara Y and Ishibashi M: Evaluation of naturally occurring HIF-1 inhibitors for pulmonary arterial hypertension. Chembiochem. 22:2799–2804. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Ahmadi A, Ohira H and Mielniczuk LM: FDG PET imaging for identifying pulmonary hypertension and right heart failure. Curr Cardiol Rep. 17:5552015. View Article : Google Scholar

22 

Abikhzer Y, Probst S and Rush C: Pulmonary hypertension findings detected by F-18 FDG PET scan. Clin Nucl Med. 33:405–406. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Marsboom G, Wietholt C, Haney CR, Toth PT, Ryan JJ, Morrow E, Thenappan T, Bache-Wiig P, Piao L, Paul J, et al: Lung 18F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension. Am J Respir Crit Care Med. 185:670–679. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Zhao L, Ashek A, Wang L, Fang W, Dabral S, Dubois O, Cupitt J, Pullamsetti SS, Cotroneo E, Jones H, et al: Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: Potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation. 128:1214–1224. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, Lavoie JR, Zhang H, Long L, Flockton AR, et al: Identification of MicroRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (polypyrimidine tract binding protein) and pyruvate kinase M2. Circulation. 136:2451–2467. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Akagi S, Nakamura K, Kondo M, Hirohata S, Udono H, Nishida M, Saito Y, Yoshida M, Miyoshi T and Ito H: Evidence for hypoxia-induced shift in ATP production from glycolysis to mitochondrial respiration in pulmonary artery smooth muscle cells in pulmonary arterial hypertension. J Clin Med. 12:50282023. View Article : Google Scholar : PubMed/NCBI

27 

Fijalkowska I, Xu W, Comhair SAA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC and Tuder RM: Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am J Pathol. 176:1130–1138. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Cao Y, Zhang X, Wang L, Yang Q, Ma Q, Xu J, Wang J, Kovacs L, Ayon RJ, Liu Z, et al: PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. Proc Natl Acad Sci USA. 116:13394–13403. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Boehme J, Sun X, Tormos KV, Gong W, Kellner M, Datar SA, Kameny RJ, Yuan JXJ, Raff GW, Fineman JR, et al: Pulmonary artery smooth muscle cell hyperproliferation and metabolic shift triggered by pulmonary overcirculation. Am J Physiol Heart Circ Physiol. 311:H944–H957. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Wujak M, Veith C, Wu CY, Wilke T, Kanbagli ZI, Novoyatleva T, Guenther A, Seeger W, Grimminger F, Sommer N, et al: Adenylate kinase 4-A Key regulator of proliferation and metabolic shift in human pulmonary arterial smooth muscle cells via Akt and HIF-1α signaling pathways. Int J Mol Sci. 22:103712021. View Article : Google Scholar

31 

Xu W and Erzurum SC: Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension. Compr Physiol. 1:357–372. 2011.PubMed/NCBI

32 

Pullamsetti SS, Mamazhakypov A, Weissmann N, Seeger W and Savai R: Hypoxia-inducible factor signaling in pulmonary hypertension. J Clin Invest. 130:5638–5651. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell. 148:399–408. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Paredes F, Williams HC and San Martin A: Metabolic adaptation in hypoxia and cancer. Cancer Lett. 502:133–142. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Yu B, Wang X, Song Y, Xie G, Jiao S, Shi L, Cao X, Han X and Qu A: The role of hypoxia-inducible factors in cardiovascular diseases. Pharmacol Ther. 238:1081862022. View Article : Google Scholar : PubMed/NCBI

36 

Mobasheri A, Richardson S, Mobasheri R, Shakibaei M and Hoyland JA: Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3: Putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes. Histol Histopathol. 20:1327–1338. 2005.PubMed/NCBI

37 

Mamun AA, Hayashi H, Yamamura A, Nayeem MJ and Sato M: Hypoxia induces the translocation of glucose transporter 1 to the plasma membrane in vascular endothelial cells. J Physiol Sci. 70:442020. View Article : Google Scholar : PubMed/NCBI

38 

Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Menendez MT, Teygong C, Wade K, Florimond C and Blader IJ: siRNA screening identifies the host hexokinase 2 (HK2) gene as an important hypoxia-inducible transcription factor 1 (HIF-1) target gene in toxoplasma gondii-infected cells. mBio. 6:e004622015. View Article : Google Scholar : PubMed/NCBI

40 

Cui XG, Han ZT, He SH, Wu XD, Chen TR, Shao CH, Chen DL, Su N, Chen YM, Wang T, et al: HIF1/2α mediates hypoxia-induced LDHA expression in human pancreatic cancer cells. Oncotarget. 8:24840–24852. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, et al: Flavonoids targeting HIF-1: Implications on cancer metabolism. Cancers (Basel). 13:1302021. View Article : Google Scholar : PubMed/NCBI

42 

Michelakis ED, Gurtu V, Webster L, Barnes G, Watson G, Howard L, Cupitt J, Paterson I, Thompson RB, Chow K, et al: Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci Transl Med. 9:eaao45832017. View Article : Google Scholar : PubMed/NCBI

43 

Chen J, Zhang M, Liu Y, Zhao S, Wang Y, Wang M, Niu W, Jin F and Li Z: Histone lactylation driven by mROS-mediated glycolytic shift promotes hypoxic pulmonary hypertension. J Mol Cell Biol. 14:mjac0732023. View Article : Google Scholar :

44 

Cotroneo E, Ashek A, Wang L, Wharton J, Dubois O, Bozorgi S, Busbridge M, Alavian KN, Wilkins MR and Zhao L: Iron homeostasis and pulmonary hypertension: Iron deficiency leads to pulmonary vascular remodeling in the rat. Circ Res. 116:1680–1690. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Wedgwood S, Lakshminrusimha S, Schumacker PT and Steinhorn RH: Hypoxia inducible factor signaling and experimental persistent pulmonary hypertension of the newborn. Front Pharmacol. 6:472015. View Article : Google Scholar : PubMed/NCBI

46 

Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thébaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, et al: An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: Similarities to human pulmonary arterial hypertension. Circulation. 113:2630–2641. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JGN and Weir EK: Mitochondrial metabolism, redox signaling, and fusion: A mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol. 294:H570–H578. 2008. View Article : Google Scholar

48 

Boucherat O, Vitry G, Trinh I, Paulin R, Provencher S and Bonnet S: The cancer theory of pulmonary arterial hypertension. Pulm Circ. 7:285–299. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Rhodes CJ, Howard LS, Busbridge M, Ashby D, Kondili E, Gibbs JS, Wharton J and Wilkins MR: Iron deficiency and raised hepcidin in idiopathic pulmonary arterial hypertension: Clinical prevalence, outcomes, and mechanistic insights. J Am Coll Cardiol. 58:300–309. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Lanspa SJ, Liu MW and Jenkins HJ Jr: Giant bulla in pneumatosis cystoides intestinalis. J Clin Gastroenterol. 10:437–440. 1988. View Article : Google Scholar : PubMed/NCBI

51 

Li M, Liu Y, Jin F, Sun X, Li Z, Liu Y, Fang P, Shi H and Jiang X: Endothelin-1 induces hypoxia inducible factor 1α expression in pulmonary artery smooth muscle cells. FEBS Lett. 586:3888–3893. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Alqarni AA, Aldhahir AM, Alghamdi SA, Alqahtani JS, Siraj RA, Alwafi H, AlGarni AA, Majrshi MS, Alshehri SM and Pang L: Role of prostanoids, nitric oxide and endothelin pathways in pulmonary hypertension due to COPD. Front Med (Lausanne). 10:12756842023. View Article : Google Scholar : PubMed/NCBI

53 

Jeffrey Man HS, Tsui AKY and Marsden PA: Nitric oxide and hypoxia signaling. Vitam Horm. 96:161–192. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Dabral S, Muecke C, Valasarajan C, Schmoranzer M, Wietelmann A, Semenza GL, Meister M, Muley T, Seeger-Nukpezah T, Samakovlis C, et al: A RASSF1A-HIF1α loop drives Warburg effect in cancer and pulmonary hypertension. Nat Commun. 10:21302019. View Article : Google Scholar

55 

Siebel C and Lendahl U: Notch signaling in development, tissue homeostasis, and disease. Physiol Rev. 97:1235–1294. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Gozlan O and Sprinzak D: Notch signaling in development and homeostasis. Development. 150:dev2011382023. View Article : Google Scholar : PubMed/NCBI

57 

Fernández-Chacón M, García-González I, Mühleder S and Benedito R: Role of Notch in endothelial biology. Angiogenesis. 24:237–250. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Dabral S, Tian X, Kojonazarov B, Savai R, Ghofrani HA, Weissmann N, Florio M, Sun J, Jonigk D, Maegel L, et al: Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension. Eur Respir J. 48:1137–1149. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Wang Y, Dai S, Cheng X, Prado E, Yan L, Hu J, He Q, Lv Y, Lv Y and Du L: Notch3 signaling activation in smooth muscle cells promotes extrauterine growth restriction-induced pulmonary hypertension. Nutr Metab Cardiovasc Dis. 29:639–651. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Tien PC, Chen X, Elzey BD, Pollock RE and Kuang S: Notch signaling regulates a metabolic switch through inhibiting PGC-1α and mitochondrial biogenesis in dedifferentiated liposarcoma. Oncogene. 42:2521–2535. 2023. View Article : Google Scholar :

61 

Landor SKJ, Mutvei AP, Mamaeva V, Jin S, Busk M, Borra R, Grönroos TJ, Kronqvist P, Lendahl U and Sahlgren CM: Hypoand hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc Natl Acad Sci USA. 108:18814–18819. 2011. View Article : Google Scholar

62 

Sellers K, Allen TD, Bousamra M II, Tan J, Méndez-Lucas A, Lin W, Bah N, Chernyavskaya Y, MacRae JI, Higashi RM, et al: Metabolic reprogramming and Notch activity distinguish between non-small cell lung cancer subtypes. Br J Cancer. 121:51–64. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Miyagawa K, Shi M, Chen PI, Hennigs JK, Zhao Z, Wang M, Li CG, Saito T, Taylor S, Sa S, et al: Smooth muscle contact drives endothelial regeneration by BMPR2-Notch1-mediated metabolic and epigenetic changes. Circ Res. 124:211–224. 2019. View Article : Google Scholar :

64 

Moriyama H, Moriyama M, Isshi H, Ishihara S, Okura H, Ichinose A, Ozawa T, Matsuyama A and Hayakawa T: Role of notch signaling in the maintenance of human mesenchymal stem cells under hypoxic conditions. Stem Cells Dev. 23:2211–2224. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Moriyama H, Moriyama M, Ozawa T, Tsuruta D, Iguchi T, Tamada S, Nakatani T, Nakagawa K and Hayakawa T: Notch signaling enhances stemness by regulating metabolic pathways through modifying p53, NF-κB, and HIF-1α. Stem Cells Dev. 27:935–947. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Liu GY and Sabatini DM: mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol. 21:183–203. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Saxton RA and Sabatini DM: mTOR signaling in growth, metabolism, and disease. Cell. 169:361–371. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Sangüesa G, Roglans N, Baena M, Velázquez AM, Laguna JC and Alegret M: mTOR is a key protein involved in the metabolic effects of simple sugars. Int J Mol Sci. 20:11172019. View Article : Google Scholar : PubMed/NCBI

69 

Wang AP, Li XH, Yang YM, Li WQ, Zhang W, Hu CP, Zhang Z and Li YJ: A critical role of the mTOR/eIF2α pathway in hypoxia-induced pulmonary hypertension. PLoS One. 10:e01308062015. View Article : Google Scholar

70 

Krymskaya VP, Snow J, Cesarone G, Khavin I, Goncharov DA, Lim PN, Veasey SC, Ihida-Stansbury K, Jones PL and Goncharova EA: mTOR is required for pulmonary arterial vascular smooth muscle cell proliferation under chronic hypoxia. FASEB J. 25:1922–1933. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Szwed A, Kim E and Jacinto E: Regulation and metabolic functions of mTORC1 and mTORC2. Physiol Rev. 101:1371–1426. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Zhu Y, Shu D, Gong X, Lu M, Feng Q, Zeng XB, Zhang H, Gao J, Guo YW, Liu L, et al: Platelet-derived TGF (transforming growth factor)-β1 enhances the aerobic glycolysis of pulmonary arterial smooth muscle cells by PKM2 (pyruvate kinase muscle isoform 2) upregulation. Hypertension. 79:932–945. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ and Abraham RT: Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 22:7004–7014. 2002. View Article : Google Scholar : PubMed/NCBI

74 

Lu H, Forbes RA and Verma A: Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem. 277:23111–23115. 2002. View Article : Google Scholar : PubMed/NCBI

75 

Feng Y and Wu L: mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival. Biochem Biophys Res Commun. 483:897–903. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Wang C, Jiang J, Ji J, Cai Q, Chen X, Yu Y, Zhu Z and Zhang J: PKM2 promotes cell migration and inhibits autophagy by mediating PI3K/AKT activation and contributes to the malignant development of gastric cancer. Sci Rep. 7:28862017. View Article : Google Scholar : PubMed/NCBI

77 

He L, Gomes AP, Wang X, Yoon SO, Lee G, Nagiec MJ, Cho S, Chavez A, Islam T, Yu Y, et al: mTORC1 promotes metabolic reprogramming by the suppression of GSK3-dependent Foxk1 phosphorylation. Mol Cell. 70:949–960.e4. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Dodd KM, Yang J, Shen MH, Sampson JR and Tee AR: mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene. 34:2239–2250. 2015. View Article : Google Scholar

79 

Chi H: Sin1-mTORC2 signaling drives glycolysis of developing thymocytes. J Mol Cell Biol. 11:91–92. 2019. View Article : Google Scholar

80 

Lan N, Lu Y, Zhang Y, Pu S, Xi H, Nie X, Liu J and Yuan W: FTO-a common genetic basis for obesity and cancer. Front Genet. 11:5591382020. View Article : Google Scholar

81 

Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JRB, Elliott KS, Lango H, Rayner NW, et al: A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 316:889–894. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Jia G, Yang CG, Yang S, Jian X, Yi C, Zhou Z and He C: Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 582:3313–3319. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Azzam SK, Alsafar H and Sajini AA: FTO m6A demethylase in obesity and cancer: Implications and underlying molecular mechanisms. Int J Mol Sci. 23:38002022. View Article : Google Scholar : PubMed/NCBI

85 

Li W, Xing C, Bao L, Han S, Luo T, Wang Z and Fan H: Comprehensive analysis of RNA m6A methylation in pressure overload-induced cardiac hypertrophy. BMC Genomics. 23:5762022. View Article : Google Scholar : PubMed/NCBI

86 

Zhang B, Jiang H, Wu J, Cai Y, Dong Z, Zhao Y, Hu Q, Hu K, Sun A and Ge J: m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct Target Ther. 6:3772021. View Article : Google Scholar : PubMed/NCBI

87 

Hu L, Wang J, Huang H, Yu Y, Ding J, Yu Y, Li K, Wei D, Ye Q, Wang F, et al: YTHDF1 regulates pulmonary hypertension through translational control of MAGED1. Am J Respir Crit Care Med. 203:1158–1172. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Zeng Y, Huang T, Zuo W, Wang D, Xie Y, Wang X, Xiao Z, Chen Z, Liu Q, Liu N and Xiao Y: Integrated analysis of m6A mRNA methylation in rats with monocrotaline-induced pulmonary arterial hypertension. Aging (Albany NY). 13:18238–18256. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Liu Y, Wang R, Zhang L, Li J, Lou K and Shi B: The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncol Lett. 13:4685–4690. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Liu Y, Liang G, Xu H, Dong W, Dong Z, Qiu Z, Zhang Z, Li F, Huang Y, Li Y, et al: Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 33:1221–1233.e11. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Fang YH, Piao L, Hong Z, Toth PT, Marsboom G, Bache-Wiig P, Rehman J and Archer SL: Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: Exploiting Randle's cycle. J Mol Med (Berl). 90:31–43. 2012. View Article : Google Scholar

92 

Randle PJ, Priestman DA, Mistry SC and Halsall A: Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem. 55(Suppl 1): S1–S11. 1994. View Article : Google Scholar

93 

Archer SL, Fang YH, Ryan JJ and Piao L: Metabolism and bioenergetics in the right ventricle and pulmonary vasculature in pulmonary hypertension. Pulm Circ. 3:144–152. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Lee MH, Sanders L, Kumar R, Hernandez-Saavedra D, Yun X, Ford JA, Perez MJ, Mickael C, Gandjeva A, Koyanagi DE, et al: Contribution of fatty acid oxidation to the pathogenesis of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 323:L355–L371. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Mey JT, Hari A, Axelrod CL, Fealy CE, Erickson ML, Kirwan JP, Dweik RA and Heresi GA: Lipids and ketones dominate metabolism at the expense of glucose control in pulmonary arterial hypertension: A hyperglycaemic clamp and metabolomics study. Eur Respir J. 55:19017002020. View Article : Google Scholar : PubMed/NCBI

96 

Sutendra G, Bonnet S, Rochefort G, Haromy A, Folmes KD, Lopaschuk GD, Dyck JRB and Michelakis ED: Fatty acid oxidation and malonyl-CoA decarboxylase in the vascular remodeling of pulmonary hypertension. Sci Transl Med. 2:44ra582010. View Article : Google Scholar : PubMed/NCBI

97 

Greenberger LM, Horak ID, Filpula D, Sapra P, Westergaard M, Frydenlund HF, Albaek C, Schrøder H and Ørum H: A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth. Mol Cancer Ther. 7:3598–3608. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Zhao H, Jiang H, Li Z, Zhuang Y, Liu Y, Zhou S, Xiao Y, Xie C, Zhou F and Zhou Y: 2-Methoxyestradiol enhances radiosensitivity in radioresistant melanoma MDA-MB-435R cells by regulating glycolysis via HIF-1α/PDK1 axis. Int J Oncol. 50:1531–1540. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Fallah J and Rini BI: HIF inhibitors: Status of current clinical development. Curr Oncol Rep. 21:62019. View Article : Google Scholar : PubMed/NCBI

100 

Bruce JY, Eickhoff J, Pili R, Logan T, Carducci M, Arnott J, Treston A, Wilding G and Liu G: A phase II study of 2-methoxyestradiol nanocrystal colloidal dispersion alone and in combination with sunitinib malate in patients with metastatic renal cell carcinoma progressing on sunitinib malate. Invest New Drugs. 30:794–802. 2012. View Article : Google Scholar

101 

Jabs M, Rose AJ, Lehmann LH, Taylor J, Moll I, Sijmonsma TP, Herberich SE, Sauer SW, Poschet G, Federico G, et al: Inhibition of endothelial notch signaling impairs fatty acid transport and leads to metabolic and vascular remodeling of the adult heart. Circulation. 137:2592–2608. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Chen T, Zhou Q, Tang H, Bozkanat M, Yuan JXJ, Raj JU and Zhou G: miR-17/20 controls prolyl hydroxylase 2 (PHD2)/hypoxia-inducible factor 1 (HIF1) to regulate pulmonary artery smooth muscle cell proliferation. J Am Heart Assoc. 5:e0045102016. View Article : Google Scholar : PubMed/NCBI

103 

Wang S, Zeng H, Xie XJ, Tao YK, He X, Roman RJ, Aschner JL and Chen JX: Loss of prolyl hydroxylase domain protein 2 in vascular endothelium increases pericyte coverage and promotes pulmonary arterial remodeling. Oncotarget. 7:58848–58861. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Han XJ, Zhang WF, Wang Q, Li M, Zhang CB, Yang ZJ, Tan RJ, Gan LJ, Zhang LL, Lan XM, et al: HIF-1α promotes the proliferation and migration of pulmonary arterial smooth muscle cells via activation of Cx43. J Cell Mol Med. 25:10663–10673. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Dessouroux A, Akwa Y and Baulieu EE: DHEA decreases HIF-1alpha accumulation under hypoxia in human pulmonary artery cells: Potential role in the treatment of pulmonary arterial hypertension. J Steroid Biochem Mol Biol. 109:81–89. 2008. View Article : Google Scholar : PubMed/NCBI

106 

Ball MK, Waypa GB, Mungai PT, Nielsen JM, Czech L, Dudley VJ, Beussink L, Dettman RW, Berkelhamer SK, Steinhorn RH, et al: Regulation of hypoxia-induced pulmonary hypertension by vascular smooth muscle hypoxia-inducible factor-1α. Am J Respir Crit Care Med. 189:314–324. 2014. View Article : Google Scholar :

107 

Docherty CK, Nilsen M and MacLean MR: Influence of 2-methoxyestradiol and sex on hypoxia-induced pulmonary hypertension and hypoxia-inducible factor-1-α. J Am Heart Assoc. 8:e0116282019. View Article : Google Scholar

108 

He Y, Fang X, Shi J, Li X, Xie M and Liu X: Apigenin attenuates pulmonary hypertension by inducing mitochondria-dependent apoptosis of PASMCs via inhibiting the hypoxia inducible factor 1α-KV1.5 channel pathway. Chem Biol Interact. 317:1089422020. View Article : Google Scholar

109 

Jiang Y, Zhou Y, Peng G, Liu N, Tian H, Pan D, Liu L, Yang X, Li C, Li W, et al: Topotecan prevents hypoxia-induced pulmonary arterial hypertension and inhibits hypoxia-inducible factor-1α and TRPC channels. Int J Biochem Cell Biol. 104:161–170. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Koulmann N, Novel-Chaté V, Peinnequin A, Chapot R, Serrurier B, Simler N, Richard H, Ventura-Clapier R and Bigard X: Cyclosporin A inhibits hypoxia-induced pulmonary hypertension and right ventricle hypertrophy. Am J Respir Crit Care Med. 174:699–705. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Kurosawa R, Satoh K, Kikuchi N, Kikuchi H, Saigusa D, Al-Mamun ME, Siddique MAH, Omura J, Satoh T, Sunamura S, et al: Identification of celastramycin as a novel therapeutic agent for pulmonary arterial hypertension. Circ Res. 125:309–327. 2019. View Article : Google Scholar : PubMed/NCBI

112 

Abud EM, Maylor J, Undem C, Punjabi A, Zaiman AL, Myers AC, Sylvester JT, Semenza GL and Shimoda LA: Digoxin inhibits development of hypoxic pulmonary hypertension in mice. Proc Natl Acad Sci USA. 109:1239–1244. 2012. View Article : Google Scholar : PubMed/NCBI

113 

Kovacs L, Cao Y, Han W, Meadows L, Kovacs-Kasa A, Kondrikov D, Verin AD, Barman SA, Dong Z, Huo Y and Su Y: PFKFB3 in smooth muscle promotes vascular remodeling in pulmonary arterial hypertension. Am J Respir Crit Care Med. 200:617–627. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Jiang L, Goncharov DA, Shen Y, Lin D, Chang B, Pena A, DeLisser H, Goncharova EA and Kudryashova TV: Akt-dependent glycolysis-driven lipogenesis supports proliferation and survival of human pulmonary arterial smooth muscle cells in pulmonary hypertension. Front Med (Lausanne). 9:8868682022. View Article : Google Scholar : PubMed/NCBI

115 

Yan N: A glimpse of membrane transport through structures-advances in the structural biology of the GLUT glucose transporters. J Mol Biol. 429:2710–2725. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Thorens B and Mueckler M: Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab. 298:E141–E145. 2010. View Article : Google Scholar :

117 

Ismail A and Tanasova M: Importance of GLUT transporters in disease diagnosis and treatment. Int J Mol Sci. 23:86982022. View Article : Google Scholar : PubMed/NCBI

118 

Broderick TL and King TM: Upregulation of GLUT-4 in right ventricle of rats with monocrotaline-induced pulmonary hypertension. Med Sci Monit. 14:BR261–BR264. 2008.PubMed/NCBI

119 

Li W, Chen W, Peng H, Xiao Z, Liu J, Zeng Y, Huang T, Song Q, Wang X and Xiao Y: Shikonin improves pulmonary vascular remodeling in monocrotaline-induced pulmonary arterial hypertension via regulation of PKM2. Mol Med Rep. 27:602023. View Article : Google Scholar

120 

Liu A, Li B, Yang M, Shi Y and Su J: Targeted treprostinil delivery inhibits pulmonary arterial remodeling. Eur J Pharmacol. 923:1747002022. View Article : Google Scholar : PubMed/NCBI

121 

Chowdhury B, Luu AZ, Luu VZ, Kabir MG, Pan Y, Teoh H, Quan A, Sabongui S, Al-Omran M, Bhatt DL, et al: The SGLT2 inhibitor empagliflozin reduces mortality and prevents progression in experimental pulmonary hypertension. Biochem Biophys Res Commun. 524:50–56. 2020. View Article : Google Scholar : PubMed/NCBI

122 

Tang Y, Tan S, Li M, Tang Y, Xu X, Zhang Q, Fu Q, Tang M, He J, Zhang Y, et al: Dapagliflozin, sildenafil and their combination in monocrotaline-induced pulmonary arterial hypertension. BMC Pulm Med. 22:1422022. View Article : Google Scholar : PubMed/NCBI

123 

Kayano H, Koba S, Hirano T, Matsui T, Fukuoka H, Tsuijita H, Tsukamoto S, Hayashi T, Toshida T, Watanabe N, et al: Dapagliflozin influences ventricular hemodynamics and exercise-induced pulmonary hypertension in type 2 diabetes patients-a randomized controlled trial. Circ J. 84:1807–1817. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Zapater JL, Lednovich KR, Khan MW, Pusec CM and Layden BT: Hexokinase domain-containing protein-1 in metabolic diseases and beyond. Trends Endocrinol Metab. 33:72–84. 2022. View Article : Google Scholar

125 

Wilson JE: Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J Exp Biol. 206:2049–2057. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Chen F, Wang H, Lai J, Cai S and Yuan L: 3-Bromopyruvate reverses hypoxia-induced pulmonary arterial hypertension through inhibiting glycolysis: In vitro and in vivo studies. Int J Cardiol. 266:236–241. 2018. View Article : Google Scholar : PubMed/NCBI

127 

Zhang YL, Zhang R, Shen YF, Huang KY, He YY, Zhao JH and Jing ZC: 3-Bromopyruvate attenuates experimental pulmonary hypertension via inhibition of glycolysis. Am J Hypertens. 32:426–432. 2019. View Article : Google Scholar

128 

Liu J, Wang W, Wang L, Qi XM, Sha YH and Yang T: 3-Bromopyruvate alleviates the development of monocrotaline-induced rat pulmonary arterial hypertension by decreasing aerobic glycolysis, inducing apoptosis, and suppressing inflammation. Chin Med J (Engl). 133:49–60. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Gao S, Chen X, Jin H, Ren S, Liu Z, Fang X and Zhang G: Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane. Oncol Lett. 11:1567–1573. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Mathupala SP, Ko YH and Pedersen PL: Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene. 25:4777–4786. 2006. View Article : Google Scholar : PubMed/NCBI

131 

Pajak B, Siwiak E, Sołtyka M, Priebe A, Zieliński R, Fokt I, Ziemniak M, Jaśkiewicz A, Borowski R, Domoradzki T and Priebe W: 2-Deoxy-d-glucose and its analogs: From diagnostic to therapeutic agents. Int J Mol Sci. 21:2342019. View Article : Google Scholar

132 

Laussel C and Léon S: Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem Pharmacol. 182:1142132020. View Article : Google Scholar : PubMed/NCBI

133 

Lu Y, Chen R, Ma JY, Wang LP, Qiu LL, Wang CP, Yan JC and Liu PJ: Platelet derived growth factor-BB regulates phenotype transformation of pulmonary artery smooth muscle cells via SIRT3 affecting glycolytic pathway. Zhonghua Xin Xue Guan Bing Za Zhi. 47:993–999. 2019.In Chinese. PubMed/NCBI

134 

Maier A, Liao SL, Lescure T, Robson PM, Hirata N, Sartori S, Narula N, Vergani V, Soultanidis G, Morgenthau A, et al: Pulmonary artery 18F-fluorodeoxyglucose uptake by PET/CMR as a marker of pulmonary hypertension in sarcoidosis. JACC Cardiovasc Imaging. 15:108–120. 2022. View Article : Google Scholar

135 

Frille A, Steinhoff KG, Hesse S, Grachtrup S, Wald A, Wirtz H, Sabri O and Seyfarth HJ: Thoracic [18F]fluorodeoxyglucose uptake measured by positron emission tomography/computed tomography in pulmonary hypertension. Medicine (Baltimore). 95:e39762016. View Article : Google Scholar : PubMed/NCBI

136 

Van Schaftingen E, Jett MF, Hue L and Hers HG: Control of liver 6-phosphofructokinase by fructose 2,6-bisphosphate and other effectors. Proc Natl Acad Sci USA. 78:3483–3486. 1981. View Article : Google Scholar : PubMed/NCBI

137 

Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG and Hue L: 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: Head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. 381:561–579. 2004. View Article : Google Scholar : PubMed/NCBI

138 

Wang L, Zhang X, Cao Y, Ma Q, Mao X, Xu J, Yang Q, Zhou Y, Lucas R, Fulton DJ, et al: Mice with a specific deficiency of Pfkfb3 in myeloid cells are protected from hypoxia-induced pulmonary hypertension. Br J Pharmacol. 178:1055–1072. 2021. View Article : Google Scholar

139 

Zahra K, Dey T, Ashish, Mishra SP and Pandey U: Pyruvate kinase M2 and cancer: The role of PKM2 in promoting tumorigenesis. Front Oncol. 10:1592020. View Article : Google Scholar : PubMed/NCBI

140 

Dasgupta A, Wu D, Tian L, Xiong PY, Dunham-Snary KJ, Chen KH, Alizadeh E, Motamed M, Potus F, Hindmarch CCT and Archer SL: Mitochondria in the pulmonary vasculature in health and disease: Oxygen-sensing, metabolism, and dynamics. Compr Physiol. 10:713–765. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Shimauchi T, Boucherat O, Yokokawa T, Grobs Y, Wu W, Orcholski M, Martineau S, Omura J, Tremblay E, Shimauchi K, et al: PARP1-PKM2 axis mediates right ventricular failure associated with pulmonary arterial hypertension. JACC Basic Transl Sci. 7:384–403. 2022. View Article : Google Scholar : PubMed/NCBI

142 

Arora S, Joshi G, Chaturvedi A, Heuser M, Patil S and Kumar R: A perspective on medicinal chemistry approaches for targeting pyruvate kinase M2. J Med Chem. 65:1171–1205. 2022. View Article : Google Scholar

143 

Chhipa AS and Patel S: Targeting pyruvate kinase muscle isoform 2 (PKM2) in cancer: What do we know so far? Life Sci. 280:1196942021. View Article : Google Scholar : PubMed/NCBI

144 

Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020. View Article : Google Scholar :

145 

Chen D, Wei L, Liu ZR, Yang JJ, Gu X, Wei ZZ, Liu LP and Yu SP: Pyruvate kinase M2 increases angiogenesis, neurogenesis, and functional recovery mediated by upregulation of STAT3 and focal adhesion kinase activities after ischemic stroke in adult mice. Neurotherapeutics. 15:770–784. 2018. View Article : Google Scholar : PubMed/NCBI

146 

Pei L, Le Y, Chen H, Feng J, Liu Z, Zhu J, Wang C, Chen L, Dou X and Lu D: Cynaroside prevents macrophage polarization into pro-inflammatory phenotype and alleviates cecal ligation and puncture-induced liver injury by targeting PKM2/HIF-1α axis. Fitoterapia. 152:1049222021. View Article : Google Scholar

147 

Xiong PY, Motamed M, Chen KH, Dasgupta A, Potus F, Tian L, Martin A, Mewburn J, Jones O, Thébaud A and Archer SL: Inhibiting pyruvate kinase muscle isoform 2 regresses group 2 pulmonary hypertension induced by supra-coronary aortic banding. Acta Physiol (Oxf). 234:e137642022. View Article : Google Scholar : PubMed/NCBI

148 

Piao L, Sidhu VK, Fang YH, Ryan JJ, Parikh KS, Hong Z, Toth PT, Morrow E, Kutty S, Lopaschuk GD and Archer SL: FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: Therapeutic benefits of dichloroacetate. J Mol Med (Berl). 91:333–346. 2013. View Article : Google Scholar

149 

Michelakis ED, McMurtry MS, Wu XC, Dyck JRB, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R and Archer SL: Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: Role of increased expression and activity of voltage-gated potassium channels. Circulation. 105:244–250. 2002. View Article : Google Scholar : PubMed/NCBI

150 

McMurtry MS, Bonnet S, Wu X, Dyck JRB, Haromy A, Hashimoto K and Michelakis ED: Dichloroacetate prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res. 95:830–840. 2004. View Article : Google Scholar : PubMed/NCBI

151 

Guignabert C, Tu L, Izikki M, Dewachter L, Zadigue P, Humbert M, Adnot S, Fadel E and Eddahibi S: Dichloroacetate treatment partially regresses established pulmonary hypertension in mice with SM22alpha-targeted overexpression of the serotonin transporter. FASEB J. 23:4135–4147. 2009. View Article : Google Scholar : PubMed/NCBI

152 

Ciapponi A, Pizarro R and Harrison J: WITHDRAWN: Trimetazidine for stable angina. Cochrane Database Syst Rev. 3:CD0036142017.PubMed/NCBI

153 

Wu Z, Yu L and Li X and Li X: Protective mechanism of trimetazidine in myocardial cells in myocardial infarction rats through ERK signaling pathway. Biomed Res Int. 2021:99245492021. View Article : Google Scholar : PubMed/NCBI

154 

Ferrari R, Ford I, Fox K, Challeton JP, Correges A, Tendera M, Widimský P and Danchin N; ATPCI investigators: Efficacy and safety of trimetazidine after percutaneous coronary intervention (ATPCI): A randomised, double-blind, placebo-controlled trial. Lancet. 396:830–838. 2020. View Article : Google Scholar : PubMed/NCBI

155 

Shu H, Peng Y, Hang W, Zhou N and Wang DW: Trimetazidine in heart failure. Front Pharmacol. 11:5691322021. View Article : Google Scholar : PubMed/NCBI

156 

Parra V, Bravo-Sagua R, Norambuena-Soto I, Hernández-Fuentes CP, Gómez-Contreras AG, Verdejo HE, Mellado R, Chiong M, Lavandero S and Castro PF: Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochim Biophys Acta Mol Basis Dis. 1863:2891–2903. 2017. View Article : Google Scholar : PubMed/NCBI

157 

Dobbins RL, Szczepaniak LS, Bentley B, Esser V, Myhill J and McGarry JD: Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats. Diabetes. 50:123–130. 2001. View Article : Google Scholar : PubMed/NCBI

158 

Leamy AK, Egnatchik RA and Young JD: Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 52:165–174. 2013. View Article : Google Scholar

159 

Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, Wang XY and Fang X: Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett. 435:92–100. 2018. View Article : Google Scholar : PubMed/NCBI

160 

Verdejo HE, Rojas A, López-Crisosto C, Baraona F, Gabrielli L, Maracaja-Coutinho V, Chiong M, Lavandero S and Castro PF: Effects of trimetazidine on right ventricular function and ventricular remodeling in patients with pulmonary artery hypertension: A randomised controlled trial. J Clin Med. 12:15712023. View Article : Google Scholar : PubMed/NCBI

161 

Cavallino C, Facchini M, Veia A, Bacchni S, Rosso R, Rognoni A, Rametta F, Lupi A and Bongo AS: New anti-anginal drugs: Ranolazine. Cardiovasc Hematol Agents Med Chem. 13:14–20. 2015. View Article : Google Scholar

162 

McKelvey KJ, Wilson EB, Short S, Melcher AA, Biggs M, Diakos CI and Howell VM: Glycolysis and fatty acid oxidation inhibition improves survival in glioblastoma. Front Oncol. 11:6332102021. View Article : Google Scholar : PubMed/NCBI

163 

McCormack JG, Barr RL, Wolff AA and Lopaschuk GD: Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation. 93:135–142. 1996. View Article : Google Scholar : PubMed/NCBI

164 

Clarke B, Wyatt KM and McCormack JG: Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: Evidence for an indirect mechanism. J Mol Cell Cardiol. 28:341–350. 1996. View Article : Google Scholar : PubMed/NCBI

165 

Han QJ, Forfia P, Vaidya A, Ramani G, deKemp RA, Mach RH, Mankoff DA, Bravo PE, DiCarli M, Chan SY, et al: Effects of ranolazine on right ventricular function, fluid dynamics, and metabolism in patients with precapillary pulmonary hypertension: Insights from a longitudinal, randomized, double-blinded, placebo controlled, multicenter study. Front Cardiovasc Med. 10:11187962023. View Article : Google Scholar : PubMed/NCBI

166 

Wu J, Liu T, Shi S, Fan Z, Hiram R, Xiong F, Cui B, Su X, Chang R, Zhang W, et al: Dapagliflozin reduces the vulnerability of rats with pulmonary arterial hypertension-induced right heart failure to ventricular arrhythmia by restoring calcium handling. Cardiovasc Diabetol. 21:1972022. View Article : Google Scholar : PubMed/NCBI

167 

Luo L, Xiao L, Lian G, Wang H and Xie L: miR-125a-5p inhibits glycolysis by targeting hexokinase-II to improve pulmonary arterial hypertension. Aging (Albany NY). 12:9014–9030. 2020. View Article : Google Scholar : PubMed/NCBI

168 

Kassa B, Kumar R, Mickael C, Sanders L, Vohwinkel C, Lee MH, Gu S, Poth JM, Stenmark KR, Zhao YY, et al: Endothelial cell PHD2-HIF1α-PFKFB3 contributes to right ventricle vascular adaptation in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 321:L675–L685. 2021. View Article : Google Scholar

169 

Qi L, Lv T, Cheng Y, Yu M, Han H, Kong H, Xie W, Wang H, Zhang Y and Huang Z: Fasudil dichloroacetate (FDCA), an orally available agent with potent therapeutic efficiency on monocrotaline-induced pulmonary arterial hypertension rats. Bioorg Med Chem Lett. 29:1812–1818. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen M, Li H, Li Y, Luo Y, He Y, Shui X and Lei W: Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). Int J Mol Med 54: 115, 2024.
APA
Chen, M., Li, H., Li, Y., Luo, Y., He, Y., Shui, X., & Lei, W. (2024). Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). International Journal of Molecular Medicine, 54, 115. https://doi.org/10.3892/ijmm.2024.5439
MLA
Chen, M., Li, H., Li, Y., Luo, Y., He, Y., Shui, X., Lei, W."Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review)". International Journal of Molecular Medicine 54.6 (2024): 115.
Chicago
Chen, M., Li, H., Li, Y., Luo, Y., He, Y., Shui, X., Lei, W."Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review)". International Journal of Molecular Medicine 54, no. 6 (2024): 115. https://doi.org/10.3892/ijmm.2024.5439
Copy and paste a formatted citation
x
Spandidos Publications style
Chen M, Li H, Li Y, Luo Y, He Y, Shui X and Lei W: Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). Int J Mol Med 54: 115, 2024.
APA
Chen, M., Li, H., Li, Y., Luo, Y., He, Y., Shui, X., & Lei, W. (2024). Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review). International Journal of Molecular Medicine, 54, 115. https://doi.org/10.3892/ijmm.2024.5439
MLA
Chen, M., Li, H., Li, Y., Luo, Y., He, Y., Shui, X., Lei, W."Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review)". International Journal of Molecular Medicine 54.6 (2024): 115.
Chicago
Chen, M., Li, H., Li, Y., Luo, Y., He, Y., Shui, X., Lei, W."Glycolysis modulation: New therapeutic strategies to improve pulmonary hypertension (Review)". International Journal of Molecular Medicine 54, no. 6 (2024): 115. https://doi.org/10.3892/ijmm.2024.5439
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team