Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review)

  • Authors:
    • Zihan Li
    • Yihao Tian
  • View Affiliations / Copyright

    Affiliations: Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China, Department of Pathology, Beifang Hospital of China Medical University, General Hospital of Northern Theater Command, Shenyang, Liaoning 110004, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 5
    |
    Published online on: October 23, 2024
       https://doi.org/10.3892/ijmm.2024.5446
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

A dynamic balance exists between osteogenesis and osteoclastogenesis in bone tissue, which can lead to several bone diseases, such as osteoporosis, osteoarthritis, bone necrosis and bone defects, in cases of insufficient osteogenesis or excessive osteoclastogenesis. NEL‑like molecule‑1 (NELL‑1) was first discovered in 1999 as an osteogenic factor that can prevent or treat bone diseases by increasing osteogenic levels. To date, research has identified multiple signaling pathways involved in improving osteogenic levels. Furthermore, to apply NELL‑1 in clinical practice, researchers have optimized its osteogenic effect by combining it with other molecules, changing its molecular structure and performing bone tissue engineering. Currently, research on NELL‑1 is gaining increasing attention. In the near future, it will definitely be applied in clinical practice to eliminate diseases. Thus, the present study provides a comprehensive review of NELL‑1 in enhancing osteogenic levels from the perspectives of the molecular mechanism, interactions with other molecules/cells, molecular‑level changes, applications in bone tissue engineering and its expression in tumors, providing a solid theoretical basis for its clinical application.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Barrio-Hernandez I, Jafari A, Rigbolt KTG, Hallenborg P, Sanchez-Quiles V, Skovrind I, Akimov V, Kratchmarova I, Dengjel J, Kassem M and Blagoev B: Phosphoproteomic profiling reveals a defined genetic program for osteoblastic lineage commitment of human bone marrow-derived stromal stem cells. Genome Res. 30:127–137. 2020. View Article : Google Scholar :

2 

Mousa A, Cui C, Song A, Myneni VD, Sun H, Li JJ, Murshed M, Melino G and Kaartinen MT: Transglutaminases factor XIII-A and TG2 regulate resorption, adipogenesis and plasma fibronectin homeostasis in bone and bone marrow. Cell Death Differ. 24:844–854. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Zengini E, Hatzikotoulas K, Tachmazidou I, Steinberg J, Hartwig FP, Southam L, Hackinger S, Boer CG, Styrkarsdottir U, Gilly A, et al: Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat Genet. 50:549–558. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Jones IA, Togashi R, Wilson ML, Heckmann N and Vangsness CT Jr: Intra-articular treatment options for knee osteoarthritis. Nat Rev Rheumatol. 15:77–90. 2019. View Article : Google Scholar :

5 

Lopes D, Martins-Cruz C, Oliveira MB and Mano JF: Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 185:240–275. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Wu H, Cao F, Zhou W, Wang G, Liu G, Xia T, Liu M, Mi B and Liu Y: Long Noncoding RNA FAM83H-AS1 Modulates SpA-Inhibited Osteogenic Differentiation in Human Bone Mesenchymal Stem Cells. Mol Cell Biol. 40:e00362–19. 2020. View Article : Google Scholar :

7 

Zhu H, Kimura T, Swami S and Wu JY: Pluripotent stem cells as a source of osteoblasts for bone tissue regeneration. Biomaterials. 196:31–45. 2019. View Article : Google Scholar

8 

Petersen A, Princ A, Korus G, Ellinghaus A, Leemhuis H, Herrera A, Klaumünzer A, Schreivogel S, Woloszyk A, Schmidt-Bleek K, et al: A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat Commun. 9:44302018. View Article : Google Scholar : PubMed/NCBI

9 

Fukuda M, Yoshizawa T, Karim MF, Sobuz SU, Korogi W, Kobayasi D, Okanishi H, Tasaki M, Ono K, Sawa T, et al: SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix. Nat Commun. 9:28332018. View Article : Google Scholar : PubMed/NCBI

10 

Han B, Li Q, Wang C, Patel P, Adams SM, Doyran B, Nia HT, Oftadeh R, Zhou S, Li CY, et al: Decorin regulates the aggrecan network integrity and biomechanical functions of cartilage extracellular matrix. ACS Nano. 13:11320–11333. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Scheper MA, Badros A, Chaisuparat R, Cullen KJ and Meiller TF: Effect of zoledronic acid on oral fibroblasts and epithelial cells: A potential mechanism of bisphosphonate-associated osteonecrosis. Br J Haematol. 144:667–676. 2009. View Article : Google Scholar :

12 

Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP and Picart C: Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 180:143–162. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Ting K, Vastardis H, Mulliken JB, Soo C, Tieu A, Do H, Kwong E, Bertolami CN, Kawamoto H, Kuroda S and Longaker MT: Human NELL-1 expressed in unilateral coronal synostosis. J Bone Miner Res. 14:80–89. 1999. View Article : Google Scholar : PubMed/NCBI

14 

James AW, Shen J, Zhang X, Asatrian G, Goyal R, Kwak JH, Jiang L, Bengs B, Culiat CT, Turner AS, et al: NELL-1 in the treatment of osteoporotic bone loss. Nat Commun. 6:73622015. View Article : Google Scholar : PubMed/NCBI

15 

Nakamura Y, Hasebe A, Takahashi K, Iijima M, Yoshimoto N, Maturana AD, Ting K, Kuroda S and Niimi T: Oligomerization-induced conformational change in the C-terminal region of Nel-like molecule 1 (NELL1) protein is necessary for the efficient mediation of murine MC3T3-E1 cell adhesion and spreading. J Biol Chem. 289:9781–9794. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Kuroda S, Oyasu M, Kawakami M, Kanayama N, Tanizawa K, Saito N, Abe T, Matsuhashi S and Ting K: Biochemical characterization and expression analysis of neural thrombospondin-1-like proteins NELL1 and NELL2. Biochem Biophys Res Commun. 265:79–86. 1999. View Article : Google Scholar : PubMed/NCBI

17 

Kajava AV: Modeling of a five-stranded coiled coil structure for the assembly domain of the cartilage oligomeric matrix protein. Proteins. 24:218–226. 1996. View Article : Google Scholar : PubMed/NCBI

18 

Kuroda S and Tanizawa K: Involvement of epidermal growth factor-like domain of NELL proteins in the novel protein-protein interaction with protein kinase C. Biochem Biophys Res Commun. 265:752–757. 1999. View Article : Google Scholar : PubMed/NCBI

19 

Bornstein P: Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin 1. J Cell Biol. 130:503–506. 1995. View Article : Google Scholar : PubMed/NCBI

20 

Garcia Abreu J, Coffinier C, Larrain J, Oelgeschlager M and De Robertis EM: Chordin-like CR domains and the regulation of evolutionarily conserved extracellular signaling systems. Gene. 287:39–47. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Duarte RM, Varanda P, Reis RL, Duarte ARC and Correia-Pinto J: Biomaterials and Bioactive Agents in Spinal Fusion. Tissue Eng Part B Rev. 23:540–551. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Zeng L, He H, Sun M, Gong X, Zhou M, Hong Y, Wu Y, Chen X and Chen Q: Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption. Stem Cell Res Ther. 13:4862022. View Article : Google Scholar : PubMed/NCBI

23 

Smith B, Goldstein T and Ekstein C: Biologic adjuvants and bone: Current use in orthopedic surgery. Curr Rev Musculoskelet Med. 8:193–199. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Cottrill E, Ahmed AK, Lessing N, Pennington Z, Ishida W, Perdomo-Pantoja A, Lo SF, Howell E, Holmes C, Goodwin CR, et al: Investigational growth factors utilized in animal models of spinal fusion: Systematic review. World J Orthop. 10:176–191. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Qin XY, Zhao HX, Zhang Q, Chen F and Lin JX: NELL-1: A novel highly efficient and specific growth factor. Beijing Da Xue Xue Bao Yi Xue Ban. 48:380–383. 2016.In Chinese. PubMed/NCBI

26 

Zhang Y, Jiang Y, Zou D, Yuan B, Ke HZ and Li W: Therapeutics for enhancement of spinal fusion: A mini review. J Orthop Translat. 31:73–79. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Cheng X, Shi J, Jia Z, Ha P, Soo C, Ting K, James AW, Shi B and Zhang X: NELL-1 in Genome-Wide Association Studies across Human Diseases. Am J Pathol. 192:395–405. 2022. View Article : Google Scholar :

28 

Li C, Zhang X, Zheng Z, Nguyen A, Ting K and Soo C: Nell-1 is a key functional modulator in osteochondrogenesis and beyond. J Dent Res. 98:1458–1468. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Pakvasa M, Alverdy A, Mostafa S, Wang E, Fu L, Li A, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, et al: Neural EGF-like protein 1 (NELL-1): Signaling crosstalk in mesenchymal stem cells and applications in regenerative medicine. Genes Dis. 4:127–137. 2017. View Article : Google Scholar : PubMed/NCBI

30 

James AW: Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo). 2013:6847362013.

31 

Setzer B, Bächle M, Metzger MC and Kohal RJ: The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials. 30:979–990. 2009. View Article : Google Scholar

32 

Iwan A, Moskalewski S and Hyc A: Growth factor profile in calcified cartilage from the metaphysis of a calf costochondral junction, the site of initial bone formation. Biomed Rep. 14:542021. View Article : Google Scholar : PubMed/NCBI

33 

Song D, Huang S, Zhang L, Liu W, Huang B, Feng Y, Liu B, He TC, Huang D and Reid RR: Differential Responsiveness to BMP9 between patent and fused suture progenitor cells from craniosynostosis patients. Plast Reconstr Surg. 145:552e–562e. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Yu L, Cen X, Xia K, Huang X, Sun W, Zhao Z and Liu J: microRNA expression profiles and the potential competing endogenous RNA networks in NELL-1-induced human adipose-derived stem cell osteogenic differentiation. J Cell Biochem. 121:4623–4641. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Shen J, James AW, Zara JN, Asatrian G, Khadarian K, Zhang JB, Ho S, Kim HJ, Ting K and Soo C: BMP2-induced inflammation can be suppressed by the osteoinductive growth factor NELL-1. Tissue Eng Part A. 19:2390–2401. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Cowan CM, Jiang X, Hsu T, Soo C, Zhang B, Wang JZ, Kuroda S, Wu B, Zhang Z, Zhang X and Ting K: Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts. J Bone Miner Res. 22:918–930. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Fahmy-Garcia S, van Driel M, Witte-Buoma J, Walles H, van Leeuwen JPTM, van Osch GJVM and Farrell E: NELL-1, HMGB1, and CCN2 enhance migration and vasculogenesis, but not osteogenic differentiation compared to BMP2. Tissue Eng Part A. 24:207–218. 2018. View Article : Google Scholar

38 

Zhang X, Zara J, Siu RK, Ting K and Soo C: The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res. 89:865–878. 2010. View Article : Google Scholar : PubMed/NCBI

39 

James AW, Zara JN, Zhang X, Askarinam A, Goyal R, Chiang M, Yuan W, Chang L, Corselli M, Shen J, et al: Perivascular stem cells: A prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med. 1:510–519. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Aghaloo T, Cowan CM, Chou YF, Zhang X, Lee H, Miao S, Hong N, Kuroda S, Wu B, Ting K and Soo C: Nell-1-induced bone regeneration in calvarial defects. Am J Pathol. 169:903–915. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Aghaloo T, Jiang X, Soo C, Zhang Z and Zhang X, Hu J, Pan H, Hsu T, Wu B, Ting K and Zhang X: A study of the role of nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Mol Ther. 15:1872–1880. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Cowan CM, Zhang X, James AW, Kim TM, Sun N, Wu B, Ting K and Soo C: NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2. Biochem Biophys Res Commun. 422:351–357. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Hyc A, Moskalewski S and Osiecka-Iwan A: Growth factors in the initial stage of bone formation, analysis of their expression in chondrocytes from epiphyseal cartilage of rat costochondral junction. Folia Histochem Cytobiol. 59:178–186. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Cowan CM, Cheng S, Ting K, Soo C, Walder B, Wu B, Kuroda S and Zhang X: Nell-1 induced bone formation within the distracted intermaxillary suture. Bone. 38:48–58. 2006. View Article : Google Scholar

45 

Truong T, Zhang X, Pathmanathan D, Soo C and Ting K: Craniosynostosis-associated gene nell-1 is regulated by runx2. J Bone Miner Res. 22:7–18. 2007. View Article : Google Scholar

46 

Zhang X, Ting K, Bessette CM, Culiat CT, Sung SJ, Lee H, Chen F, Shen J, Wang JJ, Kuroda S and Soo C: Nell-1, a key functional mediator of Runx2, partially rescues calvarial defects in Runx2(+/−) mice. J Bone Miner Res. 26:777–791. 2011. View Article : Google Scholar

47 

Li C, Jiang J, Zheng Z, Lee KS, Zhou Y, Chen E, Culiat CT, Qiao Y, Chen X, Ting K, et al: Neural EGFL-Like 1 is a downstream regulator of runt-related transcription factor 2 in chondrogenic differentiation and maturation. Am J Pathol. 187:963–972. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Chen F, Zhang X, Sun S, Zara JN, Zou X, Chiu R, Culiat CT, Ting K and Soo C: NELL-1, an osteoinductive factor, is a direct transcriptional target of Osterix. PLoS One. 6:e246382011. View Article : Google Scholar : PubMed/NCBI

49 

Lai K, Xi Y, Du X, Jiang Z, Li Y, Huang T, Miao X, Wang H, Wang Y and Yang G: Activation of Nell-1 in BMSC sheet promotes implant osseointegration through regulating Runx2/Osterix Axis. Front Cell Dev Biol. 8:8682020. View Article : Google Scholar : PubMed/NCBI

50 

Zhang X, Ting K, Pathmanathan D, Ko T, Chen W, Chen F, Lee H, James AW, Siu RK, Shen J, et al: Calvarial cleidocraniodysplasia-like defects with ENU-induced Nell-1 deficiency. J Craniofac Surg. 23:61–66. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Lu SS, Zhang X, Soo C, Hsu T, Napoli A, Aghaloo T, Wu BM, Tsou P, Ting K and Wang JC: The osteoinductive properties of Nell-1 in a rat spinal fusion model. Spine J. 7:50–60. 2007. View Article : Google Scholar : PubMed/NCBI

52 

James AW, Pang S, Askarinam A, Corselli M, Zara JN, Goyal R, Chang L, Pan A, Shen J, Yuan W, et al: Additive effects of sonic hedgehog and Nell-1 signaling in osteogenic versus adipogenic differentiation of human adipose-derived stromal cells. Stem Cells Dev. 21:2170–2178. 2012. View Article : Google Scholar : PubMed/NCBI

53 

James AW, Pan A, Chiang M, Zara JN, Zhang X, Ting K and Soo C: A new function of Nell-1 protein in repressing adipogenic differentiation. Biochem Biophys Res Commun. 411:126–131. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Qi H, Kim JK, Ha P, Chen X, Chen E, Chen Y, Li J, Pan HC, Yu M, Mohazeb Y, et al: Inactivation of Nell-1 in chondrocytes significantly impedes appendicular skeletogenesis. J Bone Miner Res. 34:533–546. 2019. View Article : Google Scholar

55 

Li C, Zheng Z, Zhang X, Asatrian G, Chen E, Song R, Culiat C, Ting K and Soo C: Nfatc1 Is a Functional Transcriptional Factor Mediating Nell-1-Induced Runx3 Upregulation in Chondrocytes. Int J Mol Sci. 19:1682018. View Article : Google Scholar : PubMed/NCBI

56 

Wang C, Wang Y, Wang C, Liu C, Li W, Hu S, Wu N, Jiang S and Shi J: Therapeutic application of 3B-PEG injectable hydrogel/Nell-1 composite system to temporomandibular joint osteoarthritis. Biomed Mater. 17:0150042021. View Article : Google Scholar

57 

Chen W, Zhang X, Siu RK, Chen F, Shen J, Zara JN, Culiat CT, Tetradis S, Ting K and Soo C: Nfatc2 is a primary response gene of Nell-1 regulating chondrogenesis in ATDC5 cells. J Bone Miner Res. 26:1230–1241. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Shen J, James AW, Zhang X, Pang S, Zara JN, Asatrian G, Chiang M, Lee M, Khadarian K, Nguyen A, et al: Novel Wnt Regulator NEL-Like Molecule-1 antagonizes adipogenesis and augments osteogenesis induced by bone morphogenetic protein 2. Am J Pathol. 186:419–434. 2016. View Article : Google Scholar : PubMed/NCBI

59 

James AW, Shen J, Tsuei R, Nguyen A, Khadarian K, Meyers CA, Pan HC, Li W, Kwak JH, Asatrian G, et al: NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair. JCI Insight. 2:e925732017. View Article : Google Scholar : PubMed/NCBI

60 

Chen X, Wang H, Yu M, Kim JK, Qi H, Ha P, Jiang W, Chen E, Luo X, Needle RB, et al: Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus. Cell Death Differ. 27:1415–1430. 2020. View Article : Google Scholar :

61 

Zhang X, Kuroda S, Carpenter D, Nishimura I, Soo C, Moats R, Iida K, Wisner E, Hu FY, Miao S, et al: Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin Invest. 110:861–870. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Chermside-Scabbo CJ, Harris TL, Brodt MD, Braenne I, Zhang B, Farber CR and Silva MJ: Old mice have less transcriptional activation but similar periosteal cell proliferation compared to young-adult mice in response to in vivo mechanical loading. J Bone Miner Res. 35:1751–1764. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Li C, Zheng Z, Ha P, Chen X, Jiang W, Sun S, Chen F, Asatrian G, Berthiaume EA, Kim JK, et al: Neurexin superfamily cell membrane receptor contactin-associated protein Like-4 (Cntnap4) Is Involved in Neural EGFL-Like 1 (Nell-1)-Responsive Osteogenesis. J Bone Miner Res. 33:1813–1825. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Yamamoto N, Kashiwagi M, Ishihara M, Kojima T, Maturana AD, Kuroda S and Niimi T: Robo2 contains a cryptic binding site for neural EGFL-like (NELL) protein 1/2. J Biol Chem. 294:4693–4703. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Bokui N, Otani T, Igarashi K, Kaku J, Oda M, Nagaoka T, Seno M, Tatematsu K, Okajima T, Matsuzaki T, et al: Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation. FEBS Lett. 582:365–371. 2008. View Article : Google Scholar

66 

Huang X, Cen X, Zhang B, Liao Y, Zhao Z, Zhu G, Zhao Z and Liu J: The roles of circRFWD2 and circINO80 during NELL-1-induced osteogenesis. J Cell Mol Med. 23:8432–8441. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Shen J, James AW, Chung J, Lee K, Zhang JB, Ho S, Lee KS, Kim TM, Niimi T, Kuroda S, et al: NELL-1 promotes cell adhesion and differentiation via Integrinβ1. J Cell Biochem. 113:3620–3628. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Zou X, Shen J, Chen F, Ting K, Zheng Z, Pang S, Zara JN, Adams JS, Soo C and Zhang X: NELL-1 binds to APR3 affecting human osteoblast proliferation and differentiation. FEBS Lett. 585:2410–2418. 2011. View Article : Google Scholar : PubMed/NCBI

69 

Li C, Zheng Z, Ha P, Jiang W, Berthiaume EA, Lee S, Mills Z, Pan H, Chen EC, Jiang J, et al: Neural EGFL like 1 as a potential pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug. Biomaterials. 226:1195412020. View Article : Google Scholar :

70 

Wang C, Hou W, Guo X, Li J, Hu T, Qiu M, Liu S, Mo X and Liu X: Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Mater Sci Eng C Mater Biol Appl. 79:507–515. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Siu RK, Zara JN, Hou Y, James AW, Kwak J, Zhang X, Ting K, Wu BM, Soo C and Lee M: NELL-1 promotes cartilage regeneration in an in vivo rabbit model. Tissue Eng Part A. 18:252–261. 2012. View Article : Google Scholar :

72 

Kwak J, Zara JN, Chiang M, Ngo R, Shen J, James AW, Le KM, Moon C, Zhang X, Gou Z, et al: NELL-1 injection maintains long-bone quantity and quality in an ovariectomy-induced osteoporotic senile rat model. Tissue Eng Part A. 19:426–436. 2013. View Article : Google Scholar :

73 

James AW, Zhang X, Crisan M, Hardy WR, Liang P, Meyers CA, Lobo S, Lagishetty V, Childers MK, Asatrian G, et al: Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering. PLoS One. 12:e01773082017. View Article : Google Scholar : PubMed/NCBI

74 

Karasik D, Hsu YH, Zhou Y, Cupples LA, Kiel DP and Demissie S: Genome-wide pleiotropy of osteoporosis-related phenotypes: The Framingham Study. J Bone Miner Res. 25:1555–1563. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Inaba H, Cao X, Han AQ, Panetta JC, Ness KK, Metzger ML, Rubnitz JE, Ribeiro RC, Sandlund JT, Jeha S, et al: Bone mineral density in children with acute lymphoblastic leukemia. Cancer. 124:1025–1035. 2018. View Article : Google Scholar

76 

Zhang X, Carpenter D, Bokui N, Soo C, Miao S, Truong T, Wu B, Chen I, Vastardis H, Tanizawa K, et al: Overexpression of Nell-1, a craniosynostosis-associated gene, induces apoptosis in osteoblasts during craniofacial development. J Bone Miner Res. 18:2126–2134. 2003. View Article : Google Scholar : PubMed/NCBI

77 

Zhang X, Cowan CM, Jiang X, Soo C, Miao S, Carpenter D, Wu B, Kuroda S and Ting K: Nell-1 induces acrania-like cranio-skeletal deformities during mouse embryonic development. Lab Invest. 86:633–644. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Tang R, Wang Q, Du J, Yang P and Wang X: Expression and localization of Nell-1 during murine molar development. J Mol Histol. 44:175–181. 2013. View Article : Google Scholar

79 

Wang B, Wu Y, Yu H, Jiang L, Fang B and Guo Q: The effects of NELL on corticotomy-assisted tooth movement and osteogenesis in a rat model. Biomed Mater Eng. 29:757–771. 2018.PubMed/NCBI

80 

Cao R, Wang Q, Wu J, Liu M, Han Q and Wang X: Nell-1 attenuates lipopolysaccharide-induced inflammation in human dental pulp cells. J Mol Histol. 52:671–680. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Liu M, Wang Q, Tang R, Cao R and Wang X: Nel-like molecule 1 contributes to the odontoblastic differentiation of human dental pulp cells. J Endod. 42:95–100. 2016. View Article : Google Scholar

82 

Hu JZ, Zhang ZY, Zhao J, Zhang XL, Liu GT and Jiang XQ: An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice. Chin Med J (Engl). 122:972–979. 2009.PubMed/NCBI

83 

Zhu S, Song D, Jiang X, Zhou H and Hu J: Combined effects of recombinant human BMP-2 and Nell-1 on bone regeneration in rapid distraction osteogenesis of rabbit tibia. Injury. 42:1467–1473. 2011. View Article : Google Scholar : PubMed/NCBI

84 

Aghaloo T, Cowan CM, Zhang X, Freymiller E, Soo C, Wu B, Ting K and Zhang Z: The effect of NELL1 and bone morphogenetic protein-2 on calvarial bone regeneration. J Oral Maxillofac Surg. 68:300–308. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Liu L, Lam WMR, Naidu M, Yang Z, Wang M, Ren X, Hu T, Kumarsing R, Ting K, Goh JC and Wong HK: Synergistic Effect of NELL-1 and an Ultra-Low Dose of BMP-2 on Spinal Fusion. Tissue Eng Part A. 25:1677–1689. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Xia L, Xu Y, Chang Q, Sun X, Zeng D, Zhang W, Zhang X, Zhang Z and Jiang X: Maxillary sinus floor elevation using BMP-2 and Nell-1 gene-modified bone marrow stromal cells and TCP in rabbits. Calcif Tissue Int. 89:53–64. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Wu J, Wang Q, Han Q, Zhu H, Li M, Fang Y and Wang X: Effects of Nel-like molecule-1 and bone morphogenetic protein 2 combination on rat pulp repair. J Mol Histol. 50:253–261. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Wing Moon Lam R, Abbah SA, Ming W, Naidu M, Ng F, Tao H, Goh Cho Hong J, Ting K and Hee Kit W: Polyelectrolyte complex for heparin binding domain osteogenic growth factor delivery. J Vis Exp. (114): 542022016.PubMed/NCBI

89 

Li CS, Zhang X, Péault B, Jiang J, Ting K, Soo C and Zhou YH: Accelerated chondrogenic differentiation of human perivascular stem cells with NELL-1. Tissue Eng Part A. 22:272–285. 2016. View Article : Google Scholar :

90 

Lee S, Wang C, Pan HC, Shrestha S, Meyers C, Ding C, Shen J, Chen E, Lee M, Soo C, et al: Combining Smoothened Agonist and NEL-Like Protein-1 Enhances Bone Healing. Plast Reconstr Surg. 139:1385–1396. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Tanjaya J, Ha P, Zhang Y, Wang C, Shah Y, Berthiaume E, Pan HC, Shi J, Kwak J, Wu B, et al: Genetic and pharmacologic suppression of PPARγ enhances NELL-1-stimulated bone regeneration. Biomaterials. 287:1216092022. View Article : Google Scholar

92 

Fan M, Jiang WX, Wang AY, Peng J, Zhang L, Xu WJ and Lu SB: Combined effects of NEL-like type 1 gene and zoledronate in preventing collapse of the femoral head. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 35:553–560. 2013.In Chinese. PubMed/NCBI

93 

Askarinam A, James AW, Zara JN, Goyal R, Corselli M, Pan A, Liang P, Chang L, Rackohn T, Stoker D, et al: Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with Nel-like molecule I protein. Tissue Eng Part A. 19:1386–1397. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Lee S, Zhang X, Shen J, James AW, Chung CG, Hardy R, Li C, Girgius C, Zhang Y, Stoker D, et al: Brief Report: Human perivascular stem cells and nel-like protein-1 synergistically enhance spinal fusion in osteoporotic rats. Stem Cells. 33:3158–3163. 2015. View Article : Google Scholar : PubMed/NCBI

95 

An HJ, Ko KR, Baek M, Jeong Y, Lee HH, Kim H, Kim DK, Lee SY and Lee S: Pro-Angiogenic and osteogenic effects of adipose tissue-derived pericytes synergistically enhanced by Nel-like Protein-1. Cells. 10:22442021. View Article : Google Scholar : PubMed/NCBI

96 

Zhang X, Péault B, Chen W, Li W, Corselli M, James AW, Lee M, Siu RK, Shen P, Zheng Z, et al: The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng Part A. 17:2497–2509. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Kwak JH, Zhang Y, Park J, Chen E, Shen J, Chawan C, Tanjaya J, Lee S, Zhang X, Wu BM, et al: Pharmacokinetics and osteogenic potential of PEGylated NELL-1 in vivo after systemic administration. Biomaterials. 57:73–83. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Tanjaya J, Zhang Y, Lee S, Shi J, Chen E, Ang P, Zhang X, Tetradis S, Ting K, Wu B, et al: Efficacy of Intraperitoneal Administration of PEGylated NELL-1 for Bone Formation. Biores Open Access. 5:159–170. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Zhang Y, Velasco O, Zhang X, Ting K, Soo C and Wu BM: Bioactivity and circulation time of PEGylated NELL-1 in mice and the potential for osteoporosis therapy. Biomaterials. 35:6614–6621. 2014. View Article : Google Scholar : PubMed/NCBI

100 

Tanjaya J, Lord EL, Wang C, Zhang Y, Kim JK, Nguyen A, Baik L, Pan HC, Chen E, Kwak JH, et al: The Effects of Systemic Therapy of PEGylated NEL-Like Protein 1 (NELL-1) on Fracture Healing in Mice. Am J Pathol. 188:715–727. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Pang S, Shen J, Liu Y, Chen F, Zheng Z, James AW, Hsu CY, Zhang H, Lee KS, Wang C, et al: Proliferation and osteogenic differentiation of mesenchymal stem cells induced by a short isoform of NELL-1. Stem Cells. 33:904–915. 2015. View Article : Google Scholar

102 

Meyers CA, Sun Z, Chang L, Ding C, Lu A, Ting K, Pang S and James AW: Age dependent effects of NELL-1 isoforms on bone marrow stromal cells. J Orthop. 16:175–178. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Li W, Lee M, Whang J, Siu RK, Zhang X, Liu C, Wu BM, Wang JC, Ting K and Soo C: Delivery of lyophilized Nell-1 in a rat spinal fusion model. Tissue Eng Part A. 16:2861–2870. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Hu J, Hou Y, Park H and Lee M: Beta-tricalcium phosphate particles as a controlled release carrier of osteogenic proteins for bone tissue engineering. J Biomed Mater Res A. 100:1680–1686. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Zhang Y, Dong R, Park Y, Bohner M, Zhang X, Ting K, Soo C and Wu BM: Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles. Int J Pharm. 511:79–89. 2016. View Article : Google Scholar : PubMed/NCBI

106 

James AW, Chiang M, Asatrian G, Shen J, Goyal R, Chung CG, Chang L, Shrestha S, Turner AS, Seim HB III, et al: Vertebral Implantation of NELL-1 enhances bone formation in an osteoporotic sheep model. Tissue Eng Part A. 22:840–849. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Song H, Zhang Y, Zhang Z, Xiong S, Ma X and Li Y: Hydroxyapatite/NELL-1 Nanoparticles Electrospun Fibers for Osteoinduction in Bone Tissue Engineering Application. Int J Nanomedicine. 16:4321–4332. 2021. View Article : Google Scholar : PubMed/NCBI

108 

Lee M, Li W, Siu RK, Whang J, Zhang X, Soo C, Ting K and Wu BM: Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials. 30:6094–6101. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Lee M, Siu RK, Ting K and Wu BM: Effect of Nell-1 delivery on chondrocyte proliferation and cartilaginous extracellular matrix deposition. Tissue Eng Part A. 16:1791–1800. 2010. View Article : Google Scholar

110 

Zhu S, Zhang B, Man C, Ma Y and Hu J: NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co-glycolic acid composite improves repair of large osteochondral defects in mandibular condyle. Osteoarthritis Cartilage. 19:743–750. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Siu RK, Lu SS, Li W, Whang J, McNeill G, Zhang X, Wu BM, Turner AS, Seim HB III, Hoang P, et al: Nell-1 protein promotes bone formation in a sheep spinal fusion model. Tissue Eng Part A. 17:1123–1135. 2011. View Article : Google Scholar :

112 

Yuan W, James AW, Asatrian G, Shen J, Zara JN, Tian HJ, Siu RK, Zhang X, Wang JC and Dong J: NELL-1 based demineralized bone graft promotes rat spine fusion as compared to commercially available BMP-2 product. J Orthop Sci. 18:646–657. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Li W, Zara JN, Siu RK, Lee M, Aghaloo T, Zhang X, Wu BM, Gertzman AA, Ting K and Soo C: Nell-1 enhances bone regeneration in a rat critical-sized femoral segmental defect model. Plast Reconstr Surg. 127:580–587. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Shen J, LaChaud G, Shrestha S, Asatrian G, Zhang X, Dry SM, Soo C, Ting K and James AW: NELL-1 expression in tumors of cartilage. J Orthop. 12(Suppl 2): S223–S229. 2015. View Article : Google Scholar

115 

Shen J, LaChaud G, Khadarian K, Shrestha S, Zhang X, Soo C, Ting K, Dry SM and James AW: NELL-1 expression in benign and malignant bone tumors. Biochem Biophys Res Commun. 460:368–374. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Chen F, Walder B, James AW, Soofer DE, Soo C, Ting K and Zhang X: NELL-1-dependent mineralisation of Saos-2 human osteosarcoma cells is mediated via c-Jun N-terminal kinase pathway activation. Int Orthop. 36:2181–2187. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Duan C and Townley HE: Isolation of NELL 1 aptamers for rhabdomyosarcoma targeting. Bioengineering (Basel). 9:1742022. View Article : Google Scholar : PubMed/NCBI

118 

Song D, Wang Q, Yan Z, Su M, Zhang H, Shi L, Fan Y, Zhang Q, Yang H, Zhang D and Liu Q: METTL3 promotes the progression of osteosarcoma through the N6-methyladenosine modification of MCAM via IGF2BP1. Biol Direct. 19:442024. View Article : Google Scholar : PubMed/NCBI

119 

Shen J, LaChaud G, Khadarian K, Shrestha S, Zhang X, Soo C, Ting K, Dry SM and James AW: NELL-1 expression in benign and malignant bone tumors. Biochem Biophys Res Commun. 460:368–374. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Ren S, Pan R and Wang Z: Multi-omics and single cell sequencing analyses reveal associations of mitophagy-related genes predicting clinical prognosis and immune infiltration characteristics in osteosarcoma. Mol Biotechnol. Sep 12–2024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

121 

Kular J, Tickner J, Chim SM and Xu J: An overview of the regulation of bone remodelling at the cellular level. Clin Biochem. 45:863–873. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Z and Tian Y: Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 55: 5, 2025.
APA
Li, Z., & Tian, Y. (2025). Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). International Journal of Molecular Medicine, 55, 5. https://doi.org/10.3892/ijmm.2024.5446
MLA
Li, Z., Tian, Y."Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review)". International Journal of Molecular Medicine 55.1 (2025): 5.
Chicago
Li, Z., Tian, Y."Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review)". International Journal of Molecular Medicine 55, no. 1 (2025): 5. https://doi.org/10.3892/ijmm.2024.5446
Copy and paste a formatted citation
x
Spandidos Publications style
Li Z and Tian Y: Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). Int J Mol Med 55: 5, 2025.
APA
Li, Z., & Tian, Y. (2025). Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review). International Journal of Molecular Medicine, 55, 5. https://doi.org/10.3892/ijmm.2024.5446
MLA
Li, Z., Tian, Y."Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review)". International Journal of Molecular Medicine 55.1 (2025): 5.
Chicago
Li, Z., Tian, Y."Role of NEL‑like molecule‑1 in osteogenesis/chondrogenesis (Review)". International Journal of Molecular Medicine 55, no. 1 (2025): 5. https://doi.org/10.3892/ijmm.2024.5446
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team