|
1
|
Barrio-Hernandez I, Jafari A, Rigbolt KTG,
Hallenborg P, Sanchez-Quiles V, Skovrind I, Akimov V, Kratchmarova
I, Dengjel J, Kassem M and Blagoev B: Phosphoproteomic profiling
reveals a defined genetic program for osteoblastic lineage
commitment of human bone marrow-derived stromal stem cells. Genome
Res. 30:127–137. 2020. View Article : Google Scholar :
|
|
2
|
Mousa A, Cui C, Song A, Myneni VD, Sun H,
Li JJ, Murshed M, Melino G and Kaartinen MT: Transglutaminases
factor XIII-A and TG2 regulate resorption, adipogenesis and plasma
fibronectin homeostasis in bone and bone marrow. Cell Death Differ.
24:844–854. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zengini E, Hatzikotoulas K, Tachmazidou I,
Steinberg J, Hartwig FP, Southam L, Hackinger S, Boer CG,
Styrkarsdottir U, Gilly A, et al: Genome-wide analyses using UK
Biobank data provide insights into the genetic architecture of
osteoarthritis. Nat Genet. 50:549–558. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jones IA, Togashi R, Wilson ML, Heckmann N
and Vangsness CT Jr: Intra-articular treatment options for knee
osteoarthritis. Nat Rev Rheumatol. 15:77–90. 2019. View Article : Google Scholar :
|
|
5
|
Lopes D, Martins-Cruz C, Oliveira MB and
Mano JF: Bone physiology as inspiration for tissue regenerative
therapies. Biomaterials. 185:240–275. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wu H, Cao F, Zhou W, Wang G, Liu G, Xia T,
Liu M, Mi B and Liu Y: Long Noncoding RNA FAM83H-AS1 Modulates
SpA-Inhibited Osteogenic Differentiation in Human Bone Mesenchymal
Stem Cells. Mol Cell Biol. 40:e00362–19. 2020. View Article : Google Scholar :
|
|
7
|
Zhu H, Kimura T, Swami S and Wu JY:
Pluripotent stem cells as a source of osteoblasts for bone tissue
regeneration. Biomaterials. 196:31–45. 2019. View Article : Google Scholar
|
|
8
|
Petersen A, Princ A, Korus G, Ellinghaus
A, Leemhuis H, Herrera A, Klaumünzer A, Schreivogel S, Woloszyk A,
Schmidt-Bleek K, et al: A biomaterial with a channel-like pore
architecture induces endochondral healing of bone defects. Nat
Commun. 9:44302018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fukuda M, Yoshizawa T, Karim MF, Sobuz SU,
Korogi W, Kobayasi D, Okanishi H, Tasaki M, Ono K, Sawa T, et al:
SIRT7 has a critical role in bone formation by regulating lysine
acylation of SP7/Osterix. Nat Commun. 9:28332018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Han B, Li Q, Wang C, Patel P, Adams SM,
Doyran B, Nia HT, Oftadeh R, Zhou S, Li CY, et al: Decorin
regulates the aggrecan network integrity and biomechanical
functions of cartilage extracellular matrix. ACS Nano.
13:11320–11333. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Scheper MA, Badros A, Chaisuparat R,
Cullen KJ and Meiller TF: Effect of zoledronic acid on oral
fibroblasts and epithelial cells: A potential mechanism of
bisphosphonate-associated osteonecrosis. Br J Haematol.
144:667–676. 2009. View Article : Google Scholar :
|
|
12
|
Ho-Shui-Ling A, Bolander J, Rustom LE,
Johnson AW, Luyten FP and Picart C: Bone regeneration strategies:
Engineered scaffolds, bioactive molecules and stem cells current
stage and future perspectives. Biomaterials. 180:143–162. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ting K, Vastardis H, Mulliken JB, Soo C,
Tieu A, Do H, Kwong E, Bertolami CN, Kawamoto H, Kuroda S and
Longaker MT: Human NELL-1 expressed in unilateral coronal
synostosis. J Bone Miner Res. 14:80–89. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
James AW, Shen J, Zhang X, Asatrian G,
Goyal R, Kwak JH, Jiang L, Bengs B, Culiat CT, Turner AS, et al:
NELL-1 in the treatment of osteoporotic bone loss. Nat Commun.
6:73622015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Nakamura Y, Hasebe A, Takahashi K, Iijima
M, Yoshimoto N, Maturana AD, Ting K, Kuroda S and Niimi T:
Oligomerization-induced conformational change in the C-terminal
region of Nel-like molecule 1 (NELL1) protein is necessary for the
efficient mediation of murine MC3T3-E1 cell adhesion and spreading.
J Biol Chem. 289:9781–9794. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kuroda S, Oyasu M, Kawakami M, Kanayama N,
Tanizawa K, Saito N, Abe T, Matsuhashi S and Ting K: Biochemical
characterization and expression analysis of neural
thrombospondin-1-like proteins NELL1 and NELL2. Biochem Biophys Res
Commun. 265:79–86. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kajava AV: Modeling of a five-stranded
coiled coil structure for the assembly domain of the cartilage
oligomeric matrix protein. Proteins. 24:218–226. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kuroda S and Tanizawa K: Involvement of
epidermal growth factor-like domain of NELL proteins in the novel
protein-protein interaction with protein kinase C. Biochem Biophys
Res Commun. 265:752–757. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bornstein P: Diversity of function is
inherent in matricellular proteins: An appraisal of thrombospondin
1. J Cell Biol. 130:503–506. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Garcia Abreu J, Coffinier C, Larrain J,
Oelgeschlager M and De Robertis EM: Chordin-like CR domains and the
regulation of evolutionarily conserved extracellular signaling
systems. Gene. 287:39–47. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Duarte RM, Varanda P, Reis RL, Duarte ARC
and Correia-Pinto J: Biomaterials and Bioactive Agents in Spinal
Fusion. Tissue Eng Part B Rev. 23:540–551. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zeng L, He H, Sun M, Gong X, Zhou M, Hong
Y, Wu Y, Chen X and Chen Q: Runx2 and Nell-1 in dental follicle
progenitor cells regulate bone remodeling and tooth eruption. Stem
Cell Res Ther. 13:4862022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Smith B, Goldstein T and Ekstein C:
Biologic adjuvants and bone: Current use in orthopedic surgery.
Curr Rev Musculoskelet Med. 8:193–199. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cottrill E, Ahmed AK, Lessing N,
Pennington Z, Ishida W, Perdomo-Pantoja A, Lo SF, Howell E, Holmes
C, Goodwin CR, et al: Investigational growth factors utilized in
animal models of spinal fusion: Systematic review. World J Orthop.
10:176–191. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Qin XY, Zhao HX, Zhang Q, Chen F and Lin
JX: NELL-1: A novel highly efficient and specific growth factor.
Beijing Da Xue Xue Bao Yi Xue Ban. 48:380–383. 2016.In Chinese.
PubMed/NCBI
|
|
26
|
Zhang Y, Jiang Y, Zou D, Yuan B, Ke HZ and
Li W: Therapeutics for enhancement of spinal fusion: A mini review.
J Orthop Translat. 31:73–79. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cheng X, Shi J, Jia Z, Ha P, Soo C, Ting
K, James AW, Shi B and Zhang X: NELL-1 in Genome-Wide Association
Studies across Human Diseases. Am J Pathol. 192:395–405. 2022.
View Article : Google Scholar :
|
|
28
|
Li C, Zhang X, Zheng Z, Nguyen A, Ting K
and Soo C: Nell-1 is a key functional modulator in
osteochondrogenesis and beyond. J Dent Res. 98:1458–1468. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Pakvasa M, Alverdy A, Mostafa S, Wang E,
Fu L, Li A, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, et al:
Neural EGF-like protein 1 (NELL-1): Signaling crosstalk in
mesenchymal stem cells and applications in regenerative medicine.
Genes Dis. 4:127–137. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
James AW: Review of signaling pathways
governing MSC osteogenic and adipogenic differentiation.
Scientifica (Cairo). 2013:6847362013.
|
|
31
|
Setzer B, Bächle M, Metzger MC and Kohal
RJ: The gene-expression and phenotypic response of hFOB 1.19
osteoblasts to surface-modified titanium and zirconia.
Biomaterials. 30:979–990. 2009. View Article : Google Scholar
|
|
32
|
Iwan A, Moskalewski S and Hyc A: Growth
factor profile in calcified cartilage from the metaphysis of a calf
costochondral junction, the site of initial bone formation. Biomed
Rep. 14:542021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Song D, Huang S, Zhang L, Liu W, Huang B,
Feng Y, Liu B, He TC, Huang D and Reid RR: Differential
Responsiveness to BMP9 between patent and fused suture progenitor
cells from craniosynostosis patients. Plast Reconstr Surg.
145:552e–562e. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yu L, Cen X, Xia K, Huang X, Sun W, Zhao Z
and Liu J: microRNA expression profiles and the potential competing
endogenous RNA networks in NELL-1-induced human adipose-derived
stem cell osteogenic differentiation. J Cell Biochem.
121:4623–4641. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Shen J, James AW, Zara JN, Asatrian G,
Khadarian K, Zhang JB, Ho S, Kim HJ, Ting K and Soo C: BMP2-induced
inflammation can be suppressed by the osteoinductive growth factor
NELL-1. Tissue Eng Part A. 19:2390–2401. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cowan CM, Jiang X, Hsu T, Soo C, Zhang B,
Wang JZ, Kuroda S, Wu B, Zhang Z, Zhang X and Ting K: Synergistic
effects of Nell-1 and BMP-2 on the osteogenic differentiation of
myoblasts. J Bone Miner Res. 22:918–930. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Fahmy-Garcia S, van Driel M, Witte-Buoma
J, Walles H, van Leeuwen JPTM, van Osch GJVM and Farrell E: NELL-1,
HMGB1, and CCN2 enhance migration and vasculogenesis, but not
osteogenic differentiation compared to BMP2. Tissue Eng Part A.
24:207–218. 2018. View Article : Google Scholar
|
|
38
|
Zhang X, Zara J, Siu RK, Ting K and Soo C:
The role of NELL-1, a growth factor associated with
craniosynostosis, in promoting bone regeneration. J Dent Res.
89:865–878. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
James AW, Zara JN, Zhang X, Askarinam A,
Goyal R, Chiang M, Yuan W, Chang L, Corselli M, Shen J, et al:
Perivascular stem cells: A prospectively purified mesenchymal stem
cell population for bone tissue engineering. Stem Cells Transl Med.
1:510–519. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee
H, Miao S, Hong N, Kuroda S, Wu B, Ting K and Soo C: Nell-1-induced
bone regeneration in calvarial defects. Am J Pathol. 169:903–915.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Aghaloo T, Jiang X, Soo C, Zhang Z and
Zhang X, Hu J, Pan H, Hsu T, Wu B, Ting K and Zhang X: A study of
the role of nell-1 gene modified goat bone marrow stromal cells in
promoting new bone formation. Mol Ther. 15:1872–1880. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Cowan CM, Zhang X, James AW, Kim TM, Sun
N, Wu B, Ting K and Soo C: NELL-1 increases pre-osteoblast
mineralization using both phosphate transporter Pit1 and Pit2.
Biochem Biophys Res Commun. 422:351–357. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hyc A, Moskalewski S and Osiecka-Iwan A:
Growth factors in the initial stage of bone formation, analysis of
their expression in chondrocytes from epiphyseal cartilage of rat
costochondral junction. Folia Histochem Cytobiol. 59:178–186. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cowan CM, Cheng S, Ting K, Soo C, Walder
B, Wu B, Kuroda S and Zhang X: Nell-1 induced bone formation within
the distracted intermaxillary suture. Bone. 38:48–58. 2006.
View Article : Google Scholar
|
|
45
|
Truong T, Zhang X, Pathmanathan D, Soo C
and Ting K: Craniosynostosis-associated gene nell-1 is regulated by
runx2. J Bone Miner Res. 22:7–18. 2007. View Article : Google Scholar
|
|
46
|
Zhang X, Ting K, Bessette CM, Culiat CT,
Sung SJ, Lee H, Chen F, Shen J, Wang JJ, Kuroda S and Soo C:
Nell-1, a key functional mediator of Runx2, partially rescues
calvarial defects in Runx2(+/−) mice. J Bone Miner Res. 26:777–791.
2011. View Article : Google Scholar
|
|
47
|
Li C, Jiang J, Zheng Z, Lee KS, Zhou Y,
Chen E, Culiat CT, Qiao Y, Chen X, Ting K, et al: Neural EGFL-Like
1 is a downstream regulator of runt-related transcription factor 2
in chondrogenic differentiation and maturation. Am J Pathol.
187:963–972. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chen F, Zhang X, Sun S, Zara JN, Zou X,
Chiu R, Culiat CT, Ting K and Soo C: NELL-1, an osteoinductive
factor, is a direct transcriptional target of Osterix. PLoS One.
6:e246382011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lai K, Xi Y, Du X, Jiang Z, Li Y, Huang T,
Miao X, Wang H, Wang Y and Yang G: Activation of Nell-1 in BMSC
sheet promotes implant osseointegration through regulating
Runx2/Osterix Axis. Front Cell Dev Biol. 8:8682020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhang X, Ting K, Pathmanathan D, Ko T,
Chen W, Chen F, Lee H, James AW, Siu RK, Shen J, et al: Calvarial
cleidocraniodysplasia-like defects with ENU-induced Nell-1
deficiency. J Craniofac Surg. 23:61–66. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lu SS, Zhang X, Soo C, Hsu T, Napoli A,
Aghaloo T, Wu BM, Tsou P, Ting K and Wang JC: The osteoinductive
properties of Nell-1 in a rat spinal fusion model. Spine J.
7:50–60. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
James AW, Pang S, Askarinam A, Corselli M,
Zara JN, Goyal R, Chang L, Pan A, Shen J, Yuan W, et al: Additive
effects of sonic hedgehog and Nell-1 signaling in osteogenic versus
adipogenic differentiation of human adipose-derived stromal cells.
Stem Cells Dev. 21:2170–2178. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
James AW, Pan A, Chiang M, Zara JN, Zhang
X, Ting K and Soo C: A new function of Nell-1 protein in repressing
adipogenic differentiation. Biochem Biophys Res Commun.
411:126–131. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Qi H, Kim JK, Ha P, Chen X, Chen E, Chen
Y, Li J, Pan HC, Yu M, Mohazeb Y, et al: Inactivation of Nell-1 in
chondrocytes significantly impedes appendicular skeletogenesis. J
Bone Miner Res. 34:533–546. 2019. View Article : Google Scholar
|
|
55
|
Li C, Zheng Z, Zhang X, Asatrian G, Chen
E, Song R, Culiat C, Ting K and Soo C: Nfatc1 Is a Functional
Transcriptional Factor Mediating Nell-1-Induced Runx3 Upregulation
in Chondrocytes. Int J Mol Sci. 19:1682018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wang C, Wang Y, Wang C, Liu C, Li W, Hu S,
Wu N, Jiang S and Shi J: Therapeutic application of 3B-PEG
injectable hydrogel/Nell-1 composite system to temporomandibular
joint osteoarthritis. Biomed Mater. 17:0150042021. View Article : Google Scholar
|
|
57
|
Chen W, Zhang X, Siu RK, Chen F, Shen J,
Zara JN, Culiat CT, Tetradis S, Ting K and Soo C: Nfatc2 is a
primary response gene of Nell-1 regulating chondrogenesis in ATDC5
cells. J Bone Miner Res. 26:1230–1241. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shen J, James AW, Zhang X, Pang S, Zara
JN, Asatrian G, Chiang M, Lee M, Khadarian K, Nguyen A, et al:
Novel Wnt Regulator NEL-Like Molecule-1 antagonizes adipogenesis
and augments osteogenesis induced by bone morphogenetic protein 2.
Am J Pathol. 186:419–434. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
James AW, Shen J, Tsuei R, Nguyen A,
Khadarian K, Meyers CA, Pan HC, Li W, Kwak JH, Asatrian G, et al:
NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in
models of bone maintenance and repair. JCI Insight. 2:e925732017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen X, Wang H, Yu M, Kim JK, Qi H, Ha P,
Jiang W, Chen E, Luo X, Needle RB, et al: Cumulative inactivation
of Nell-1 in Wnt1 expressing cell lineages results in craniofacial
skeletal hypoplasia and postnatal hydrocephalus. Cell Death Differ.
27:1415–1430. 2020. View Article : Google Scholar :
|
|
61
|
Zhang X, Kuroda S, Carpenter D, Nishimura
I, Soo C, Moats R, Iida K, Wisner E, Hu FY, Miao S, et al:
Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin
Invest. 110:861–870. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chermside-Scabbo CJ, Harris TL, Brodt MD,
Braenne I, Zhang B, Farber CR and Silva MJ: Old mice have less
transcriptional activation but similar periosteal cell
proliferation compared to young-adult mice in response to in vivo
mechanical loading. J Bone Miner Res. 35:1751–1764. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li C, Zheng Z, Ha P, Chen X, Jiang W, Sun
S, Chen F, Asatrian G, Berthiaume EA, Kim JK, et al: Neurexin
superfamily cell membrane receptor contactin-associated protein
Like-4 (Cntnap4) Is Involved in Neural EGFL-Like 1
(Nell-1)-Responsive Osteogenesis. J Bone Miner Res. 33:1813–1825.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yamamoto N, Kashiwagi M, Ishihara M,
Kojima T, Maturana AD, Kuroda S and Niimi T: Robo2 contains a
cryptic binding site for neural EGFL-like (NELL) protein 1/2. J
Biol Chem. 294:4693–4703. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bokui N, Otani T, Igarashi K, Kaku J, Oda
M, Nagaoka T, Seno M, Tatematsu K, Okajima T, Matsuzaki T, et al:
Involvement of MAPK signaling molecules and Runx2 in the
NELL1-induced osteoblastic differentiation. FEBS Lett. 582:365–371.
2008. View Article : Google Scholar
|
|
66
|
Huang X, Cen X, Zhang B, Liao Y, Zhao Z,
Zhu G, Zhao Z and Liu J: The roles of circRFWD2 and circINO80
during NELL-1-induced osteogenesis. J Cell Mol Med. 23:8432–8441.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shen J, James AW, Chung J, Lee K, Zhang
JB, Ho S, Lee KS, Kim TM, Niimi T, Kuroda S, et al: NELL-1 promotes
cell adhesion and differentiation via Integrinβ1. J Cell Biochem.
113:3620–3628. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zou X, Shen J, Chen F, Ting K, Zheng Z,
Pang S, Zara JN, Adams JS, Soo C and Zhang X: NELL-1 binds to APR3
affecting human osteoblast proliferation and differentiation. FEBS
Lett. 585:2410–2418. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li C, Zheng Z, Ha P, Jiang W, Berthiaume
EA, Lee S, Mills Z, Pan H, Chen EC, Jiang J, et al: Neural EGFL
like 1 as a potential pro-chondrogenic, anti-inflammatory
dual-functional disease-modifying osteoarthritis drug.
Biomaterials. 226:1195412020. View Article : Google Scholar :
|
|
70
|
Wang C, Hou W, Guo X, Li J, Hu T, Qiu M,
Liu S, Mo X and Liu X: Two-phase electrospinning to incorporate
growth factors loaded chitosan nanoparticles into electrospun
fibrous scaffolds for bioactivity retention and cartilage
regeneration. Mater Sci Eng C Mater Biol Appl. 79:507–515. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Siu RK, Zara JN, Hou Y, James AW, Kwak J,
Zhang X, Ting K, Wu BM, Soo C and Lee M: NELL-1 promotes cartilage
regeneration in an in vivo rabbit model. Tissue Eng Part A.
18:252–261. 2012. View Article : Google Scholar :
|
|
72
|
Kwak J, Zara JN, Chiang M, Ngo R, Shen J,
James AW, Le KM, Moon C, Zhang X, Gou Z, et al: NELL-1 injection
maintains long-bone quantity and quality in an ovariectomy-induced
osteoporotic senile rat model. Tissue Eng Part A. 19:426–436. 2013.
View Article : Google Scholar :
|
|
73
|
James AW, Zhang X, Crisan M, Hardy WR,
Liang P, Meyers CA, Lobo S, Lagishetty V, Childers MK, Asatrian G,
et al: Isolation and characterization of canine perivascular
stem/stromal cells for bone tissue engineering. PLoS One.
12:e01773082017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Karasik D, Hsu YH, Zhou Y, Cupples LA,
Kiel DP and Demissie S: Genome-wide pleiotropy of
osteoporosis-related phenotypes: The Framingham Study. J Bone Miner
Res. 25:1555–1563. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Inaba H, Cao X, Han AQ, Panetta JC, Ness
KK, Metzger ML, Rubnitz JE, Ribeiro RC, Sandlund JT, Jeha S, et al:
Bone mineral density in children with acute lymphoblastic leukemia.
Cancer. 124:1025–1035. 2018. View Article : Google Scholar
|
|
76
|
Zhang X, Carpenter D, Bokui N, Soo C, Miao
S, Truong T, Wu B, Chen I, Vastardis H, Tanizawa K, et al:
Overexpression of Nell-1, a craniosynostosis-associated gene,
induces apoptosis in osteoblasts during craniofacial development. J
Bone Miner Res. 18:2126–2134. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhang X, Cowan CM, Jiang X, Soo C, Miao S,
Carpenter D, Wu B, Kuroda S and Ting K: Nell-1 induces acrania-like
cranio-skeletal deformities during mouse embryonic development. Lab
Invest. 86:633–644. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tang R, Wang Q, Du J, Yang P and Wang X:
Expression and localization of Nell-1 during murine molar
development. J Mol Histol. 44:175–181. 2013. View Article : Google Scholar
|
|
79
|
Wang B, Wu Y, Yu H, Jiang L, Fang B and
Guo Q: The effects of NELL on corticotomy-assisted tooth movement
and osteogenesis in a rat model. Biomed Mater Eng. 29:757–771.
2018.PubMed/NCBI
|
|
80
|
Cao R, Wang Q, Wu J, Liu M, Han Q and Wang
X: Nell-1 attenuates lipopolysaccharide-induced inflammation in
human dental pulp cells. J Mol Histol. 52:671–680. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu M, Wang Q, Tang R, Cao R and Wang X:
Nel-like molecule 1 contributes to the odontoblastic
differentiation of human dental pulp cells. J Endod. 42:95–100.
2016. View Article : Google Scholar
|
|
82
|
Hu JZ, Zhang ZY, Zhao J, Zhang XL, Liu GT
and Jiang XQ: An ectopic study of tissue-engineered bone with
Nell-1 gene modified rat bone marrow stromal cells in nude mice.
Chin Med J (Engl). 122:972–979. 2009.PubMed/NCBI
|
|
83
|
Zhu S, Song D, Jiang X, Zhou H and Hu J:
Combined effects of recombinant human BMP-2 and Nell-1 on bone
regeneration in rapid distraction osteogenesis of rabbit tibia.
Injury. 42:1467–1473. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Aghaloo T, Cowan CM, Zhang X, Freymiller
E, Soo C, Wu B, Ting K and Zhang Z: The effect of NELL1 and bone
morphogenetic protein-2 on calvarial bone regeneration. J Oral
Maxillofac Surg. 68:300–308. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Liu L, Lam WMR, Naidu M, Yang Z, Wang M,
Ren X, Hu T, Kumarsing R, Ting K, Goh JC and Wong HK: Synergistic
Effect of NELL-1 and an Ultra-Low Dose of BMP-2 on Spinal Fusion.
Tissue Eng Part A. 25:1677–1689. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Xia L, Xu Y, Chang Q, Sun X, Zeng D, Zhang
W, Zhang X, Zhang Z and Jiang X: Maxillary sinus floor elevation
using BMP-2 and Nell-1 gene-modified bone marrow stromal cells and
TCP in rabbits. Calcif Tissue Int. 89:53–64. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wu J, Wang Q, Han Q, Zhu H, Li M, Fang Y
and Wang X: Effects of Nel-like molecule-1 and bone morphogenetic
protein 2 combination on rat pulp repair. J Mol Histol. 50:253–261.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wing Moon Lam R, Abbah SA, Ming W, Naidu
M, Ng F, Tao H, Goh Cho Hong J, Ting K and Hee Kit W:
Polyelectrolyte complex for heparin binding domain osteogenic
growth factor delivery. J Vis Exp. (114): 542022016.PubMed/NCBI
|
|
89
|
Li CS, Zhang X, Péault B, Jiang J, Ting K,
Soo C and Zhou YH: Accelerated chondrogenic differentiation of
human perivascular stem cells with NELL-1. Tissue Eng Part A.
22:272–285. 2016. View Article : Google Scholar :
|
|
90
|
Lee S, Wang C, Pan HC, Shrestha S, Meyers
C, Ding C, Shen J, Chen E, Lee M, Soo C, et al: Combining
Smoothened Agonist and NEL-Like Protein-1 Enhances Bone Healing.
Plast Reconstr Surg. 139:1385–1396. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tanjaya J, Ha P, Zhang Y, Wang C, Shah Y,
Berthiaume E, Pan HC, Shi J, Kwak J, Wu B, et al: Genetic and
pharmacologic suppression of PPARγ enhances NELL-1-stimulated bone
regeneration. Biomaterials. 287:1216092022. View Article : Google Scholar
|
|
92
|
Fan M, Jiang WX, Wang AY, Peng J, Zhang L,
Xu WJ and Lu SB: Combined effects of NEL-like type 1 gene and
zoledronate in preventing collapse of the femoral head. Zhongguo Yi
Xue Ke Xue Yuan Xue Bao. 35:553–560. 2013.In Chinese. PubMed/NCBI
|
|
93
|
Askarinam A, James AW, Zara JN, Goyal R,
Corselli M, Pan A, Liang P, Chang L, Rackohn T, Stoker D, et al:
Human perivascular stem cells show enhanced osteogenesis and
vasculogenesis with Nel-like molecule I protein. Tissue Eng Part A.
19:1386–1397. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lee S, Zhang X, Shen J, James AW, Chung
CG, Hardy R, Li C, Girgius C, Zhang Y, Stoker D, et al: Brief
Report: Human perivascular stem cells and nel-like protein-1
synergistically enhance spinal fusion in osteoporotic rats. Stem
Cells. 33:3158–3163. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
An HJ, Ko KR, Baek M, Jeong Y, Lee HH, Kim
H, Kim DK, Lee SY and Lee S: Pro-Angiogenic and osteogenic effects
of adipose tissue-derived pericytes synergistically enhanced by
Nel-like Protein-1. Cells. 10:22442021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang X, Péault B, Chen W, Li W, Corselli
M, James AW, Lee M, Siu RK, Shen P, Zheng Z, et al: The Nell-1
growth factor stimulates bone formation by purified human
perivascular cells. Tissue Eng Part A. 17:2497–2509. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kwak JH, Zhang Y, Park J, Chen E, Shen J,
Chawan C, Tanjaya J, Lee S, Zhang X, Wu BM, et al: Pharmacokinetics
and osteogenic potential of PEGylated NELL-1 in vivo after systemic
administration. Biomaterials. 57:73–83. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tanjaya J, Zhang Y, Lee S, Shi J, Chen E,
Ang P, Zhang X, Tetradis S, Ting K, Wu B, et al: Efficacy of
Intraperitoneal Administration of PEGylated NELL-1 for Bone
Formation. Biores Open Access. 5:159–170. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang Y, Velasco O, Zhang X, Ting K, Soo C
and Wu BM: Bioactivity and circulation time of PEGylated NELL-1 in
mice and the potential for osteoporosis therapy. Biomaterials.
35:6614–6621. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Tanjaya J, Lord EL, Wang C, Zhang Y, Kim
JK, Nguyen A, Baik L, Pan HC, Chen E, Kwak JH, et al: The Effects
of Systemic Therapy of PEGylated NEL-Like Protein 1 (NELL-1) on
Fracture Healing in Mice. Am J Pathol. 188:715–727. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Pang S, Shen J, Liu Y, Chen F, Zheng Z,
James AW, Hsu CY, Zhang H, Lee KS, Wang C, et al: Proliferation and
osteogenic differentiation of mesenchymal stem cells induced by a
short isoform of NELL-1. Stem Cells. 33:904–915. 2015. View Article : Google Scholar
|
|
102
|
Meyers CA, Sun Z, Chang L, Ding C, Lu A,
Ting K, Pang S and James AW: Age dependent effects of NELL-1
isoforms on bone marrow stromal cells. J Orthop. 16:175–178. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li W, Lee M, Whang J, Siu RK, Zhang X, Liu
C, Wu BM, Wang JC, Ting K and Soo C: Delivery of lyophilized Nell-1
in a rat spinal fusion model. Tissue Eng Part A. 16:2861–2870.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hu J, Hou Y, Park H and Lee M:
Beta-tricalcium phosphate particles as a controlled release carrier
of osteogenic proteins for bone tissue engineering. J Biomed Mater
Res A. 100:1680–1686. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang Y, Dong R, Park Y, Bohner M, Zhang
X, Ting K, Soo C and Wu BM: Controlled release of NELL-1 protein
from chitosan/hydroxyapatite-modified TCP particles. Int J Pharm.
511:79–89. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
James AW, Chiang M, Asatrian G, Shen J,
Goyal R, Chung CG, Chang L, Shrestha S, Turner AS, Seim HB III, et
al: Vertebral Implantation of NELL-1 enhances bone formation in an
osteoporotic sheep model. Tissue Eng Part A. 22:840–849. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Song H, Zhang Y, Zhang Z, Xiong S, Ma X
and Li Y: Hydroxyapatite/NELL-1 Nanoparticles Electrospun Fibers
for Osteoinduction in Bone Tissue Engineering Application. Int J
Nanomedicine. 16:4321–4332. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lee M, Li W, Siu RK, Whang J, Zhang X, Soo
C, Ting K and Wu BM: Biomimetic apatite-coated alginate/chitosan
microparticles as osteogenic protein carriers. Biomaterials.
30:6094–6101. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lee M, Siu RK, Ting K and Wu BM: Effect of
Nell-1 delivery on chondrocyte proliferation and cartilaginous
extracellular matrix deposition. Tissue Eng Part A. 16:1791–1800.
2010. View Article : Google Scholar
|
|
110
|
Zhu S, Zhang B, Man C, Ma Y and Hu J:
NEL-like molecule-1-modified bone marrow mesenchymal stem
cells/poly lactic-co-glycolic acid composite improves repair of
large osteochondral defects in mandibular condyle. Osteoarthritis
Cartilage. 19:743–750. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Siu RK, Lu SS, Li W, Whang J, McNeill G,
Zhang X, Wu BM, Turner AS, Seim HB III, Hoang P, et al: Nell-1
protein promotes bone formation in a sheep spinal fusion model.
Tissue Eng Part A. 17:1123–1135. 2011. View Article : Google Scholar :
|
|
112
|
Yuan W, James AW, Asatrian G, Shen J, Zara
JN, Tian HJ, Siu RK, Zhang X, Wang JC and Dong J: NELL-1 based
demineralized bone graft promotes rat spine fusion as compared to
commercially available BMP-2 product. J Orthop Sci. 18:646–657.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Li W, Zara JN, Siu RK, Lee M, Aghaloo T,
Zhang X, Wu BM, Gertzman AA, Ting K and Soo C: Nell-1 enhances bone
regeneration in a rat critical-sized femoral segmental defect
model. Plast Reconstr Surg. 127:580–587. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Shen J, LaChaud G, Shrestha S, Asatrian G,
Zhang X, Dry SM, Soo C, Ting K and James AW: NELL-1 expression in
tumors of cartilage. J Orthop. 12(Suppl 2): S223–S229. 2015.
View Article : Google Scholar
|
|
115
|
Shen J, LaChaud G, Khadarian K, Shrestha
S, Zhang X, Soo C, Ting K, Dry SM and James AW: NELL-1 expression
in benign and malignant bone tumors. Biochem Biophys Res Commun.
460:368–374. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Chen F, Walder B, James AW, Soofer DE, Soo
C, Ting K and Zhang X: NELL-1-dependent mineralisation of Saos-2
human osteosarcoma cells is mediated via c-Jun N-terminal kinase
pathway activation. Int Orthop. 36:2181–2187. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Duan C and Townley HE: Isolation of NELL 1
aptamers for rhabdomyosarcoma targeting. Bioengineering (Basel).
9:1742022. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Song D, Wang Q, Yan Z, Su M, Zhang H, Shi
L, Fan Y, Zhang Q, Yang H, Zhang D and Liu Q: METTL3 promotes the
progression of osteosarcoma through the N6-methyladenosine
modification of MCAM via IGF2BP1. Biol Direct. 19:442024.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Shen J, LaChaud G, Khadarian K, Shrestha
S, Zhang X, Soo C, Ting K, Dry SM and James AW: NELL-1 expression
in benign and malignant bone tumors. Biochem Biophys Res Commun.
460:368–374. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Ren S, Pan R and Wang Z: Multi-omics and
single cell sequencing analyses reveal associations of
mitophagy-related genes predicting clinical prognosis and immune
infiltration characteristics in osteosarcoma. Mol Biotechnol. Sep
12–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kular J, Tickner J, Chim SM and Xu J: An
overview of the regulation of bone remodelling at the cellular
level. Clin Biochem. 45:863–873. 2012. View Article : Google Scholar : PubMed/NCBI
|