|
1
|
Harvey-Jones E, Raghunandan M,
Robbez-Masson L, Magraner-Pardo L, Alaguthurai T, Yablonovitch A,
Yen J, Xiao H, Brough R, Frankum J, et al: Longitudinal profiling
identifies co-occurring BRCA1/2 reversions, TP53BP1, RIF1 and
PAXIP1 mutations in PARP inhibitor resistant advanced breast
cancer. Ann Oncol. 35:364–380. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Waghela BN, Vaidya FU, Ranjan K, Chhipa
AS, Tiwari BS and Pathak C: AGE-RAGE synergy influences programmed
cell death signaling to promote cancer. Mol Cell Biochem.
476:585–598. 2021. View Article : Google Scholar
|
|
3
|
Ayers M, Lunceford J, Nebozhyn M, Murphy
E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran
V, et al: IFN-ү-related mRNA profile predicts clinical response to
PD-1 blockade. J Clin Invest. 127:2930–2940. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bhaskaran SP, Huang T, Rajendran BK, Guo
M, Luo J, Qin Z, Zhao B, Chian J, Li S and Wang SM: Ethnic-specific
BRCA1/2 variation within Asia population: evidence from over 78 000
cancer and 40 000 non-cancer cases of Indian, Chinese, Korean and
Japanese populations. J Med Genet. 58:752–759. 2021. View Article : Google Scholar
|
|
5
|
Yuan H, Xiu L, Li N, Li Y, Wu L and Yao H:
PARPis response and outcome of ovarian cancer patients with BRCA1/2
germline mutation and a history of breast cancer. J Gynecol Oncol.
35:e512024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ranjan K and Pathak C: Expression of
cFLIPL Determines the Basal Interaction of Bcl-2 With Beclin-1 and
Regulates p53 Dependent Ubiquitination of Beclin-1 During
Autophagic Stress. J Cell Biochem. 117:1757–1768. 2016. View Article : Google Scholar
|
|
7
|
Ranjan K, Hedl M, Sinha S, Zhang X and
Abraham C: Ubiquitination of ATF6 by disease-associated RNF186
promotes the innate receptor-induced unfolded protein response. J
Clin Invest. 131:e1454722021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Salvadores M and Supek F: Cell cycle gene
alterations associate with a redistribution of mutation risk across
chromosomal domains in human cancers. Nat Cancer. 5:330–346. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xie F, Guo W, Wang X, Zhou K, Guo S, Liu
Y, Sun T, Li S, Xu Z, Yuan Q, et al: Mutational profiling of
mitochondrial DNA reveals an epithelial ovarian cancer-specific
evolutionary pattern contributing to high oxidative metabolism.
Clin Transl Med. 14:e15232024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zhu J, Yang J, Chen X, Wang Y, Wang X,
Zhao M, Li G, Wang Y, Zhu Y, Yan F, et al: Integrated Bulk and
Single-cell RNA sequencing data constructs and validates a
prognostic model for non-small cell lung cancer. J Cancer.
15:796–808. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhao H, Yu L and Wang L, Yin X, Liu K, Liu
W, Lin S and Wang L: Integrated analysis of single-cell and bulk
RNA sequencing data reveals immune-related lncRNA-mRNA prognostic
signature in triple-negative breast cancer. Genes Dis. 11:571–574.
2024. View Article : Google Scholar
|
|
12
|
Brown AL, Li M, Goncearenco A and
Panchenko AR: Finding driver mutations in cancer: Elucidating the
role of background mutational processes. PLoS Comput Biol.
15:e10069812019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li F, Gao L, Wang P and Hu Y: Identifying
cancer specific driver modules using a network-based method.
Molecules. 23:11142018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Pala L, Sala I, Pagan E, De Pas T,
Zattarin E, Catania C, Cocorocchio E, Rossi G, Laszlo D, Ceresoli
G, et al: 'Heterogeneity of treatment effect on patients' long-term
outcome according to pathological response type in neoadjuvant RCTs
for breast cancer.'. Breast. 73:1036722024. View Article : Google Scholar
|
|
15
|
Schade E: A differentform for the
certification of cause of death. Ned Tijdschr Geneeskd.
130:2310–2312. 1986.In Dutch.
|
|
16
|
Dagogo-Jack I and Shaw AT: Tumour
heterogeneity and resistance to cancer therapies. Nat Rev Clin
Oncol. 15:81–94. 2018. View Article : Google Scholar
|
|
17
|
Akinpelu A, Akinsipe T, Avila LA, Arnold
RD and Mistriotis P: The impact of tumor microenvironment:
unraveling the role of physical cues in breast cancer progression.
Cancer Metastasis Rev. 43:823–844. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Pabinger S, Dander A, Fischer M, Snajder
R, Sperk M, Efremova M, Krabichler B, Speicher MR, Zschocke J and
Trajanoski Z: A survey of tools for variant analysis of
next-generation genome sequencing data. Brief Bioinform.
15:256–278. 2014. View Article : Google Scholar :
|
|
19
|
Phillips KA, Deverka PA, Sox HC, Khoury
MJ, Sandy LG, Ginsburg GS, Tunis SR, Orlando LA and Douglas MP:
Making genomic medicine evidence-based and patient-centered: A
structured review and landscape analysis of comparative
effectiveness research. Genet Med. 19:1081–1091. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ranjan K, Hedl M and Abraham C: The E3
ubiquitin ligase RNF186 and RNF186 risk variants regulate innate
receptor-induced outcomes. Proc Natl Acad Sci USA.
118:e20135001182021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Krebs K and Milani L: Translating
pharmacogenomics into clinical decisions: Do not let the perfect be
the enemy of the good. Hum Genomics. 13:392019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ding RB, Chen P, Rajendran BK, Lyu X, Wang
H, Bao J, Zeng J, Hao W, Sun H, Wong AH, et al: Molecular landscape
and subtype-specific therapeutic response of nasopharyngeal
carcinoma revealed by integrative pharmacogenomics. Nat Commun.
12:30462021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Nain P, Seth L, Bell AS, Raval P, Sharma
G, Bethel M, Sharma G and Guha A: Chemotherapy in Pregnancy:
Assessing the safety of adriamycin administration in pregnancy
complicated by breast cancer. JACC Case Rep. 28:1021412023.
View Article : Google Scholar
|
|
24
|
Dey N, Williams C, Leyland-Jones B and De
P: Mutation matters in precision medicine: A future to believe in.
Cancer Treat Rev. 55:136–149. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rajendran BK and Deng CX: A comprehensive
genomic meta-analysis identifies confirmatory role of OBSCN gene in
breast tumorigenesis. Oncotarget. 8:102263–102276. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tsuchida J, Rothman J, McDonald KA,
Nagahashi M, Takabe K and Wakai T: Clinical target sequencing for
precision medicine of breast cancer. Int J Clin Oncol. 24:131–140.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ramage KS, Lock A, White JM, Ekins MG,
Kiefel MJ, Avery VM and Davis RA: Semisynthesis and Cytotoxic
Evaluation of an Ether Analogue Library Based on a Polyhalogenated
Diphenyl Ether Scaffold Isolated from a Lamellodysidea Sponge. Mar
Drugs. 22:332024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hyman DM, Taylor BS and Baselga J:
Implementing Genome-Driven Oncology. Cell. 168:584–599. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ranjan K and Pathak C: Expression of FADD
and cFLIPL balances mitochondrial integrity and redox signaling to
substantiate apoptotic cell death. Mol Cell Biochem. 422:135–150.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lawrence MS, Stojanov P, Mermel CH,
Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander
ES and Getz G: Discovery and saturation analysis of cancer genes
across 21 tumour types. Nature. 505:495–501. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jia P, Wang Q, Chen Q, Hutchinson KE, Pao
W and Zhao Z: MSEA: Detection and quantification of mutation
hotspots through mutation set enrichment analysis. Genome Biol.
15:4892014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mularoni L, Sabarinathan R, Deu-Pons J,
Gonzalez-Perez A and Lopez-Bigas N: OncodriveFML: A general
framework to identify coding and non-coding regions with cancer
driver mutations. Genome Biol. 17:1282016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tamborero D, Gonzalez-Perez A and
Lopez-Bigas N: OncodriveCLUST: Exploiting the positional clustering
of somatic mutations to identify cancer genes. Bioinformatics.
29:2238–2244. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dees ND, Zhang Q, Kandoth C, Wendl MC,
Schierding W, Koboldt DC, Mooney TB, Callaway MB, Dooling D, Mardis
ER, et al: MuSiC: Identifying mutational significance in cancer
genomes. Genome Res. 22:1589–1598. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Reimand J and Bader GD: Systematic
analysis of somatic mutations in phosphorylation signaling predicts
novel cancer drivers. Mol Syst Biol. 9:6372013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ng PC and Henikoff S: Accounting for human
polymorphisms predicted to affect protein function. Genome Res.
12:436–446. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Adzhubei I, Jordan DM and Sunyaev SR:
Predicting functional effect of human missense mutations using
PolyPhen-2. Curr Protoc Hum Genet Chapter. 7:Unit7 20. 2013.
|
|
38
|
Carter H, Douville C, Stenson PD, Cooper
DN and Karchin R: Identifying Mendelian disease genes with the
variant effect scoring tool. BMC Genomics. 14(Suppl 3): S32013.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wong WC, Kim D, Carter H, Diekhans M, Ryan
MC and Karchin R: CHASM and SNVBox: Toolkit for detecting
biologically important single nucleotide mutations in cancer.
Bioinformatics. 27:2147–2148. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Reva B, Antipin Y and Sander C: Predicting
the functional impact of protein mutations: application to cancer
genomics. Nucleic Acids Res. 39:e1182011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rajendran BK and Deng CX: Characterization
of potential driver mutations involved in human breast cancer by
computational approaches. Oncotarget. 8:50252–50272. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Shen L, Shi Q and Wang W: Double agents:
Genes with both oncogenic and tumor-suppressor functions.
Oncogenesis. 7:252018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dong X, Huang D, Yi X, Zhang S, Wang Z,
Yan B, Chung Sham P, Chen K and Jun Li M: Diversity spectrum
analysis identifies mutation-specific effects of cancer driver
genes. Commun Biol. 3:62020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhao J, Cheng F and Zhao Z: SGDriver: A
novel structural genomics-based approach to prioritize cancer
related and potentially druggable somatic mutations. BMC
Bioinformatics. 16(suppl 15): P212015. View Article : Google Scholar :
|
|
45
|
Kamburov A, Lawrence MS, Polak P,
Leshchiner I, Lage K, Golub TR, Lander ES and Getz G: Comprehensive
assessment of cancer missense mutation clustering in protein
structures. Proc Natl Acad Sci USA. 112:E5486–E5495. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Tokheim CJ, Papadopoulos N, Kinzler KW,
Vogelstein B and Karchin R: Evaluating the evaluation of cancer
driver genes. Proc Natl Acad Sci USA. 113:14330–14335. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ipe J, Swart M, Burgess KS and Skaar TC:
High-Throughput assays to assess the functional impact of genetic
variants: A road towards genomic-driven medicine. Clin Transl Sci.
10:67–77. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Cancer Genome Atlas Research N, Weinstein
JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K,
Shmulevich I, Sander C and Stuart JM: The Cancer Genome Atlas
Pan-Cancer analysis project. Nat Genet. 45:1113–1120. 2013.
View Article : Google Scholar
|
|
49
|
Leyens L, Reumann M, Malats N and Brand A:
Use of big data for drug development and for public and personal
health and care. Genet Epidemiol. 41:51–60. 2017. View Article : Google Scholar
|
|
50
|
Pierobon M, Ramos C, Wong S, Hodge KA,
Aldrich J, Byron S, Anthony SP, Robert NJ, Northfelt DW, Jahanzeb
M, et al: Enrichment of PI3K-AKT-mTOR pathway activation in hepatic
metastases from breast cancer. Clin Cancer Res. 23:4919–4928. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Stratton MR, Campbell PJ and Futreal PA:
The cancer genome. Nature. 458:719–724. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cancer Genome Atlas Network: Comprehensive
molecular portraits of human breast tumours. Nature. 490:61–70.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Korkaya H and Wicha M: Reprogramming of
normal stem cells and cancer stem cells by the tumor
microenvironment. Nat Rev Cancer. 13:763–776. 2013.
|
|
54
|
Pipek O, Alpar D, Rusz O, Bodor C,
Udvarnoki Z, Medgyes-Horvath A, Csabai I, Szallasi Z, Madaras L,
Kahan Z, et al: Genomic Landscape of Normal and Breast Cancer
Tissues in a Hungarian Pilot Cohort. Int J Mol Sci. 24:85532023.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nakai K, Hung MC and Yamaguchi H: A
perspective on anti-EGFR therapies targeting triple-negative breast
cancer. Am J Cancer Res. 6:1609–1623. 2016.PubMed/NCBI
|
|
56
|
Zhao S, Ma Y, Liu L, Fang J, Ma H, Feng G,
Xie B, Zeng S, Chang J, Ren J, et al: Ningetinib plus gefitinib in
EGFR-mutant non-small-cell lung cancer with MET and AXL
dysregulations: A phase 1b clinical trial and biomarker analysis.
Lung Cancer. 188:1074682024. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wu G, Chen Q, Lv D, Lin L and Huang J:
Pulmonary Adenocarcinoma Patient with Complex Mutations on EGFR
benefits from furmonertinib after acquiring gefitinib resistance: A
case report. Recent Pat Anticancer Drug Discov. 19:247–252. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lewis GD, Li G, Guo J, Yu SF, Fields CT,
Lee G, Zhang D, Dragovich PS, Pillow T, Wei B, et al: The
HER2-directed antibody-drug conjugate DHES0815A in advanced and/or
metastatic breast cancer: Preclinical characterization and phase 1
trial results. Nat Commun. 15:4662024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Bose R, Kavuri SM, Searleman AC, Shen W,
Shen D, Koboldt DC, Monsey J, Goel N, Aronson AB, Li S, et al:
Activating HER2 mutations in HER2 gene amplification negative
breast cancer. Cancer Discov. 3:224–237. 2013. View Article : Google Scholar :
|
|
60
|
Rexer BN, Ghosh R, Na rasanna A, Estrada
MV, Chakrabarty A, Song Y, Engelman JA and Arteaga CL: Human breast
cancer cells harboring a gatekeeper T798M mutation in HER2
overexpress EGFR ligands and are sensitive to dual inhibition of
EGFR and HER2. Clin Cancer Res. 19:5390–5401. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ben-Baruch NE, Bose R, Kavuri SM, Ma CX
and Ellis MJ: HER2-Mutated Breast Cancer Responds to Treatment With
Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine
Kinase Inhibitor. J Natl Compr Canc Netw. 13:1061–1064. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hanker AB, Brewer MR, Sheehan JH, Koch JP,
Sliwoski GR, Nagy R, Lanman R, Berger MF, Hyman DM, Solit DB, et
al: An Acquired HER2(T798I) Gatekeeper Mutation Induces Resistance
to Neratinib in a Patient with HER2 mutant-driven breast cancer.
Cancer Discov. 7:575–585. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hyman DM, Piha-Paul SA, Won H, Rodon J,
Saura C, Shapiro GI, Juric D, Quinn DI, Moreno V, Doger B, et al:
HER kinase inhibition in patients with HER2- and HER3-mutant
cancers. Nature. 554:189–194. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Savage P, Blanchet-Cohen A, Revil T,
Badescu D, Saleh SMI, Wang YC, Zuo D, Liu L, Bertos NR, Munoz-Ramos
V, et al: A Targetable EGFR-Dependent tumor-initiating program in
breast cancer. Cell Rep. 21:1140–1149. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Herrera-Abreu MT, Palafox M, Asghar U,
Rivas MA, Cutts RJ, Garcia-Murillas I, Pearson A, Guzman M,
Rodriguez O, Grueso J, et al: Early Adaptation and Acquired
Resistance to CDK4/6 Inhibition in Estrogen Receptor-Positive
Breast Cancer. Cancer Res. 76:2301–2313. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Condorelli R, Spring L, O'Shaughnessy J,
Lacroix L, Bailleux C, Scott V, Dubois J, Nagy RJ, Lanman RB,
Iafrate AJ, et al: Polyclonal RB1 mutations and acquired resistance
to CDK 4/6 inhibitors in patients with metastatic breast cancer.
Ann Oncol. 29:640–645. 2018. View Article : Google Scholar
|
|
67
|
Woodward ER, Lalloo F, Forde C, Pugh S,
Burghel GJ, Schlecht H, Harkness EF, Howell A, Howell SJ, Gandhi A
and Evans DG: Germline testing of BRCA1, BRCA2, PALB2 and CHEK2
c.1100delC in 1514 triple negative familial and isolated breast
cancers from a single centre, with extended testing of ATM, RAD51C
and RAD51D in over 400. J Med Genet. 61:385–391. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Belli C, Duso BA, Ferraro E and Curigliano
G: Homologous recombination deficiency in triple negative breast
cancer. Breast. 45:15–21. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Miao K, Lei JH, Valecha MV, Zhang A, Xu J,
Wang L, Lyu X, Chen S, Miao Z, Zhang X, et al: NOTCH1 activation
compensates BRCA1 deficiency and promotes triple-negative breast
cancer formation. Nat Commun. 11:32562020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
McCann KE and Hurvitz SA: Advances in the
use of PARP inhibitor therapy for breast cancer. Drugs Context.
7:2125402018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Caron MC, Sharma AK, O'Sullivan J, Myler
LR, Ferreira MT, Rodrigue A, Coulombe Y, Ethier C, Gagne JP,
Langelier MF, et al: Poly(ADP-ribose) polymerase-1 antagonizes DNA
resection at double-strand breaks. Nat Commun. 10:29542019.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bailly C, Thuru X and Quesnel B: Combined
cytotoxic chemotherapy and immunotherapy of cancer: Modern times.
NAR Cancer. 2:zcaa0022020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
van Kesteren Ch, de Vooght MM,
Lopez-Lazaro L, Mathot RA, Schellens JH, Jimeno JM and Beijnen JH:
Yondelis (trabectedin, ET-743): The development of an anticancer
agent of marine origin. Anticancer Drugs. 14:487–502. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zelek L, Yovine A, Brain E, Turpin F,
Taamma A, Riofrio M, Spielmann M, Jimeno J and Misset JL: A phase
II study of Yondelis (trabectedin, ET-743) as a 24-h continuous
intravenous infusion in pretreated advanced breast cancer. Br J
Cancer. 94:1610–1614. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Le Cesne A, Martin-Broto J and Grignani G:
A review of the efficacy of trabectedin as second-line treatment of
advanced soft tissue sarcoma. Future Oncol. 18(30s): 5–11. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Robson M, Im SA, Senkus E, Xu B, Domchek
SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A, et al:
Olaparib for metastatic breast cancer in patients with a Germline
BRCA Mutation. N Engl J Med. 377:523–533. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pujade-Lauraine E, Ledermann JA, Selle F,
Gebski V, Penson RT, Oza AM, Korach J, Huzarski T, Poveda A,
Pignata S, et al: Olaparib tablets as maintenance therapy in
patients with platinum-sensitive, relapsed ovarian cancer and a
BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised,
placebo-controlled, phase 3 trial. Lancet Oncol. 18:1274–1284.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kalra M, Tong Y, Jones DR, Walsh T, Danso
MA, Ma CX, Silverman P, King MC, Badve SS, Perkins SM and Miller
KD: Cisplatin +/− rucaparib after preoperative chemotherapy in
patients with triple-negative or BRCA mutated breast cancer. NPJ
Breast Cancer. 7:292021. View Article : Google Scholar
|
|
79
|
Kaplan AR, Gueble SE, Liu Y, Oeck S, Kim
H, Yun Z and Glazer PM: Cediranib suppresses homology-directed DNA
repair through down-regulation of BRCA1/2 and RAD51. Sci Transl
Med. 11:eaav45082019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Telli ML, Jensen KC, Vinayak S, Kurian AW,
Lipson JA, Flaherty PJ, Timms K, Abkevich V, Schackmann EA, Wapnir
IL, et al: Phase II study of gemcitabine, carboplatin, and iniparib
as neoadjuvant therapy for triple-negative and BRCA1/2
mutation-associated breast cancer with assessment of a tumor-based
measure of genomic instability: PrECOG 0105. J Clin Oncol.
33:1895–1901. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Shamseddine AI and Farhat FS:
Platinum-based compounds for the treatment of metastatic breast
cancer. Chemotherapy. 57:468–487. 2011. View Article : Google Scholar
|
|
82
|
Farmer H, McCabe N, Lord CJ, Tutt AN,
Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I,
Knights C, et al: Targeting the DNA repair defect in BRCA mutant
cells as a therapeutic strategy. Nature. 434:917–921. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Bryant HE, Schultz N, Thomas HD, Parker
KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ and Helleday T:
Specific killing of BRCA2-deficient tumours with inhibitors of
poly(ADP-ribose) polymerase. Nature. 434:913–917. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hyams DM, Chan A, de Oliveira C, Snyder R,
Vinholes J, Audeh MW, Alencar VM, Lombard J, Mookerjee B, Xu J, et
al: Cediranib in combination with fulvestrant in hormone-sensitive
metastatic breast cancer: A randomized Phase II study. Invest New
Drugs. 31:1345–1354. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Litton JK, Rugo HS, Ettl J, Hurvitz SA,
Goncalves A, Lee KH, Fehrenbacher L, Yerushalmi R, Mina LA, Martin
M, et al: Talazoparib in patients with advanced breast cancer and a
germline BRCA Mutation. N Engl J Med. 379:753–763. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ettl J, Quek RGW, Lee KH, Rugo HS, Hurvitz
S, Goncalves A, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, et
al: Quality of life with talazoparib versus physician's choice of
chemotherapy in patients with advanced breast cancer and germline
BRCA1/2 mutation: patient-reported outcomes from the EMBRACA phase
III trial. Ann Oncol. 29:1939–1947. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Bindra RS, Gibson SL, Meng A, Westermark
U, Jasin M, Pierce AJ, Bristow RG, Classon MK and Glazer PM:
Hypoxia-induced down-regulation of BRCA1 expression by E2Fs. Cancer
Res. 65:11597–11604. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kumar M, Ranjan K, Singh V, Pathak C,
Pappachan A and Singh DD: Hydrophilic Acylated Surface Protein A
(HASPA) of Leishmania donovani: Expression, Purification and
Biophysico-Chemical Characterization. Protein J. 36:343–351. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liu ZB, Zhang L, Bian J and Jian J:
Combination strategies of checkpoint immunotherapy in metastatic
breast cancer. Onco Targets Ther. 13:2657–2666. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kroemer G and Zitvogel L: Cancer
immunotherapy in 2017: The breakthrough of the microbiota. Nat Rev
Immunol. 18:87–88. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Emens LA, Ascierto PA, Darcy PK, Demaria
S, Eggermont AMM, Redmond WL, Seliger B and Marincola FM: Cancer
immunotherapy: Opportunities and challenges in the rapidly evolving
clinical landscape. Eur J Cancer. 81:116–129. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang Y, Xu Z, Wu KL, Yu L, Wang C, Ding H,
Gao Y, Sun H, Wu YH, Xia M, et al: Siglec-15/sialic acid axis as a
central glyco-immune checkpoint in breast cancer bone metastasis.
Proc Natl Acad Sci USA. 121:e23129291212024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Krasniqi E, Barchiesi G, Pizzuti L,
Mazzotta M, Venuti A, Maugeri-Sacca M, Sanguineti G, Massimiani G,
Sergi D, Carpano S, et al: Immunotherapy in HER2-positive breast
cancer: state of the art and future perspectives. J Hematol Oncol.
12:1112019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sharmni Vishnu K, Win TT, Aye SN and
Basavaraj AK: Combined atezolizumab and nab-paclitaxel in the
treatment of triple negative breast cancer: A meta-analysis on
their efficacy and safety. BMC Cancer. 22:11392022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Darvin P, Toor SM, Sasidharan Nair V and
Elkord E: Immune checkpoint inhibitors: Recent progress and
potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Garcia-Aranda M and Redondo M:
Immunotherapy: A challenge of breast cancer treatment. Cancers
(Basel). 11:18222019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Garcia-Aranda M and Redondo M: Protein
kinase targets in breast cancer. Int J Mol Sci. 18:25432017.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Treilleux I, Blay JY, Bendriss-Vermare N,
Ray-Coquard I, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin
JJ, Barthelemy-Dubois C and Lebecque S: Dendritic cell infiltration
and prognosis of early stage breast cancer. Clin Cancer Res.
10:7466–7474. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Bates GJ, Fox SB, Han C, Leek RD, Garcia
JF, Harris AL and Banham AH: Quantification of regulatory T cells
enables the identification of high-risk breast cancer patients and
those at risk of late relapse. J Clin Oncol. 24:5373–5380. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Gobert M, Treilleux I, Bendriss-Vermare N,
Bachelot T, Goddard-Leon S, Arfi V, Biota C, Doffin AC, Durand I,
Olive D, et al: Regulatory T cells recruited through CCL22/CCR4 are
selectively activated in lymphoid infiltrates surrounding primary
breast tumors and lead to an adverse clinical outcome. Cancer Res.
69:2000–2009. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Mackall CL, Fleisher TA, Brown MR, Magrath
IT, Shad AT, Horowitz ME, Wexler LH, Adde MA, McClure LL and Gress
RE: Lymphocyte depletion during treatment with intensive
chemotherapy for cancer. Blood. 84:2221–2228. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Guckel B, Stumm S, Rentzsch C, Marme A,
Mannhardt G and Wallwiener D: A CD80-transfected human breast
cancer cell variant induces HER-2/neu-specific T cells in
HLA-A*02-matched situations in vitro as well as in vivo. Cancer
Immunol Immunother. 54:129–140. 2005. View Article : Google Scholar
|
|
104
|
Morse MA, Chaudhry A, Gabitzsch ES,
Hobeika AC, Osada T, Clay TM, Amalfitano A, Burnett BK, Devi GR,
Hsu DS, et al: Novel adenoviral vector induces T-cell responses
despite anti-adenoviral neutralizing antibodies in colorectal
cancer patients. Cancer Immunol Immunother. 62:1293–1301. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kouloulias VE, Dardoufas CE, Kouvaris JR,
Gennatas CS, Polyzos AK, Gogas HJ, Sandilos PH, Uzunoglu NK, Malas
EG and Vlahos LJ: Liposomal doxorubicin in conjunction with
reirradiation and local hyperthermia treatment in recurrent breast
cancer: A phase I/II trial. Clin Cancer Res. 8:374–382.
2002.PubMed/NCBI
|
|
106
|
Morse MA, Hobeika AC, Osada T, Serra D,
Niedzwiecki D, Lyerly HK and Clay TM: Depletion of human regulatory
T cells specifically enhances antigen-specific immune responses to
cancer vaccines. Blood. 112:610–618. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Meredith R, Torgue J, Shen S, Fisher DR,
Banaga E, Bunch P, Morgan D, Fan J and Straughn JM Jr: Dose
escalation and dosimetry of first-in-human α radioimmunotherapy
with 212Pb-TCMC-trastuzumab. J Nucl Med. 55:1636–1642. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Bernal-Estevez DA, Garcia O, Sanchez R and
Parra-Lopez CA: Monitoring the responsiveness of T and antigen
presenting cell compartments in breast cancer patients is useful to
predict clinical tumor response to neoadjuvant chemotherapy. BMC
Cancer. 18:772018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wiseman C, Presant C, Rao R and Smith J:
Clinical responses to intralymphatic whole-cell melanoma vaccine
augmented by in vitro incubation with alpha-interferon. Ann N Y
Acad Sci. 690:388–391. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Rosenberg SA, Yang JC, Sherry RM, Kammula
US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF,
Wunderlich JR, et al: Durable complete responses in heavily
pretreated patients with metastatic melanoma using T-cell transfer
immunotherapy. Clin Cancer Res. 17:4550–4557. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Adams S, Kozhaya L, Martiniuk F, Meng TC,
Chiriboga L, Liebes L, Hochman T, Shuman N, Axelrod D, Speyer J, et
al: Topical TLR7 agonist imiquimod can induce immune-mediated
rejection of skipn metastases in patients with breast cancer. Clin
Cancer Res. 18:6748–6757. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Czerniecki BJ, Koski GK, Koldovsky U, Xu
S, Cohen PA, Mick R, Nisenbaum H, Pasha T, Xu M, Fox KR, et al:
Targeting HER-2/neu in early breast cancer development using
dendritic cells with staged interleukin-12 burst secretion. Cancer
Res. 67:1842–1852. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Koski GK, Koldovsky U, Xu S, Mick R,
Sharma A, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox
K, et al: A novel dendritic cell-based immunization approach for
the induction of durable Th1-polarized anti-HER-2/neu responses in
women with early breast cancer. J Immunother. 35:54–65. 2012.
View Article : Google Scholar
|
|
114
|
Sharma A, Koldovsky U, Xu S, Mick R, Roses
R, Fitzpatrick E, Weinstein S, Nisenbaum H, Levine BL, Fox K, et
al: HER-2 pulsed dendritic cell vaccine can eliminate HER-2
expression and impact ductal carcinoma in situ. Cancer.
118:4354–4362. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Garnett CT, Schlom J and Hodge JW:
Combination of docetaxel and recombinant vaccine enhances T-cell
responses and antitumor activity: Effects of docetaxel on immune
enhancement. Clin Cancer Res. 14:3536–3544. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mohebtash M, Tsang KY, Madan RA, Huen NY,
Poole DJ, Jochems C, Jones J, Ferrara T, Heery CR, Arlen PM, et al:
A pilot study of MUC-1/CEA/TRICOM poxviral-based vaccine in
patients with metastatic breast and ovarian cancer. Clin Cancer
Res. 17:7164–7173. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Hodge JW, Sabzevari H, Yafal AG, Gritz L,
Lorenz MG and Schlom J: A triad of costimulatory molecules
synergize to amplify T-cell activation. Cancer Res. 59:5800–5807.
1999.PubMed/NCBI
|
|
118
|
Berinstein NL, Karkada M, Morse MA,
Nemunaitis JJ, Chatta G, Kaufman H, Odunsi K, Nigam R, Sammatur L,
MacDonald LD, et al: First-in-man application of a novel
therapeutic cancer vaccine formulation with the capacity to induce
multi-functional T cell responses in ovarian, breast and prostate
cancer patients. J Transl Med. 10:1562012. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Robbins PF, Eggensperger D, Qi CF and
Schlom J: Definition of the expression of the human
carcinoembryonic antigen and non-specific cross-reacting antigen in
human breast and lung carcinomas. Int J Cancer. 53:892–897. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Madan RA, Arlen PM and Gulley JL:
PANVAC-VF: poxviral-based vaccine therapy targeting CEA and MUC1 in
carcinoma. Expert Opin Biol Ther. 7:543–554. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kwa M, Li X, Novik Y, Oratz R, Jhaveri K,
Wu J, Gu P, Meyers M, Muggia F, Speyer J, et al: Serial
immunological parameters in a phase II trial of exemestane and
low-dose oral cyclophosphamide in advanced hormone
receptor-positive breast cancer. Breast Cancer Res Treat.
168:57–67. 2018. View Article : Google Scholar
|
|
122
|
Rios-Doria J, Durham N, Wetzel L,
Rothstein R, Chesebrough J, Holoweckyj N, Zhao W, Leow CC and
Hollingsworth R: Doxil synergizes with cancer immunotherapies to
enhance antitumor responses in syngeneic mouse models. Neoplasia.
17:661–670. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Nejadmoghaddam MR, Minai-Tehrani A,
Ghahremanzadeh R, Mahmoudi M, Dinarvand R and Zarnani AH:
Antibody-Drug Conjugates: Possibilities and Challenges. Avicenna J
Med Biotechnol. 11:3–23. 2019.PubMed/NCBI
|
|
124
|
Vonderheide RH, Domchek SM and Clark AS:
Immunotherapy for breast cancer: What are we missing? Clin Cancer
Res. 23:2640–2646. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zhang X, Kim S, Hundal J, Herndon JM, Li
S, Petti AA, Soysal SD, Li L, McLellan MD, Hoog J, et al: Breast
cancer neoantigens can induce CD8(+) T-Cell responses and antitumor
immunity. Cancer Immunol Res. 5:516–523. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ayoub NM, Al-Shami KM and Yaghan RJ:
Immunotherapy for HER2-positive breast cancer: recent advances and
combination therapeutic approaches. Breast Cancer (Dove Med Press).
11:53–69. 2019.PubMed/NCBI
|
|
127
|
Olopade OI, Grushko TA, Nanda R and Huo D:
Advances in breast cancer: Pathways to personalized medicine. Clin
Cancer Res. 14:7988–7999. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Uma K and Jan FS: HER2 in breast cancer: A
review and update. Adv Anat Pathol. 21:100–107. 2014. View Article : Google Scholar
|
|
129
|
Mostafa AA, Codner D, Hirasawa K, Komatsu
Y, Young MN, Steimle V and Drover S: Activation of ERα signaling
differentially modulates IFN-ү induced HLA-class II expression in
breast cancer cells. PLoS One. 9:e873772014. View Article : Google Scholar
|
|
130
|
Rothenberger NJ, Somasundaram A and
Stabile LP: The role of the estrogen pathway in the tumor
microenvironment. Int J Mol Sci. 19:6112018. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Makhoul I, Atiq M, Alwbari A and
Kieber-Emmons T: Breast cancer immunotherapy: An update. Breast
Cancer (Auckl). 12:11782234187748022018. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Johnston SR, Martin LA, Leary A, Head J
and Dowsett M: Clinical strategies for rationale combinations of
aromatase inhibitors with novel therapies for breast cancer. J
Steroid Biochem Mol Biol. 106:180–186. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Liu X, Li C, Mou C, Dong Y and Tu Y:
dbNSFP v4: A comprehensive database of transcript-specific
functional predictions and annotations for human nonsynonymous and
splice-site SNVs. Genome Med. 12:1032020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Steinhaus R, Proft S, Schuelke M, Cooper
DN, Schwarz JM and Seelow D: MutationTaster2021. Nucleic Acids Res.
49(W1): W446–W451. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Shahrouzi P, Forouz F, Mathelier A,
Kristensen VN and Duijf PHG: Copy number alterations: A
catastrophic orchestration of the breast cancer genome. Trends Mol
Med. 30:750–764. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Annunziato S, de Ruiter JR, Henneman L,
Brambillasca CS, Lutz C, Vaillant F, Ferrante F, Drenth AP, van der
Burg E, Siteur B, et al: Comparative oncogenomics identifies
combinations of driver genes and drug targets in BRCA1-mutated
breast cancer. Nat Commun. 10:3972019. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Kaysudu I, Gungul TB, Atici S, Yilmaz S,
Bayram E, Guven G, Cizmecioglu NT, Sahin O, Yesiloz G, Haznedaroglu
BZ and Cizmecioglu O: Cholesterol biogenesis is a PTEN-dependent
actionable node for the treatment of endocrine therapy-refractory
cancers. Cancer Sci. 114:4365–4375. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Lu Y, Dong K, Yang M and Liu J: Network
pharmacology-based strategy to investigate the bioactive
ingredients and molecular mechanism of Evodia rutaecarpa in
colorectal cancer. BMC Complement Med Ther. 23:4332023. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Pranav P, Palaniyandi T, Baskar G, Ravi M,
Rajendran BK, Sivaji A and Ranganathan M: Gene expressions and
their significance in organoid cultures obtained from breast cancer
patient-derived biopsies. Acta Histochem. 124:1519102022.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Du XW, Li G, Liu J, Zhang CY, Liu Q, Wang
H and Chen TS: Comprehensive analysis of the cancer driver genes in
breast cancer demonstrates their roles in cancer prognosis and
tumor microenvironment. World J Surg Oncol. 19:2732021. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Liu X, Jin G, Qian J, Yang H, Tang H, Meng
X and Li Y: Digital gene expression profiling analysis and its
application in the identification of genes associated with improved
response to neoadjuvant chemotherapy in breast cancer. World J Surg
Oncol. 16:822018. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Martin V, Cappuzzo F, Mazzucchelli L and
Frattini M: HER2 in solid tumors: More than 10 years under the
microscope; where are we now? Future Oncol. 10:1469–1486. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Slamon DJ, Leyland-Jones B, Shak S, Fuchs
H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M,
et al: Use of chemotherapy plus a monoclonal antibody against HER2
for metastatic breast cancer that overexpresses HER2. N Engl J Med.
344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI
|