Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review)

  • Authors:
    • Maria Lina Tornesello
  • View Affiliations / Copyright

    Affiliations: Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, I-80131 Napoli, Italy
    Copyright: © Tornesello et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 7
    |
    Published online on: October 24, 2024
       https://doi.org/10.3892/ijmm.2024.5448
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The tumour suppressor factor p53 plays an essential role in regulating numerous cellular processes, including the cell cycle, DNA repair, apoptosis, autophagy, cell metabolism and immune response. TP53 is the most commonly mutated gene in human cancers. These mutations are primarily non‑synonymous changes that produce mutant p53 proteins characterized by loss of function, a dominant negative effect on p53 tetramerisation and gain of function (GOF). GOF mutations not only disrupt the tumour‑suppressive activities of p53 but also endow the mutant proteins with new oncogenic properties. Recent studies analysing different pathogenic features of mutant p53 in cancer‑derived cell lines have demonstrated that restoring wild‑type p53, rather than removing GOF mutations, reduces cancer cell growth. These findings suggest that therapeutic strategies for reactivating wild‑type p53 function in cancer cells may bring a greater benefit than approaches halting mutant p53. This approach could involve the use of small molecules, gene therapy and other methods to re‑establish wild‑type p53 activity. This review describes the complexity of the biological activities of different p53 mutants and summarizes the current therapeutic approaches to restore p53 function.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Lane DP and Crawford LV: T antigen is bound to a host protein in SV40-transformed cells. Nature. 278:261–263. 1979. View Article : Google Scholar : PubMed/NCBI

2 

Linzer DI and Levine AJ: Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 17:43–52. 1979. View Article : Google Scholar : PubMed/NCBI

3 

Levine AJ and Oren M: The first 30 years of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Tornesello ML, Annunziata C, Tornesello AL, Buonaguro L and Buonaguro FM: Human Oncoviruses and p53 tumor suppressor pathway deregulation at the origin of human cancers. Cancers (Basel). 10:2132018. View Article : Google Scholar : PubMed/NCBI

5 

Rotter V: p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumor cells. Proc Natl Acad Sci USA. 80:2613–2617. 1983. View Article : Google Scholar : PubMed/NCBI

6 

Oren M and Levine AJ: Molecular cloning of a cDNA specific for the murine p53 cellular tumor antigen. Proc Natl Acad Sci USA. 80:56–59. 1983. View Article : Google Scholar : PubMed/NCBI

7 

Jenkins JR, Rudge K and Currie GA: Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature. 312:651–654. 1984. View Article : Google Scholar : PubMed/NCBI

8 

Eliyahu D, Michalovitz D and Oren M: Overproduction of p53 antigen makes established cells highly tumorigenic. Nature. 316:158–160. 1985. View Article : Google Scholar : PubMed/NCBI

9 

Finlay CA, Hinds PW, Tan TH, Eliyahu D, Oren M and Levine AJ: Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol. 8:531–539. 1988.PubMed/NCBI

10 

Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, vanTuinen P, Ledbetter DH, Barker DF, Nakamura Y, et al: Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 244:217–221. 1989. View Article : Google Scholar : PubMed/NCBI

11 

Eliyahu D, Michalovitz D, Eliyahu S, Pinhasi-Kimhi O and Oren M: Wild-type p53 can inhibit oncogene-mediated focus formation. Proc Natl Acad Sci USA. 86:8763–8767. 1989. View Article : Google Scholar : PubMed/NCBI

12 

Finlay CA, Hinds PW and Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell. 57:1083–1093. 1989. View Article : Google Scholar : PubMed/NCBI

13 

Schneider K, Zelley K, Nichols KE and Garber J: Li-Fraumeni Syndrome. GeneReviews(®). Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW and Amemiya A: University of Washington; Seattle, WA: 1993

14 

Fortuno C, Feng BJ, Carroll C, Innella G, Kohlmann W, Lázaro C, Br unet J, Feliubadaló L, Iglesias S, Menéndez M, et al: Cancer risks associated with TP53 pathogenic variants: Maximum likelihood analysis of extended pedigrees for diagnosis of first cancers beyond the Li-Fraumeni Syndrome Spectrum. JCO Precis Oncol. 8:e23004532024. View Article : Google Scholar : PubMed/NCBI

15 

Malkin D: Li-fraumeni syndrome. Genes Cancer. 2:475–484. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Levine AJ: p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 20:471–480. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Liu Y, Su Z, Tavana O and Gu W: Understanding the complexity of p53 in a new era of tumor suppression. Cancer Cell. 42:946–967. 2024. View Article : Google Scholar : PubMed/NCBI

18 

Wang H, Guo M, Wei H and Chen Y: Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 8:922023. View Article : Google Scholar : PubMed/NCBI

19 

Indeglia A and Murphy ME: Elucidating the chain of command: Our current understanding of critical target genes for p53-mediated tumor suppression. Crit Rev Biochem Mol Biol. 59:128–138. 2024. View Article : Google Scholar : PubMed/NCBI

20 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P and Harris CC: TP53 mutation spectra and load: A tool for generating hypotheses on the etiology of cancer. IARC Sci Publ. (157): 247–270. 2004.PubMed/NCBI

22 

Tornesello ML, Buonaguro L, Tatangelo F, Botti G, Izzo F and Buonaguro FM: Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics. 102:74–83. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Hainaut P and Pfeifer GP: Somatic TP53 Mutations in the Era of Genome Sequencing. Cold Spring Harb Perspect Med. 6:a0261792016. View Article : Google Scholar : PubMed/NCBI

24 

Sammons MA, Nguyen TT, McDade SS and Fischer M: Tumor suppressor p53: From engaging DNA to target gene regulation. Nucleic Acids Res. 48:8848–8869. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Kubbutat MH, Jones SN and Vousden KH: Regulation of p53 stability by Mdm2. Nature. 387:299–303. 1997. View Article : Google Scholar : PubMed/NCBI

26 

Haupt Y, Maya R, Kazaz A and Oren M: Mdm2 promotes the rapid degradation of p53. Nature. 387:296–299. 1997. View Article : Google Scholar : PubMed/NCBI

27 

Raj N and Attardi LD: The Transactivation Domains of the p53 Protein. Cold Spring Harb Perspect Med. 7:a0260472017. View Article : Google Scholar

28 

Krois AS, Park S, Martinez-Yamout MA, Dyson HJ and Wright PE: Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR. Biochemistry. 61:2709–2719. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Kruse JP and Gu W: SnapShot: p53 posttranslational modifications. Cell. 133:930–930.e1. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM, Kenzelmann Broz D, Basak S, Park EJ, McLaughlin ME, et al: Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell. 145:571–583. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Riley T, Sontag E, Chen P and Levine A: Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol. 9:402–412. 2008. View Article : Google Scholar : PubMed/NCBI

32 

el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW and Vogelstein B: Definition of a consensus binding site for p53. Nat Genet. 1:45–49. 1992. View Article : Google Scholar : PubMed/NCBI

33 

Halazonetis TD and Kandil AN: Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J. 12:5057–5064. 1993. View Article : Google Scholar : PubMed/NCBI

34 

Gu W and Roeder RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 90:595–606. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Hernández Borrero LJ and El-Deiry WS: Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer. 1876:1885562021. View Article : Google Scholar : PubMed/NCBI

36 

Jenkins LM, Durell SR, Mazur SJ and Appella E: p53 N-terminal phosphorylation: A defining layer of complex regulation. Carcinogenesis. 33:1441–1449. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Lill NL, Grossman SR, Ginsberg D, DeCaprio J and Livingston DM: Binding and modulation of p53 by p300/CBP coactivators. Nature. 387:823–827. 1997. View Article : Google Scholar : PubMed/NCBI

38 

Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M and Del Sal G: Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18:6462–6471. 1999. View Article : Google Scholar : PubMed/NCBI

39 

Stindt MH, Carter S, Vigneron AM, Ryan KM and Vousden KH: MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle. 10:3176–3188. 2011. View Article : Google Scholar : PubMed/NCBI

40 

West LE and Gozani O: Regulation of p53 function by lysine methylation. Epigenomics. 3:361–369. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Laptenko O, Shiff I, Freed-Pastor W, Zupnick A, Mattia M, Freulich E, Shamir I, Kadouri N, Kahan T, Manfredi J, et al: The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell. 57:1034–1046. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Shirangi TR, Zaika A and Moll UM: Nuclear degradation of p53 occurs during down-regulation of the p53 response after DNA damage. FASEB J. 16:420–422. 2002. View Article : Google Scholar : PubMed/NCBI

43 

Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y and Fu X: Mutant p53 in cancer progression and targeted therapies. Front Oncol. 10:5951872020. View Article : Google Scholar : PubMed/NCBI

44 

Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M, Li X, Babur O, Hsu TK, Lichtarge O, et al: Integrated Analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep. 28:1370–1384 e5. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Chen X, Zhang T, Su W, Dou Z, Zhao D, Jin X, Lei H, Wang J, Xie X, Cheng B, et al: Mutant p53 in cancer: From molecular mechanism to therapeutic modulation. Cell Death Dis. 13:9742022. View Article : Google Scholar : PubMed/NCBI

46 

Shirole NH, Pal D, Kastenhuber ER, Senturk S, Boroda J, Pisterzi P, Miller M, Munoz G, Anderluh M, Ladanyi M, et al: TP53 exon-6 truncating mutations produce separation of function isoforms with pro-tumorigenic functions. Elife. 5:e179292016. View Article : Google Scholar : PubMed/NCBI

47 

Castrogiovanni C, Waterschoot B, De Backer O and Dumont P: Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death Differ. 25:190–203. 2018. View Article : Google Scholar :

48 

Sonego M, Schiappacassi M, Lovisa S, Dall'Acqua A, Bagnoli M, Lovat F, Libra M, D'Andrea S, Canzonieri V, Militello L, et al: Stathmin regulates mutant p53 stability and transcriptional activity in ovarian cancer. EMBO Mol Med. 5:707–722. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Wang D, Nakayama M, Hong CP, Oshima H and Oshima M: Gain-of-Function p53 mutation acts as a genetic switch for TGFβ signaling-induced epithelial-to-mesenchymal transition in intestinal tumors. Cancer Res. 84:56–68. 2024. View Article : Google Scholar

50 

Alvarado-Ortiz E, de la Cruz-López KG, Becerril-Rico J, Sarabia-Sánchez MA, Ortiz-Sánchez E and García-Carrancá A: Mutant p53 Gain-of-Function: Role in cancer development, progression, and therapeutic approaches. Front Cell Dev Biol. 8:6076702021. View Article : Google Scholar : PubMed/NCBI

51 

Kastenhuber ER and Lowe SW: Putting p53 in Context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M, Krivtsov AV, Giacomelli AO, Wong W, Kim J, Chao S, et al: A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science. 365:599–604. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Aubrey BJ, Janic A, Chen Y, Chang C, Lieschke EC, Diepstraten ST, Kueh AJ, Bernardini JP, Dewson G, O'Reilly LA, et al: Mutant TRP53 exerts a target gene-selective dominant-negative effect to drive tumor development. Genes Dev. 32:1420–1429. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Martins CP, Brown-Swigart L and Evan GI: Modeling the therapeutic efficacy of p53 restoration in tumors. Cell. 127:1323–1334. 2006. View Article : Google Scholar : PubMed/NCBI

55 

Shchors K, Persson AI, Rostker F, Tihan T, Lyubynska N, Li N, Swigart LB, Berger MS, Hanahan D, Weiss WA and Evan GI: Using a preclinical mouse model of high-grade astrocytoma to optimize p53 restoration therapy. Proc Natl Acad Sci USA. 110:E1480–E1489. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R and Jacks T: Restoration of p53 function leads to tumour regression in vivo. Nature. 445:661–665. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Baugh EH, Ke H, Levine AJ, Bonneau RA and Chan CS: Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25:154–160. 2018. View Article : Google Scholar :

58 

Yang C, Lou G and Jin WL: The arsenal of TP53 mutants therapies: Neoantigens and bispecific antibodies. Signal Transduct Target Ther. 6:2192021. View Article : Google Scholar : PubMed/NCBI

59 

McCann JJ, Vasilevskaya IA, McNair C, Gallagher P, Neupane NP, de Leeuw R, Shafi AA, Dylgjeri E, Mandigo AC, Schiewer MJ and Knudsen KE: Mutant p53 elicits context-dependent pro-tumorigenic phenotypes. Oncogene. 41:444–458. 2022. View Article : Google Scholar :

60 

Xiong S, Chachad D, Zhang Y, Gencel-Augusto J, Sirito M, Pant V, Yang P, Sun C, Chau G, Qi Y, et al: Differential Gain-of-Function Activity of Three p53 Hotspot mutants in vivo. Cancer Res. 82:1926–1936. 2022. View Article : Google Scholar : PubMed/NCBI

61 

Rasquinha JA, Bej A, Dutta S and Mukherjee S: Intrinsic differences in backbone dynamics between wild type and DNA-Contact Mutants of the p53 DNA binding domain revealed by nuclear magnetic resonance spectroscopy. Biochemistry. 56:4962–4971. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Salari A, Thomay K, Lentes J, Ebersold J, Hagedorn M, Skawran B, Davenport C, Schambach A, Schlegelberger B and Göhring G: Effect of TP53 contact and conformational mutations on cell survival and erythropoiesis of human hematopoietic stem cells in a long term culture model. Oncotarget. 9:29869–29876. 2018. View Article : Google Scholar : PubMed/NCBI

63 

Pfister NT and Prives C: Transcriptional regulation by wild-type and cancer-related mutant forms of p53. Cold Spring Harb Perspect Med. 7:a0260542017. View Article : Google Scholar

64 

Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G and Piaggio G: Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell. 10:191–202. 2006. View Article : Google Scholar : PubMed/NCBI

65 

Di Agostino S, Sorrentino G, Ingallina E, Valenti F, Ferraiuolo M, Bicciato S, Piazza S, Strano S, Del Sal G and Blandino G: YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins. EMBO Rep. 17:188–201. 2016. View Article : Google Scholar

66 

Zhang J, Sun W, Kong X, Zhang Y, Yang HJ, Ren C, Jiang Y, Chen M and Chen X: Mutant p53 antagonizes p63/p73-mediated tumor suppression via Notch1. Proc Natl Acad Sci USA. 116:24259–24267. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T and Kroemer G: Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle. 7:3056–3061. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Wang Z, Burigotto M, Ghetti S, Vaillant F, Tan T, Capaldo BD, Palmieri M, Hirokawa Y, Tai L, Simpson DS, et al: Loss-of-Function but not gain-of-function properties of mutant TP53 are critical for the proliferation, survival, and metastasis of a broad range of cancer cells. Cancer Discov. 14:362–379. 2024. View Article : Google Scholar :

69 

Roszkowska KA, Piecuch A, Sady M, Gajewski Z and Flis S: Gain of Function (GOF) Mutant p53 in cancer-current therapeutic approaches. Int J Mol Sci. 23:132872022. View Article : Google Scholar : PubMed/NCBI

70 

Bougeard G, Sesboue R, Baert-Desurmont S, Martin C, Tinat J, Brugières L, Chompret A, de Paillerets BB, Stoppa-Lyonnet D, Bonaïti-Pellié C, et al: Molecular basis of the Li-Fraumeni syndrome: An update from the French LFS families. J Med Genet. 45:535–538. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Levine AJ: Spontaneous and inherited TP53 genetic alterations. Oncogene. 40:5975–5983. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Robles AI, Jen J and Harris CC: Clinical Outcomes of TP53 mutations in cancers. Cold Spring Harb Perspect Med. 6:a0262942016. View Article : Google Scholar : PubMed/NCBI

73 

Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH, Wang Q, Zambetti GP and Schuetz JD: Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J Biol Chem. 276:39359–39367. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G and Sacchi A: Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene. 25:304–309. 2006. View Article : Google Scholar

75 

Wang Q, Wei F, Lv G, Li C, Liu T, Hadjipanayis CG, Zhang G, Hao C and Bellail AC: The association of TP53 mutations with the resistance of colorectal carcinoma to the insulin-like growth factor-1 receptor inhibitor picropodophyllin. BMC Cancer. 13:5212013. View Article : Google Scholar : PubMed/NCBI

76 

Wong RP, Tsang WP, Chau PY, Co NN, Tsang TY and Kwok TT: p53-R273H gains new function in induction of drug resistance through down-regulation of procaspase-3. Mol Cancer Ther. 6:1054–1061. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Huang Y, Liu N, Liu J, Liu Y, Zhang C, Long S, Luo G, Zhang L and Zhang Y: Mutant p53 drives cancer chemotherapy resistance due to loss of function on activating transcription of PUMA. Cell Cycle. 18:3442–3455. 2019. View Article : Google Scholar : PubMed/NCBI

78 

O'Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, Scudiero DA, Monks A and Sausville EA: Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 57:4285–4300. 1997.PubMed/NCBI

79 

Kong X, Yu D, Wang Z and Li S: Relationship between p53 status and the bioeffect of ionizing radiation. Oncol Lett. 22:6612021. View Article : Google Scholar : PubMed/NCBI

80 

Hassin O and Oren M: Drugging p53 in cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144. 2023. View Article : Google Scholar

81 

Peuget S, Zhou X and Selivanova G: Translating p53-based therapies for cancer into the clinic. Nat Rev Cancer. 24:192–215. 2024. View Article : Google Scholar : PubMed/NCBI

82 

Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X and Chen M: Targeting mutant p53 for cancer therapy: Direct and indirect strategies. J Hematol Oncol. 14:1572021. View Article : Google Scholar : PubMed/NCBI

83 

Gu H, Wang X, Rao S, Wang J, Zhao J, Ren FL, Mu R, Yang Y, Qi Q, Liu W, et al: Gambogic acid mediates apoptosis as a p53 inducer through down-regulation of mdm2 in wild-type p53-expressing cancer cells. Mol Cancer Ther. 7:3298–3305. 2008. View Article : Google Scholar : PubMed/NCBI

84 

Wang J, Zhao Q, Qi Q, Gu HY, Rong JJ, Mu R, Zou MJ, Tao L, You QD and Guo QL: Gambogic acid-induced degradation of mutant p53 is mediated by proteasome and related to CHIP. J Cell Biochem. 112:509–519. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Pan H, Lu LY, Wang XQ, Li BX, Kelly K and Lin HS: Gambogic acid induces cell apoptosis and inhibits MAPK Pathway in PTEN(-/-)/p53(-/-) prostate cancer cells in vitro and ex vivo. Chin J Integr Med. 24:109–116. 2018. View Article : Google Scholar

86 

Garufi A, Pistritto G, Cirone M and D'Orazi G: Reactivation of mutant p53 by capsaicin, the major constituent of peppers. J Exp Clin Cancer Res. 35:1362016. View Article : Google Scholar : PubMed/NCBI

87 

Padmanabhan A, Candelaria N, Wong KK, Nikolai BC, Lonard DM, O'Malley BW and Richards JS: USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells. Nat Commun. 9:12702018. View Article : Google Scholar : PubMed/NCBI

88 

Zhang S, Zhou L, Hong B, van den Heuvel AP, Prabhu VV, Warfel NA, Kline CL, Dicker DT, Kopelovich L and El-Deiry WS: Small-Molecule NSC59984 Restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53. Cancer Res. 75:3842–3852. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Jhaveri K and Modi S: Ganetespib: Research and clinical development. Onco Targets Ther. 8:1849–1858. 2015.PubMed/NCBI

90 

Alexandrova EM, Xu S and Moll UM: Ganetespib synergizes with cyclophosphamide to improve survival of mice with autochthonous tumors in a mutant p53-dependent manner. Cell Death Dis. 8:e26832017. View Article : Google Scholar : PubMed/NCBI

91 

Wong WW, Dimitroulakos J, Minden MD and Penn LZ: HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia. 16:508–519. 2002. View Article : Google Scholar : PubMed/NCBI

92 

Kornblau SM, Banker DE, Stirewalt D, Shen D, Lemker E, Verstovsek S, Estrov Z, Faderl S, Cortes J, Beran M, et al: Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: A phase 1 study. Blood. 109:2999–3006. 2007. View Article : Google Scholar

93 

Parrales A, Ranjan A, Iyer SV, Padhye S, Weir SJ, Roy A and Iwakuma T: DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 18:1233–1243. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Martirosyan A, Clendening JW, Goard CA and Penn LZ: Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: Potential therapeutic relevance. BMC Cancer. 10:1032010. View Article : Google Scholar : PubMed/NCBI

95 

Li D, Marchenko ND and Moll UM: SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ. 18:1904–1913. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Durairaj G, Demir O, Lim B, Baronio R, Tifrea D, Hall LV, DeForest JC, Lauinger L, Jebril Fallatah MM, Yu C, et al: Discovery of compounds that reactivate p53 mutants in vitro and in vivo. Cell Chem Biol. 29:1381–1395 e13. 2022. View Article : Google Scholar

97 

Di Agostino S, Fontemaggi G, Strano S, Blandino G and D'Orazi G: Targeting mutant p53 in cancer: The latest insights. J Exp Clin Cancer Res. 38:2902019. View Article : Google Scholar : PubMed/NCBI

98 

Huang Y, Jiao Z, Fu Y, Hou Y, Sun J, Hu F, Yu S, Gong K, Liu Y and Zhao G: An overview of the functions of p53 and drugs acting either on wild- or mutant-type p53. Eur J Med Chem. 265:1161212024. View Article : Google Scholar : PubMed/NCBI

99 

Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG and Selivanova G: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 8:282–288. 2002. View Article : Google Scholar : PubMed/NCBI

100 

Saha MN, Jiang H, Yang Y, Reece D and Chang H: PRIMA-1Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and Noxa. Mol Cancer Ther. 12:2331–2341. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Furukawa H, Makino T, Yamasaki M, Tanaka K, Miyazaki Y, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Mori M and Doki Y: PRIMA-1 induces p53-mediated apoptosis by upregulating Noxa in esophageal squamous cell carcinoma with TP53 missense mutation. Cancer Sci. 109:412–421. 2018. View Article : Google Scholar

102 

Zandi R, Selivanova G, Christensen CL, Gerds TA, Willumsen BM and Poulsen HS: PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53. Clin Cancer Res. 17:2830–2841. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Li XL, Zhou J, Chan ZL, Chooi JY, Chen ZR and Chng WJ: PRIMA-1met (APR-246) inhibits growth of colorectal cancer cells with different p53 status through distinct mechanisms. Oncotarget. 6:36689–36699. 2015. View Article : Google Scholar : PubMed/NCBI

104 

Sallman DA, DeZern AE, Garcia-Manero G, Steensma DP, Roboz GJ, Sekeres MA, Cluzeau T, Sweet KL, McLemore A, McGraw KL, et al: Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant myelodysplastic syndromes. J Clin Oncol. 39:1584–1594. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Cluzeau T, Sebert M, Rahmé R, Cuzzubbo S, Lehmann-Che J, Madelaine I, Peterlin P, Bève B, Attalah H, Chermat F, et al: Eprenetapopt Plus Azacitidine in TP53-Mutated myelodysplastic syndromes and acute myeloid leukemia: A phase II study by the groupe francophone des myélodysplasies (GFM). J Clin Oncol. 39:1575–1583. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Grellety T, Laroche-Clary A, Chaire V, Lagarde P, Chibon F, Neuville A and Italiano A: PRIMA-1(MET) induces death in soft-tissue sarcomas cell independent of p53. BMC Cancer. 15:6842015. View Article : Google Scholar : PubMed/NCBI

107 

Aggarwal M, Saxena R, Sinclair E, Fu Y, Jacobs A, Dyba M, Wang X, Cruz I, Berry D, Kallakury B, et al: Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth. Cell Death Differ. 23:1615–1627. 2016. View Article : Google Scholar : PubMed/NCBI

108 

Aggarwal M, Saxena R, Asif N, Sinclair E, Tan J, Cruz I, Berry D, Kallakury B, Pham Q, Wang TTY and Chung FL: p53 mutant-type in human prostate cancer cells determines the sensitivity to phenethyl isothiocyanate induced growth inhibition. J Exp Clin Cancer Res. 38:3072019. View Article : Google Scholar : PubMed/NCBI

109 

Dumbrava ECJ, Tolcher ML, Shapiro AW, Thompson G, El-Khoueiry JA, Vandross AB, Kummar AL, Parikh S, Munster AR, Daly PM, et al: First-in-human study of PC14586, a small molecule structural corrector of Y220C mutant p53, in patients with advanced solid tumors harboring a TP53 Y220C mutation. J Clin Oncol. 40:12022. View Article : Google Scholar

110 

Chen S, Wu JL, Liang Y, Tang YG, Song HX, Wu LL, Xing YF, Yan N, Li YT, Wang ZY, et al: Arsenic trioxide rescues structural p53 mutations through a cryptic allosteric site. Cancer Cell. 39:225–239.e8. 2021. View Article : Google Scholar

111 

Tang Y, Song H, Wang Z, Xiao S, Xiang X, Zhan H, Wu L, Wu J, Xing Y, Tan Y, et al: Repurposing antiparasitic antimonials to noncovalently rescue temperature-sensitive p53 mutations. Cell Rep. 39:1106222022. View Article : Google Scholar : PubMed/NCBI

112 

Lindemann A, Patel AA, Silver NL, Tang L, Liu Z, Wang L, Tanaka N, Rao X, Takahashi H, Maduka NK, et al: COTI-2, A novel thiosemicarbazone derivative, exhibits antitumor activity in HNSCC through p53-dependent and -independent Mechanisms. Clin Cancer Res. 25:5650–5662. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A and Selivanova G: Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 10:1321–1328. 2004. View Article : Google Scholar : PubMed/NCBI

114 

Zhao CY, Grinkevich VV, Nikulenkov F, Bao W and Selivanova G: Rescue of the apoptotic-inducing function of mutant p53 by small molecule RITA. Cell Cycle. 9:1847–1855. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Burmakin M, Shi Y, Hedström E, Kogner P and Selivanova G: Dual targeting of wild-type and mutant p53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vivo and in vitro. Clin Cancer Res. 19:5092–5103. 2013. View Article : Google Scholar : PubMed/NCBI

116 

Foster BA, Coffey HA, Morin MJ and Rastinejad F: Pharmacological rescue of mutant p53 conformation and function. Science. 286:2507–2510. 1999. View Article : Google Scholar

117 

Takimoto R, Wang W, Dicker DT, Rastinejad F, Lyssikatos J and el-Deiry WS: The mutant p53-conformation modifying drug, CP-31398, can induce apoptosis of human cancer cells and can stabilize wild-type p53 protein. Cancer Biol Ther. 1:47–55. 2002. View Article : Google Scholar : PubMed/NCBI

118 

Wang W, Takimoto R, Rastinejad F and El-Deiry WS: Stabilization of p53 by CP-31398 inhibits ubiquitination without altering phosphorylation at serine 15 or 20 or MDM2 binding. Mol Cell Biol. 23:2171–2181. 2003. View Article : Google Scholar : PubMed/NCBI

119 

He XX, Zhang YN, Yan JW, Yan JJ, Wu Q and Song YH: CP-31398 inhibits the growth of p53-mutated liver cancer cells in vitro and in vivo. Tumour Biol. 37:807–815. 2016. View Article : Google Scholar

120 

He X, Kong X, Yan J, Zhang Y, Wu Q, Chang Y, Shang H, Dou Q, Song Y and Liu F: CP-31398 prevents the growth of p53-mutated colorectal cancer cells in vitro and in vivo. Tumour Biol. 36:1437–1444. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Arihara Y, Takada K, Kamihara Y, Hayasaka N, Nakamura H, Murase K, Ikeda H, Iyama S, Sato T, Miyanishi K, et al: Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma. Oncotarget. 8:65889–65899. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Liu X, Wilcken R, Joerger AC, Chuckowree IS, Amin J, Spencer J and Fersht AR: Small molecule induced reactivation of mutant p53 in cancer cells. Nucleic Acids Res. 41:6034–6044. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Yu X, Vazquez A, Levine AJ and Carpizo DR: Allele-specific p53 mutant reactivation. Cancer Cell. 21:614–625. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Blanden AR, Yu X, Blayney AJ, Demas C, Ha JH, Liu Y, Withers T, Carpizo DR and Loh SN: Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants. Elife. 9:e614872020. View Article : Google Scholar : PubMed/NCBI

125 

Yu X, Blanden A, Tsang AT, Zaman S, Liu Y, Gilleran J, Bencivenga AF, Kimball SD, Loh SN and Carpizo DR: Thiosemicarbazones functioning as zinc metallochaperones to reactivate mutant p53. Mol Pharmacol. 91:567–575. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Alexandrova EM, Yallowitz AR, Li D, Xu S, Schulz R, Proia DA, Lozano G, Dobbelstein M and Moll UM: Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature. 523:352–356. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Shi XY, Ding W, Li TQ, Zhang YX and Zhao SC: Histone Deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), induces apoptosis in prostate cancer cell lines via the Akt/FOXO3a signaling pathway. Med Sci Monit. 23:5793–5802. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Panicker J, Li Z, McMahon C, Sizer C, Steadman K, Piekarz R, Bates SE and Thiele CJ: Romidepsin (FK228/depsipeptide) controls growth and induces apoptosis in neuroblastoma tumor cells. Cell Cycle. 9:1830–1838. 2010. View Article : Google Scholar : PubMed/NCBI

129 

Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA and Schrump DS: Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst. 94:504–513. 2002. View Article : Google Scholar : PubMed/NCBI

130 

Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre TA, et al: A CRISPR/Cas9-Engineered ARID1A-Deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discov. 11:1562–1581. 2021. View Article : Google Scholar : PubMed/NCBI

131 

Geisinger JM and Stearns T: CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Nucleic Acids Res. 48:9067–9081. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Alvarez MM, Biayna J and Supek F: TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening. Nat Commun. 13:45202022. View Article : Google Scholar : PubMed/NCBI

133 

Hsiue EH, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, Paul S, DiNapoli SR, Konig MF, Wang Q, et al: Targeting a neoantigen derived from a common TP53 mutation. Science. 371:eabc86972021. View Article : Google Scholar : PubMed/NCBI

134 

Wang Z, Strasser A and Kelly GL: Should mutant TP53 be targeted for cancer therapy? Cell Death Differ. 29:911–920. 2022. View Article : Google Scholar : PubMed/NCBI

135 

Olivier M, Hollstein M and Hainaut P: TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2:a0010082010. View Article : Google Scholar : PubMed/NCBI

136 

Chatterjee K, Das P, Chattopadhyay NR, Mal S and Choudhuri T: The interplay between Epstein-Bar virus (EBV) with the p53 and its homologs during EBV associated malignancies. Heliyon. 5:e026242019. View Article : Google Scholar : PubMed/NCBI

137 

Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, Forster A, Cousido-Siah A, Masson M, Vande Pol S, Podjarny A, et al: Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature. 529:541–545. 2016. View Article : Google Scholar : PubMed/NCBI

138 

Lan KH, Sheu ML, Hwang SJ, Yen SH, Chen SY, Wu JC, Wang YJ, Kato N, Omata M, Chang FY and Lee SD: HCV NS5A interacts with p53 and inhibits p53-mediated apoptosis. Oncogene. 21:4801–4811. 2002. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tornesello ML: TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review). Int J Mol Med 55: 7, 2025.
APA
Tornesello, M.L. (2025). TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review). International Journal of Molecular Medicine, 55, 7. https://doi.org/10.3892/ijmm.2024.5448
MLA
Tornesello, M. L."TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review)". International Journal of Molecular Medicine 55.1 (2025): 7.
Chicago
Tornesello, M. L."TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review)". International Journal of Molecular Medicine 55, no. 1 (2025): 7. https://doi.org/10.3892/ijmm.2024.5448
Copy and paste a formatted citation
x
Spandidos Publications style
Tornesello ML: TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review). Int J Mol Med 55: 7, 2025.
APA
Tornesello, M.L. (2025). TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review). International Journal of Molecular Medicine, 55, 7. https://doi.org/10.3892/ijmm.2024.5448
MLA
Tornesello, M. L."TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review)". International Journal of Molecular Medicine 55.1 (2025): 7.
Chicago
Tornesello, M. L."TP53 mutations in cancer: Molecular features and therapeutic opportunities (Review)". International Journal of Molecular Medicine 55, no. 1 (2025): 7. https://doi.org/10.3892/ijmm.2024.5448
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team