Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review)

  • Authors:
    • Zengguang Fan
    • Xingxing Yuan
    • Ye Yuan
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China, Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang 150006, P.R. China, Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Fan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 11
    |
    Published online on: October 31, 2024
       https://doi.org/10.3892/ijmm.2024.5452
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Coronary heart disease (CHD) remains a leading cause of morbidity and mortality worldwide, posing a substantial public health burden. Despite advancements in treatment, the complex etiology of CHD necessitates ongoing exploration of novel diagnostic markers and therapeutic targets. Circular RNAs (circRNAs), a distinct class of non‑coding RNAs with a covalently closed loop structure, have emerged as significant regulators in various diseases, including CHD. Their high stability, tissue‑specific expression and evolutionary conservation underscore their potential as biomarkers and therapeutic agents in CHD. This review discusses the current knowledge on circRNAs in the context of CHD and explores the molecular mechanisms by which circRNAs influence the pathophysiology of CHD, including cardiomyocyte death, endothelial injury, vascular dysfunction and inflammation. It also summarizes the emerging evidence highlighting the differential expression of circRNAs in patients with CHD and their potential utilities as non‑invasive diagnostic and prognostic biomarkers and therapeutic targets for this disease.
View Figures

Figure 1

Figure 2

View References

1 

Katta N, Loethen T, Lavie CJ and Alpert MA: Obesity and coronary heart disease: Epidemiology, Pathology, and coronary artery imaging. Curr Probl Cardiol. 46:1006552021. View Article : Google Scholar

2 

Pothineni NVK, Subramany S, Kuriakose K, Shirazi LF, Romeo F, Shah PK and Mehta JL: Infections, atherosclerosis, and coronary heart disease. Eur Heart J. 38:3195–3201. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Dong Y, Chen H, Gao J, Liu Y, Li J and Wang J: Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 136:27–41. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Hodel F, Xu ZM, Thorball CW, de La Harpe R, Letang-Mathieu P, Brenner N, Butt J, Bender N, Waterboer T, Marques-Vidal PM, et al: Associations of genetic and infectious risk factors with coronary heart disease. Elife. 12:e797422023. View Article : Google Scholar : PubMed/NCBI

5 

Sygitowicz G and Sitkiewicz D: Involvement of circRNAs in the Development of Heart Failure. Int J Mol Sci. 23:141292022. View Article : Google Scholar : PubMed/NCBI

6 

Ma XK, Zhai SN and Yang L: Approaches and challenges in genome-wide circular RNA identification and quantification. Trends Genet. 39:897–907. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Hwang HJ and Kim YK: Molecular mechanisms of circular RNA translation. Exp Mol Med. 56:1272–1280. 2024. View Article : Google Scholar : PubMed/NCBI

8 

Zhou J, Li L, Hu H, Wu J, Chen H, Feng K and Ma L: Circ-HIPK2 accelerates cell apoptosis and autophagy in myocardial oxidative injury by sponging miR-485-5p and Targeting ATG101. J Cardiovasc Pharmacol. 76:427–436. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Dinh P, Tran C, Dinh T, Ali A and Pan S: Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of ETS1. J Biomol Struct Dyn. 42:5114–5127. 2024. View Article : Google Scholar

10 

Ye B, Liang X, Zhao Y, Cai X, Wang Z, Lin S, Wang W, Shan P, Huang W and Huang Z: Hsa_circ_0007478 aggravates NLRP3 inflammasome activation and lipid metabolism imbalance in ox-LDL-stimulated macrophage via miR-765/EFNA3 axis. Chem Biol Interact. 368:1101952022. View Article : Google Scholar : PubMed/NCBI

11 

Hou C, Gu L, Guo Y, Zhou Y, Hua L, Chen J, He S, Zhang S, Jia Q, Zhao C, et al: Association between circular RNA expression content and severity of coronary atherosclerosis in human coronary artery. J Clin Lab Anal. 34:e235522020. View Article : Google Scholar : PubMed/NCBI

12 

Akan G, Nyawawa E, Nyangasa B, Turkcan MK, Mbugi E, Janabi M and Atalar F: Severity of coronary artery disease is associated with diminished circANRIL expression: A possible blood based transcriptional biomarker in East Africa. J Cell Mol Med. 28:e180932024. View Article : Google Scholar :

13 

Cao Q, Guo Z, Du S, Ling H and Song C: Circular RNAs in the pathogenesis of atherosclerosis. Life Sci. 255:1178372020. View Article : Google Scholar : PubMed/NCBI

14 

Ma X, Chen X, Mo C, Li L, Nong S and Gui C: The role of circRNAs in the regulation of myocardial angiogenesis in coronary heart disease. Microvasc Res. 142:1043622022. View Article : Google Scholar : PubMed/NCBI

15 

Chen CK, Cheng R, Demeter J, Chen J, Weingarten-Gabbay S, Jiang L, Snyder MP, Weissman JS, Segal E, Jackson PK and Chang HY: Structured elements drive extensive circular RNA translation. Mol Cell. 81:4300–4318.e13. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Busa VF and Leung AKL: Thrown for a (stem) loop: How RNA structure impacts circular RNA regulation and function. Methods. 196:56–67. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Aufiero S, van den Hoogenhof MMG, Reckman YJ, Beqqali A, van der Made I, Kluin J, Khan MAF, Pinto YM and Creemers EE: Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA. 24:815–827. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 7:112152016. View Article : Google Scholar : PubMed/NCBI

19 

Jiang S, Fu R, Shi J, Wu H, Mai J, Hua X, Chen H, Liu J, Lu M and Li N: CircRNA-Mediated regulation of angiogenesis: A new chapter in cancer biology. Front Oncol. 11:5537062021. View Article : Google Scholar : PubMed/NCBI

20 

Ding C and Zhou Y: Insights into circular RNAs: Biogenesis, function and their regulatory roles in cardiovascular disease. J Cell Mol Med. 27:1299–1314. 2023. View Article : Google Scholar : PubMed/NCBI

21 

Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Zang J, Lu D and Xu A: The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 98:87–97. 2020. View Article : Google Scholar

23 

Montañés-Agudo P, van der Made I, Aufiero S, Tijsen AJ, Pinto YM and Creemers EE: Quaking regulates circular RNA production in cardiomyocytes. J Cell Sci. 136:sc2611202023. View Article : Google Scholar

24 

Pamudurti NR, Patop IL, Krishnamoorthy A, Bartok O, Maya R, Lerner N, Ashwall-Fluss R, Konakondla JVV, Beatus T and Kadener S: circMbl functions in cis and in trans to regulate gene expression and physiology in a tissue-specific fashion. Cell Rep. 39:1107402022. View Article : Google Scholar : PubMed/NCBI

25 

Kelly S, Greenman C, Cook PR and Papantonis A: Exon skipping is correlated with exon circularization. J Mol Biol. 427:2414–2417. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Monat C, Quiroga C, Laroche-Johnston F and Cousineau B: The Ll.LtrB intron from Lactococcus lactis excises as circles in vivo: insights into the group II intron circularization pathway. RNA. 21:1286–1293. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T and Engelhardt S: Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol. 98:103–107. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, Cherry S and Wilusz JE: The Output of Protein-Coding Genes Shifts to Circular RNAs When the Pre-mRNA Processing Machinery Is Limiting. Mol Cell. 68:940–954.e3. 2017. View Article : Google Scholar : PubMed/NCBI

30 

García-Lerena JA, González-Blanco G, Saucedo-Cárdenas O and Valdés J: Promoter-Bound Full-Length Intronic Circular RNAs-RNA Polymerase II Complexes Regulate Gene Expression in the Human Parasite Entamoeba histolytica. Noncoding RNA. 8:122022.PubMed/NCBI

31 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar :

32 

Gao Y, Wang J and Zhao F: CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16:42015. View Article : Google Scholar : PubMed/NCBI

33 

Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Chen I, Chen CY and Chuang TJ: Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA. 6:563–579. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Vromman M, Anckaert J, Bortoluzzi S, Buratin A, Chen CY, Chu Q, Chuang TJ, Dehghannasiri R, Dieterich C, Dong X, et al: Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision. Nat Methods. 20:1159–1169. 2023. View Article : Google Scholar : PubMed/NCBI

39 

Haque S and Harries LW: Circular RNAs (circRNAs) in Health and Disease. Genes (Basel). 8:3532017. View Article : Google Scholar : PubMed/NCBI

40 

Zhang Q, Sun W, Han J, Cheng S, Yu P, Shen L, Fan M, Tong H, Zhang H, Chen J and Chen X: The circular RNA hsa_ circ_0007623 acts as a sponge of microRNA-297 and promotes cardiac repair. Biochem Biophys Res Commun. 523:993–1000. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Szabo L, Morey R, Palpant NJ, Wang PL, Afari N, Jiang C, Parast MM, Murry CE, Laurent LC and Salzman J: Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 16:1262015. View Article : Google Scholar : PubMed/NCBI

42 

Siede D, Rapti K, Gorska AA, Katus HA, Altmüller J, Boeckel JN, Meder B, Maack C, Völkers M, Müller OJ, et al: Identification of circular RNAs with host gene-independent expression in human model systems for cardiac differentiation and disease. J Mol Cell Cardiol. 109:48–56. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Wu J, Guo X, Wen Y, Huang S, Yuan X, Tang L and Sun H: N6-Methyladenosine Modification Opens a New Chapter in Circular RNA Biology. Front Cell Dev Biol. 9:7092992021. View Article : Google Scholar : PubMed/NCBI

44 

Xu T, He B, Sun H, Xiong M, Nie J, Wang S and Pan Y: Novel insights into the interaction between N6-methyladenosine modification and circular RNA. Mol Ther Nucleic Acids. 27:824–837. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017.

46 

Tao M, Zheng M, Xu Y, Ma S, Zhang W and Ju S: CircRNAs and their regulatory roles in cancers. Mol Med. 27:942021. View Article : Google Scholar : PubMed/NCBI

47 

Graham JR, Hendershott MC, Terragni J and Cooper GM: mRNA degradation plays a significant role in the program of gene expression regulated by phosphatidylinositol 3-kinase signaling. Mol Cell Biol. 30:5295–5305. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, et al: Insights Into the Role of CircRNAs: Biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol. 9:6172812021. View Article : Google Scholar : PubMed/NCBI

49 

Huang J, Yu S, Ding L, Ma L, Chen H, Zhou H, Zou Y, Yu M, Lin J and Cui Q: The Dual Role of Circular RNAs as miRNA Sponges in breast cancer and colon cancer. Biomedicines. 9:15902021. View Article : Google Scholar : PubMed/NCBI

50 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Huang S, Li X, Zheng H, Si X, Li B, Wei G, Li C, Chen Y, Chen Y, Liao W, et al: Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration After Myocardial Infarction in Adult Mice. Circulation. 139:2857–2876. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Ma B, Wang S, Wu W, Shan P, Chen Y, Meng J, Xing L, Yun J, Hao L, Wang X, et al: Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed Pharmacother. 162:1146722023. View Article : Google Scholar : PubMed/NCBI

55 

Misir S, Wu N and Yang BB: Specific expression and functions of circular RNAs. Cell Death Differ. 29:481–491. 2022. View Article : Google Scholar : PubMed/NCBI

56 

Das A, Sinha T, Shyamal S and Panda AC: Emerging Role of Circular RNA-Protein Interactions. Noncoding RNA. 7:482021.PubMed/NCBI

57 

Jiang MP, Xu WX, Hou JC, Xu Q, Wang DD and Tang JH: The Emerging Role of the Interactions between Circular RNAs and RNA-binding Proteins in Common Human Cancers. J Cancer. 12:5206–5219. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z and Yang BB: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24:357–370. 2017. View Article : Google Scholar :

59 

Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, Yang W, Zhang C, Yang Q, Yee A, et al: A Circular RNA Binds To and Activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 7:3842–3855. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI

61 

Conte A and Pierantoni GM: Update on the Regulation of HIPK1, HIPK2 and HIPK3 Protein Kinases by microRNAs. Microrna. 7:178–186. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y and Abe H: Rolling circle translation of circular RNA in living human cells. Sci Rep. 5:164352015. View Article : Google Scholar : PubMed/NCBI

63 

Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: circFBXW7 Inhibits Malignant Progression by Sponging miR-197-3p and Encoding a 185-aa Protein in Triple-Negative Breast Cancer. Mol Ther Nucleic Acids. 18:88–98. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Liu C, Wu X, Gokulnath P, Li G and Xiao J: The Functions and Mechanisms of Translatable Circular RNAs. J Pharmacol Exp Ther. 384:52–60. 2023. View Article : Google Scholar

66 

Li X, Zhao Z, Jian D, Li W, Tang H and Li M: Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diab Vasc Dis Res. 14:510–515. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Guo N, Zhou H, Zhang Q, Fu Y, Jia Q, Gan X, Wang Y, He S, Li C, Tao Z, et al: Exploration and bioinformatic prediction for profile of mRNA bound to circular RNA BTBD7_hsa_ circ_0000563 in coronary artery disease. BMC Cardiovasc Disord. 24:712024. View Article : Google Scholar

68 

Chen JX, Hua L, Zhao CH, Jia QW, Zhang J, Yuan JX, Zhang YJ, Jin JL, Gu MF, Mao ZY, et al: Quantitative proteomics reveals the regulatory networks of circular RNA BTBD7_hsa_ circ_0000563 in human coronary artery. J Clin Lab Anal. 34:e234952020. View Article : Google Scholar

69 

Wang L, Shen C, Wang Y, Zou T, Zhu H, Lu X, Li L, Yang B, Chen J, Chen S, et al: Identification of circular RNA Hsa_ circ_0001879 and Hsa_circ_0004104 as novel biomarkers for coronary artery disease. Atherosclerosis. 286:88–96. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Sun Y, Chen R, Lin S, Xie X, Ye H, Zheng F, Lin J, Huang Q, Huang S, Ruan Q, et al: Association of circular RNAs and environmental risk factors with coronary heart disease. BMC Cardiovasc Disord. 19:2232019. View Article : Google Scholar : PubMed/NCBI

71 

Wu WP, Pan YH, Cai MY, Cen JM, Chen C, Zheng L, Liu X and Xiong XD: Plasma-Derived Exosomal Circular RNA hsa_ circ_0005540 as a Novel Diagnostic Biomarker for Coronary Artery Disease. Dis Markers. 2020:31786422020. View Article : Google Scholar

72 

Yu F, Tie Y, Zhang Y, Wang Z, Yu L, Zhong L and Zhang C: Circular RNA expression profiles and bioinformatic analysis in coronary heart disease. Epigenomics. 12:439–454. 2020. View Article : Google Scholar : PubMed/NCBI

73 

Dinh P, Peng J, Tran T, Wu D, Tran C, Dinh T and Pan S: Identification of hsa_circ_0001445 of a novel circRNA-miRNA-mRNA regulatory network as potential biomarker for coronary heart disease. Front Cardiovasc Med. 10:11042232023. View Article : Google Scholar : PubMed/NCBI

74 

Yin L, Tang Y and Jiang M: Research on the circular RNA bioinformatics in patients with acute myocardial infarction. J Clin Lab Anal. 35:e236212021. View Article : Google Scholar :

75 

Pan RY, Liu P, Zhou HT, Sun WX, Song J, Shu J, Cui GJ, Yang ZJ and Jia EZ: Circular RNAs promote TRPM3 expression by inhibiting hsa-miR-130a-3p in coronary artery disease patients. Oncotarget. 8:60280–60290. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Yijian L, Weihan S, Lin Y, Heng Z, Yu W, Lin S, Shuo M, Mengyang L and Jianxun W: CircNCX1 modulates cardiomyocyte proliferation through promoting ubiquitination of BRG1. Cell Signal. 120:1111932024. View Article : Google Scholar : PubMed/NCBI

77 

Kishore R, Garikipati VNS and Gonzalez C: Role of Circular RNAs in Cardiovascular Disease. J Cardiovasc Pharmacol. 76:128–137. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Maguire EM and Xiao Q: Noncoding RNAs in vascular smooth muscle cell function and neointimal hyperplasia. FEBS J. 287:5260–5283. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Ma W, Wei S, Zhang B and Li W: Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol. 8:4342020. View Article : Google Scholar : PubMed/NCBI

80 

Dorn GW II: Apoptotic and non-apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res. 81:465–473. 2009. View Article : Google Scholar :

81 

Nah J, Zablocki D and Sadoshima J: The roles of the inhibitory autophagy regulator Rubicon in the heart: A new therapeutic target to prevent cardiac cell death. Exp Mol Med. 53:528–536. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Martens MD, Karch J and Gordon JW: The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis. 1868:1662972022. View Article : Google Scholar

83 

Xiang Q, Yi X, Zhu XH, Wei X and Jiang DS: Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol Metab. 35:219–234. 2024. View Article : Google Scholar

84 

Parrotta EI, Lucchino V, Scaramuzzino L, Scalise S and Cuda G: Modeling cardiac disease mechanisms using induced pluripotent stem cell-derived cardiomyocytes: progress, promises and challenges. Int J Mol Sci. 21:43542020. View Article : Google Scholar : PubMed/NCBI

85 

Zhang Y, Liu S, Ding L, Wang D, Li Q and Li D: Circ_0030235 knockdown protects H9c2 cells against OGD/R-induced injury via regulation of miR-526b. PeerJ. 9:e114822021. View Article : Google Scholar : PubMed/NCBI

86 

Zhang J, Zhang T, Zhang W, Zou C, Zhang Q, Ma X and Zhu Y: Circular RNA-DENND4C in H9c2 cells relieves OGD/R-induced injury by down regulation of microRNA-320. Cell Cycle. 19:3074–3085. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Ding W, Ding L, Lu Y, Sun W, Wang Y, Wang J, Gao Y and Li M: Circular RNA-circLRP6 protects cardiomyocyte from hypoxia-induced apoptosis by facilitating hnRNPM-mediated expression of FGF-9. FEBS J. 291:1246–1263. 2024. View Article : Google Scholar

88 

Ko T and Nomura S: Manipulating cardiomyocyte plasticity for heart regeneration. Front Cell Dev Biol. 10:9292562022. View Article : Google Scholar : PubMed/NCBI

89 

Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C and Tousoulis D: Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines. 9:7812021. View Article : Google Scholar : PubMed/NCBI

90 

Shaito A, Aramouni K, Assaf R, Parenti A, Orekhov A, Yazbi AE, Pintus G and Eid AH: Oxidative stress-induced endothelial dysfunction in cardiovascular diseases. Front Biosci (Landmark Ed). 27:1052022. View Article : Google Scholar : PubMed/NCBI

91 

Gallo G and Savoia C: New insights into endothelial dysfunction in cardiometabolic diseases: Potential mechanisms and clinical implications. Int J Mol Sci. 25:29732024. View Article : Google Scholar : PubMed/NCBI

92 

Huang Y, Song C, He J and Li M: Research progress in endothelial cell injury and repair. Front Pharmacol. 13:9972722022. View Article : Google Scholar : PubMed/NCBI

93 

Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, et al: Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: From mechanism to pharmacotherapies. Pharmacol Rev. 73:924–967. 2021. View Article : Google Scholar : PubMed/NCBI

94 

Wang R, Wang M, Ye J, Sun G and Sun X: Mechanism overview and target mining of atherosclerosis: Endothelial cell injury in atherosclerosis is regulated by glycolysis (Review). Int J Mol Med. 47:65–76. 2021. View Article : Google Scholar

95 

Zha D, Wang S, Monaghan-Nichols P, Qian Y, Sampath V and Fu M: Mechanisms of endothelial cell membrane repair: Progress and Perspectives. Cells. 12:26482023. View Article : Google Scholar : PubMed/NCBI

96 

Marzoog BA: Endothelial cell autophagy in the context of disease development. Anat Cell Biol. 56:16–24. 2023. View Article : Google Scholar :

97 

Wang LP, Han RM, Wu B, Luo MY, Deng YH, Wang W, Huang C, Xie X and Luo J: Mst1 silencing alleviates hypertensive myocardial injury associated with the augmentation of microvascular endothelial cell autophagy. Int J Mol Med. 50:1462022. View Article : Google Scholar : PubMed/NCBI

98 

Sobrevia L, Aiello EA and Contreras P: Mechanisms of endothelial dysfunction and cardiovascular system adaptation. Curr Vasc Pharmacol. 20:201–204. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Tong X, Dang X, Liu D, Wang N, Li M, Han J, Zhao J, Wang Y, Huang M, Yang Y, et al: Exosome-derived circ_0001785 delays atherogenesis through the ceRNA network mechanism of miR-513a-5p/TGFBR3. J Nanobiotechnology. 21:3622023. View Article : Google Scholar : PubMed/NCBI

100 

Yu F, Zhang Y, Wang Z, Gong W and Zhang C: Hsa_ circ_0030042 regulates abnormal autophagy and protects atherosclerotic plaque stability by targeting eIF4A3. Theranostics. 11:5404–5417. 2021. View Article : Google Scholar :

101 

Gao W, Li C, Yuan J, Zhang Y, Liu G, Zhang J, Shi H, Liu H and Ge J: Circ-MBOAT2 Regulates Angiogenesis via the miR-495/ NOTCH1 axis and associates with myocardial perfusion in patients with coronary chronic total occlusion. Int J Mol Sci. 25:7932024. View Article : Google Scholar

102 

Wong D, Turner AW and Miller CL: Genetic insights into smooth muscle cell contributions to coronary artery disease. Arterioscler Thromb Vasc Biol. 39:1006–1017. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Low EL, Baker AH and Bradshaw AC: TGFβ, smooth muscle cells and coronary artery disease: A review. Cell Signal. 53:90–101. 2019. View Article : Google Scholar :

104 

Cao G, Xuan X, Hu J, Zhang R, Jin H and Dong H: How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal. 20:1802022. View Article : Google Scholar : PubMed/NCBI

105 

Milutinović A, Šuput D and Zorc-Pleskovič R: Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn J Basic Med Sci. 20:21–30. 2020.

106 

Schnack L, Sohrabi Y, Lagache SMM, Kahles F, Bruemmer D, Waltenberger J and Findeisen HM: Mechanisms of trained innate immunity in oxLDL primed human coronary smooth muscle cells. Front Immunol. 10:132019. View Article : Google Scholar : PubMed/NCBI

107 

Lacolley P, Regnault V, Segers P and Laurent S: Vascular smooth muscle cells and arterial stiffening: Relevance in development, aging, and disease. Physiol Rev. 97:1555–1617. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Zhang G, Liu Z, Deng J, Liu L, Li Y, Weng S, Guo C, Zhou Z, Zhang L, Wang X, et al: Smooth muscle cell fate decisions decipher a high-resolution heterogeneity within atherosclerosis molecular subtypes. J Transl Med. 20:5682022. View Article : Google Scholar : PubMed/NCBI

109 

Wang Z, Wang H, Guo C, Yu F, Zhang Y, Qiao L, Zhang H and Zhang C: Role of hsa_circ_0000280 in regulating vascular smooth muscle cell function and attenuating neointimal hyperplasia via ELAVL1. Cell Mol Life Sci. 80:32022. View Article : Google Scholar : PubMed/NCBI

110 

Dai H, Zhao N and Zheng Y: CircLDLR modulates the proliferation and apoptosis of vascular smooth muscle cells in coronary artery disease through miR-26-5p/KDM6A Axis. J Cardiovasc Pharmacol. 80:132–139. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Zeng Z, Xia L, Fan S, Zheng J, Qin J, Fan X, Liu Y, Tao J, Liu Y, Li K, et al: Circular RNA CircMAP3K5 Acts as a MicroRNA-22-3p Sponge to Promote Resolution of Intimal Hyperplasia Via TET2-Mediated smooth muscle cell differentiation. Circulation. 143:354–371. 2021. View Article : Google Scholar

112 

Mao YY, Wang JQ, Guo XX, Bi Y and Wang CX: Circ-SATB2 upregulates STIM1 expression and regulates vascular smooth muscle cell proliferation and differentiation through miR-939. Biochem Biophys Res Commun. 505:119–125. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Wang L, Li H, Zheng Z and Li Y: Hsa_circ_0031891 targets miR-579-3p to enhance HMGB1 expression and regulate PDGF-BB-induced human aortic vascular smooth muscle cell proliferation, migration, and dedifferentiation. Naunyn Schmiedebergs Arch Pharmacol. 397:1093–1104. 2024. View Article : Google Scholar

114 

Zhong W, Wang L and Xiong L: Circ_0006251 mediates the proliferation and apoptosis of vascular smooth muscle cells in CAD via enhancing TET3 and PPM1B expression. Cell Mol Biol (Noisy-le-grand). 69:34–39. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T and Jacobo-Albavera L: Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 22:38502021. View Article : Google Scholar : PubMed/NCBI

116 

Bazoukis G, Stavrakis S and Armoundas AA: Vagus nerve stimulation and inflammation in cardiovascular disease: A State-of-the-Art Review. J Am Heart Assoc. 12:e0305392023. View Article : Google Scholar : PubMed/NCBI

117 

Bhattacharya P, Kanagasooriyan R and Subramanian M: Tackling inflammation in atherosclerosis: Are we there yet and what lies beyond? Curr Opin Pharmacol. 66:1022832022. View Article : Google Scholar : PubMed/NCBI

118 

Prati F, Marco V, Paoletti G and Albertucci M: Coronary inflammation: Why searching, how to identify and treat it. Eur Heart J Suppl. 22(Suppl E): E121–E124. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S and Liu C: Macrophages in cardiovascular diseases: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 9:1302024. View Article : Google Scholar : PubMed/NCBI

120 

Matter MA, Paneni F, Libby P, Frantz S, Stähli BE, Templin C, Mengozzi A, Wang YJ, Kündig TM, Räber L, et al: Inflammation in acute myocardial infarction: The good, the bad and the ugly. Eur Heart J. 45:89–103. 2024. View Article : Google Scholar :

121 

Li Y and Wang B: Circular RNA circCHFR downregulation protects against oxidized low-density lipoprotein-induced endothelial injury via regulation of microRNA-15b-5p/growth arrest and DNA damage inducible gamma. Bioengineered. 13:4481–4492. 2022. View Article : Google Scholar : PubMed/NCBI

122 

Ji P, Song X and Lv Z: Knockdown of circ_0004104 alleviates oxidized low-density lipoprotein-induced vascular endothelial cell injury by regulating miR-100/TNFAIP8 Axis. J Cardiovasc Pharmacol. 78:269–279. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Rafiq M, Dandare A, Javed A, Liaquat A, Raja AA, Awan HM, Khan MJ and Naeem A: Competing Endogenous RNA Regulatory Networks of hsa_circ_0126672 in pathophysiology of coronary heart disease. Genes (Basel). 14:5502023. View Article : Google Scholar : PubMed/NCBI

124 

Dandare A, Rafiq M, Liaquat A, Raja AA and Khan MJ: Identification of hsa_circ_0092576 regulatory network in the pathogenesis of coronary heart disease. Genes Dis. 10:26–28. 2023. View Article : Google Scholar : PubMed/NCBI

125 

Liu X, Yao X and Chen L: Expanding roles of circRNAs in cardiovascular diseases. Noncoding RNA Res. 9:429–436. 2024. View Article : Google Scholar : PubMed/NCBI

126 

Tang Y, Bao J, Hu J, Liu L and Xu DY: Circular RNA in cardiovascular disease: Expression, mechanisms and clinical prospects. J Cell Mol Med. 25:1817–1824. 2021. View Article : Google Scholar :

127 

Vilades D, Martínez-Camblor P, Ferrero-Gregori A, Bär C, Lu D, Xiao K, Vea À, Nasarre L, Sanchez Vega J, Leta R, et al: Plasma circular RNA hsa_circ_0001445 and coronary artery disease: Performance as a biomarker. FASEB J. 34:4403–4414. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Sonnenschein K, Wilczek AL, de Gonzalo-Calvo D, Pfanne A, Derda AA, Zwadlo C, Bavendiek U, Bauersachs J, Fiedler J and Thum T: Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Sci Rep. 9:203502019. View Article : Google Scholar

129 

Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT and Xiao X: The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 61:221–230. 2015. View Article : Google Scholar :

130 

Wang S, Zhang K, Tan S, Xin J, Yuan Q, Xu H, Xu X, Liang Q, Christiani DC, Wang M, et al: Circular RNAs in body fluids as cancer biomarkers: The new frontier of liquid biopsies. Mol Cancer. 20:132021. View Article : Google Scholar : PubMed/NCBI

131 

Wang W, Sun L, Huang MT, Quan Y, Jiang T, Miao Z and Zhang Q: Regulatory circular RNAs in viral diseases: applications in diagnosis and therapy. RNA Biol. 20:847–858. 2023. View Article : Google Scholar : PubMed/NCBI

132 

Li MZ, Zhang JN, Ren F, Yin DL, Zhao XH and Liu K: Diagnostic value of circRNA in coronary heart disease: A meta-analysis. Biomark Med. 17:667–677. 2023. View Article : Google Scholar : PubMed/NCBI

133 

Fu Y, He S, Li C, Gan X, Wang Y, Zhou Y, Jiang R, Zhang Q, Pan Y, Zhou H, et al: Detailed profiling of m6A modified circRNAs and synergistic effects of circRNA and environmental risk factors for coronary artery disease. Eur J Pharmacol. 951:1757612023. View Article : Google Scholar : PubMed/NCBI

134 

He S, Fu Y, Li C, Wang Y, Zhou H, Jiang R, Zhang Q, Jia Q, Chen X and Jia EZ: Interaction between the expression of hsa_circRPRD1A and hsa_circHERPUD2 and classical coronary risk factors promotes the development of coronary artery disease. BMC Med Genomics. 16:1312023. View Article : Google Scholar : PubMed/NCBI

135 

Zhong Q, Jin S, Zhang Z, Qian H, Xie Y, Yan P, He W and Zhang L: Identification and verification of circRNA biomarkers for coronary artery disease based on WGCNA and the LASSO algorithm. BMC Cardiovasc Disord. 24:3052024. View Article : Google Scholar : PubMed/NCBI

136 

Zhang W, Cui J, Li L, Zhu T and Guo Z: Identification of Plasma Exosomes hsa_circ_0001360 and hsa_circ_0000038 as key biomarkers of coronary heart disease. Cardiol Res Pract. 2024:55571432024. View Article : Google Scholar : PubMed/NCBI

137 

Zhao Z, Li X, Gao C, Jian D, Hao P, Rao L and Li M: Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep. 7:399182017. View Article : Google Scholar : PubMed/NCBI

138 

Huang S, Zeng Z, Sun Y, Cai Y, Xu X, Li H and Wu S: Association study of hsa_circ_0001946, hsa-miR-7-5p and PARP1 in coronary atherosclerotic heart disease. Int J Cardiol. 328:1–7. 2021. View Article : Google Scholar

139 

Tong X, Zhao X, Dang X, Kou Y and Kou J: circRNA, a novel diagnostic biomarker for coronary heart disease. Front Cardiovasc Med. 10:10706162023. View Article : Google Scholar : PubMed/NCBI

140 

Ji WF, Chen JX, He S, Zhou YQ, Hua L, Hou C, Zhang S, Gan XK, Wang YJ, Zhou HX, et al: Characteristics of circular RNAs expression of peripheral blood mononuclear cells in humans with coronary artery disease. Physiol Genomics. 53:349–357. 2021. View Article : Google Scholar : PubMed/NCBI

141 

Miao L, Yin RX, Zhang QH, Liao PJ, Wang Y, Nie RJ and Li H: A novel circRNA-miRNA-mRNA network identifies circ-YOD1 as a biomarker for coronary artery disease. Sci Rep. 9:183142019. View Article : Google Scholar : PubMed/NCBI

142 

Ward Z, Schmeier S, Pearson J, Cameron VA, Frampton CM, Troughton RW, Doughty RN, Richards AM and Pilbrow AP: Identifying candidate circulating RNA markers for coronary artery disease by deep RNA-Sequencing in human plasma. Cells. 11:31912022. View Article : Google Scholar : PubMed/NCBI

143 

Dergunova LV, Vinogradina MA, Filippenkov IB, Limborska SA and Dergunov AD: Circular RNAs variously participate in coronary atherogenesis. Curr Issues Mol Biol. 45:6682–6700. 2023. View Article : Google Scholar : PubMed/NCBI

144 

Wang L, Xu GE, Spanos M, Li G, Lei Z, Sluijter JPG and Xiao J: Circular RNAs in cardiovascular diseases: Regulation and therapeutic applications. Research (Wash D C). 6:00382023.PubMed/NCBI

145 

Goina CA, Goina DM, Farcas SS and Andreescu NI: The role of circular RNA for early diagnosis and improved management of patients with cardiovascular diseases. Int J Mol Sci. 25:29862024. View Article : Google Scholar : PubMed/NCBI

146 

Long Q, Lv B, Jiang S and Lin J: The landscape of circular RNAs in cardiovascular diseases. Int J Mol Sci. 24:45712023. View Article : Google Scholar : PubMed/NCBI

147 

Chen W, Xu J, Wu Y, Liang B, Yan M, Sun C, Wang D, Hu X, Liu L, Hu W, et al: The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int J Biol Sci. 19:2879–2896. 2023. View Article : Google Scholar : PubMed/NCBI

148 

Neu CT, Gutschner T and Haemmerle M: Post-Transcriptional expression control in platelet biogenesis and function. Int J Mol Sci. 21:76142020. View Article : Google Scholar : PubMed/NCBI

149 

Yu R, Yu Q, Li Z, Li J, Yang J, Hu Y, Zheng N, Li X, Song Y, Li J, et al: Transcriptome-wide map of N6-methyladenosine (m6A) profiling in coronary artery disease (CAD) with clopidogrel resistance. Clin Epigenetics. 15:1942023. View Article : Google Scholar : PubMed/NCBI

150 

Zou Y, Wang Y, Yao Y, Wu Y, Lv C and Yin T: Platelet-derived circFAM13B associated with anti-platelet responsiveness of ticagrelor in patients with acute coronary syndrome. Thromb J. 22:532024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Fan Z, Yuan X and Yuan Y: Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review). Int J Mol Med 55: 11, 2025.
APA
Fan, Z., Yuan, X., & Yuan, Y. (2025). Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review). International Journal of Molecular Medicine, 55, 11. https://doi.org/10.3892/ijmm.2024.5452
MLA
Fan, Z., Yuan, X., Yuan, Y."Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review)". International Journal of Molecular Medicine 55.1 (2025): 11.
Chicago
Fan, Z., Yuan, X., Yuan, Y."Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review)". International Journal of Molecular Medicine 55, no. 1 (2025): 11. https://doi.org/10.3892/ijmm.2024.5452
Copy and paste a formatted citation
x
Spandidos Publications style
Fan Z, Yuan X and Yuan Y: Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review). Int J Mol Med 55: 11, 2025.
APA
Fan, Z., Yuan, X., & Yuan, Y. (2025). Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review). International Journal of Molecular Medicine, 55, 11. https://doi.org/10.3892/ijmm.2024.5452
MLA
Fan, Z., Yuan, X., Yuan, Y."Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review)". International Journal of Molecular Medicine 55.1 (2025): 11.
Chicago
Fan, Z., Yuan, X., Yuan, Y."Circular RNAs in coronary heart disease: From molecular mechanism to promising clinical application (Review)". International Journal of Molecular Medicine 55, no. 1 (2025): 11. https://doi.org/10.3892/ijmm.2024.5452
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team